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RESEARCH OBJECTIVES AND SUMMARY OF RESEARCH

The principal investigator transferred to Northeastern University, Boston, Massa-
chusetts, in September 1968. The experimental study of solids by infrared and Raman
techniques was discontinued at that time, but several research programs have been com-
pleted and the data have been analyzed. Four of these studies are reported in Sec-
tions X-A, X-B, X-C, and X-D. The results of the remaining studies will be included
in a future report.

Work on thallium and silver halides, alkaline-earth fluorides, and potassium
tantalate-niobate mixed crystals continues. Six journal papers are in preparation which
will essentially cover most of the unpublished work completed at M. I. T. Three graduate
students will be candidates for the Ph.D. degree in January 1969.

In addition to the work reported here, the publications and papers presented at var-

ious meetings summarize the research accomplished during the past year.1-7

C. H. Perry
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A. OPTICAL PHONONS AND SYMMETRY OF TYSONITE

LANTHANIDE FLUORIDES

1. Introduction

The partially filled 4f electron shell of the lanthanide elements is so well screened

from its external environment that, when the ions are held in a suitable host lattice,

electronic transitions of the type 4f - 4f are expected to give sharp spectral lines. Some
1-5

of the known 4f - 4f transitions lie in the far infrared region of the spectrum. Con-

sequently, there is strong motivation to assess the potential of these low-energy tran-

sitions for use in solid-state, far infrared lasers.

It is clear, however, that in order to investigate these potential far infrared lasing

systems, the host lattice must be chosen with care. This is true not only because the

host lattice will determine the position and line width of the 4f - 4f transitions but also

because the optically active phonon frequencies of most solids lie within the far infrared

region too, and precautions should be taken to ensure that the frequencies of the elec-

tronic and phonon excitations do not significantly overlap.

The tysonite structure of LaF 3 , CeF 3 , PrF 3 , and NdF 3 provides a convenient host

lattice in which other lanthanide ions will enter substitutionally. These substances are

rugged6, 7 and readily available in single crystal form. 8 , 9 Their nonhygroscopic

nature 6 , 7 has the spectroscopic advantage that they are unlikely to incorporate OH

impurities, which are well known to contribute defect modes to the phonon spectrum of

a host lattice.10

X-ray diffraction studies have led to three commonly proposed lattices for the tyson-

ite structure: a hexamolecular cell with P63 / mcm (D 6 h 3 ) symmetry,l 1 , 12 a bimolec-

ular cell with P6 /mme 6 h 4 ) symmetry, 13 and a hexamolecular cell with P3cl D 3 d 4 )

symmetry. 1 4 - 1 6 Faraday or paramagnetic rotation, 1 7 ,18 electron spin resonance, 1 9 - 2 1

and optical absorption measurements 1 - 4 , 22-29 have provided a substantial amount of

additional experimental evidence, but the proper space group for the tysonite structure

has not yet been conclusively established. In fact, some of the magnetic resonance

QPR No. 92



(X. OPTICAL AND INFRARED SPECTROSCOPY)

datal9, 20 appear inconsistent with all three of these lattices. Recently, Baumann and

Porto 5 reported the frequencies and polarizations of the Raman active phonon modes for
these four tysonite lanthanide fluorides. Their results, for LaF 3 at least, strongly favor

the hexamolecular P3cl lattice.

The frequencies and polarizations of the fundamental infrared active phonon modes,

for the most part, are not known for these compounds, although some attempts have been

made to determine them for LaF 3 from transmission measurements on polycrystalline

samples 3 0 and from unpolarized emittance spectra. 3 1 Since the lanthanide fluorides are

uniaxial, however, the dielectric response tensor contains two principal nondegenerate

components, and the infrared active modes can only be measured uniquely by using

radiation polarized separately along these two orthogonal components. Consequently,

these previous experiments have not necessarily identified all of the fundamental phonon

transitions.

This report complements the recent Raman study5 and presents a complete set of

polarized, fundamental, infrared active phonon modes for LaF 3 , CeF 3 , PrF 3 , and NdF 3
at temperatures between 7 K and 295 'K. These infrared results for the tysonite lattice,

together with the Raman results, are consistent only with the P3cl (D 3 d4 ) lattice con-
taining 6 formula units per unit cell and conclusively eliminate the P63/mcm and

P6 3 /mmc lattices. In order to be consistent with the magnetic-resonance data, the

proper magnetic space group must be P3'c' 1.

2. Experimental Details

Cylindrical single crystals of LaF 3 , CeF 3 , PrF3 , and NdF 3 , 10 mm in diameter

and approximately 5 mm long, were obtained from Optovac, Inc. 8 The crystals were
supplied with the c-axis perpendicular to the cylinder axis and parallel to the plane of
the circular end faces. By using crossed polarizers, the c axis could be oriented with
respectto the polarization of the incident radiation to better than 5 degrees of arc; this
resulted in an intermixing between the orthogonal polarizations of less than 2% reflec-
tance. Only the CeF 3 sample showed the hexagonal striations reported to be associated

6with oxygen impurities. 6

The reflectance and transmittance spectra were measured with an R. I. I. C. FS-520
Fourier spectrometer (Michelson type) adapted for 12-bit analog-to-digital conversion.

A mercury arc source in conjunction with a liquid-helium-cooled Ga doped germanium

bolometer was used from 40-200 cm -l . A Nernst glower with a Golay pneumatic cell-l
was used from 150-650 cm-1 A vacuum-evaporated one-dimensional wire grid polar-
izer was used to reduce the horizontally polarized radiation to much less than 1% of the
vertically polarized component. 3 2

The normalized transmittance was calculated with the use of an aperture that had the
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same size as the sample. The normalized reflectance was calculated with the use of an

aluminum mirror as a reference background. The plane of incidence was horizontal and

the angle of incidence was approximately 7 1/2 degrees of arc. By orienting the crystal

so that the c axis lay in the face of the crystal and was either vertical or horizontal,

either the Tr component (E//c) or the a component (E I c) of the dielectric response ten-

sor could be individually excited.

3. Dielectric Response Tensor

The effective dielectric response function for each tensor component was calculated

from a Kramers-Kronig analysis of the reflectance measurements by using the Fresnel

formula that is appropriate for a crystal aligned with the desired axis precisely parallel

to the incident electric field and perpendicular to the plane of incidence. The infrared

active transverse optical (TO) frequencies, associated with the poles of the dielectric

response function (ID If 0, IE I-. 0), were located by peaks in wE" (E= E' +iE"), which is

proportional to the electric conductivity 4= . The infrared active longitudinal opti-

cal (LO) frequencies, associated with the zeros of the dielectric response function

(IDI-0, E = 0),33 were located by peaks in -otn" (-E 1 =-"/I)

The principal poles and zeros of the two components of the dielectric response ten-

sor were identified quite satisfactorily by using the outlined procedure. There were,

however, measurable effects in both reflectance and transmittance because of a slight

misalignment of the crystal axes. In order to understand the nature and magnitude of

the effects of this misalignment, it is instructive to solve a special case of the reflec-

tance and transmittance of a uniaxial crystal.

In a uniaxial crystal (E = e yf E), the incident radiation splits into an ordinary wave

and an extraordinary wave that propagate independently of one another. If the direction

of propagation of the incident radiation is normal to the crystal-vacuum interface, the

ordinary and extraordinary waves propagate in the same direction as the incident radia-

tion. If 4 is the angle between the incident electric field and the projection of the c axis
2 2 2

on the crystal face, it can be shown that R = Ro sin 2  + Re cos2 4 and T = T sin2 
C +

T cos 2 4, where R and T are the effective normal reflectance and transmittance coef-

ficients of the crystal, R , T , R e , and T e are the normal reflectance and transmittance

coefficients for the ordinary and extraordinary waves, respectively.

If # = 0, then R = R + (R -R ) sin 2  R . Since IRo-Re I 1 and, in practice,
e e e

sin 2  - 0.01, it is clear that one can measure the extraordinary reflectance coefficient

within an additive error of less than 1% reflectance. Similarly, if 4 = 90', the ordinary

reflectance coefficient can be measured within 1% reflectance. As a result, the errors

introduced in the measurement of the reflectance or transmittance by a slight error (less

than 5 degrees of arc) in the orientation of the plane of polarization with respect to the
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optical axis can either be conveniently ignored or be eliminated by small corrections

based upon measurements in the orthogonal plane of polarization.

Moreover, since R = I(1-n )/(1+nx)12 and we ignore interference effects, T 0
Sexp[-ad], where ^ 1/2

(1-R)2 exp[-ad], where n = (pE ) d thickness of the crystal, and a =

2Tw Im [nx], one of the components of the dielectric response tensor, Ex' can be cal-

culated directly from R and T .

Unfortunately, Ez cannot be calculated directly from R and T . R = (1-n^ /(l+n^ ) 2
with interference effects T (1-R )2 exp[-a ed] ignored, where n = c/v and a =e e e e e

S 2 2 2 2 2  2 ^ 2 2 A2 Im ), bute = v os + v sin 2 , where v = c / Ex, v = c /,4 z and 0 is
the angle between the c axis and the plane of the crystal face.

The crystals used in this study were cut and polished with the c axis parallel to the

face of the crystal within an estimated 5 degrees of arc, so that sin2 = 0 2 0 0.01, and

2 2 2 2 2 2 (E z -1/2 0 2v v + v-v Equivalently, n n 1 + 2  (E -E
e z z x zx

as long as 2/E1 << . Under these conditions R = R ± 202R z z x
e z z 1-E Cz x

and Te = (1-Re)2 exp(-a d), where R = (1-- )/(+^)2, a a - Tw Im 2  (E zx
^ 1/2 x

n = (,E )  , and a = 2rrw Im [ nz ].

Clearly, even when 2 < 0. 01, there is no assurance that the difference between R

and R and between T and T must be less than 1%. In fact, whenever I x - 0, thatz e z -
-1is, whenever one is near a pole of ir = E- , significant features may be expected in Rz x e

and Te . In a low-dispersion region of E in with Re [n] = const = n and Im [^n] z 0,
2 z z z z

then R R + K 0 anda -K 2"x' where r" = Im LE , K = n 3 /, and
e  z I Ex e 2 x x 2 z

may be evaluated from R e and R o . Consequently, even in regions where Ez is approxi-

mately constant, there will be a weak peak in the reflectance and a moderately strong

minimum in the transmittance that is proportional to 02 whenever the frequency
approaches a longitudinal optical (LO) frequency of EX. Minima in the extraor-

dinary transmittance near poles of ^z = E on account of the LO frequencies of

Ez, can also be observed for radiation propagating almost parallel to the optical

axis.

This weak coupling of the nominally transverse material electromagnetic wave

(mixed photon-phonon particle wave) to the longitudinal optical (LO) frequencies of the

orthogonal components of the dielectric response tensor has not apparently been pre-

viously reported, although it is a general property of all strongly anisotropic

(E x-z I >> 0) transparent crystals. The existence of this effect makes it possible for

some longitudinal dielectric resonances to be studied in transmission as if they were

weak transverse resonances, as well as to identify intrinsic but otherwise spurious
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absorption bands, because of a slight misalignment of an anisotropic crystal with strong

longitudinal resonances.

An observation of the lowest LO frequency of the Ex component of the tysonite lan-

thanide fluorides is reported below.

4. Experimental Results

Figure X-1 shows the measured specular reflectance of LaF 3 , CeF 3 , PrF3 , and

NdF 3 at 7 K with E // c (rr-polarized modes). Five infrared active phonon modes appear

for LaF 3 and CeF 3 , but for PrF 3 and NdF 3 there are 6 infrared active phonon modes.

The sixth mode arises from the lifting of an apparent degeneracy of the reflection band

at 220 cm For PrF3 an additional band at 66 cm - , which is not present in the

reflectance spectra of the other salts, is observed. This band is believed to be

due to an electronic transition from the ground state to the first excited state of the

3H4 Stark multiplet of Pr3+ . This transition has been predicted from optical absorption
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Fig. X-1. Far infrared reflectance of the lanthanide fluorides at 7 K
in the rr-polarization.
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measurements4 , 22, 25-28 to occur near 66 cm - 1, and its nature has been confirmed on
the basis of far infrared transmission measurements of Pr 3 + contained within these four

34host lattices. A perceptible change in the reflectance of NdF 3 was also observed in
this polarization near 45 cm - 1 , which was due to an electronic transition from the ground
state to the first excited state of the 4 9/2 Stark multiplet of the Nd 3 + ion. This last
transition has been confirmed, by Zeeman splitting, to be electronic in nature.

Figure X-2 shows the measured spectral reflectance for the four salts at 7 K with
E 1 c (a-polarized modes). In this polarization at least 10 well-defined infrared active
phonon modes are observed, although the reflection band centered near 140 cm - 1 in
LaF 3 is only partially resolved in NdF 3 . Proceeding through the series from LaF 3
through NdF 3 , a moderately strong shoulder appears on the low-frequency side of the

-1reflection band near 130 cm (in LaF 3 ) and it is quite likely that, in fact, there are 11
infrared active phonon modes in the cr-polarization. For PrF3 , an additional reflection

-1band (at 92 cm ) is again observed which is not present in the spectra of the other salts.

This mode is believed to be due to an electronic transition from the ground state of the
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Fig. X-2. Far infrared reflectance of the lanthanide fluorides at 7 0 K
in the a-polarization.
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3H 4 Stark multiplet of the Pr 3 + ion to the second excited state, for the same reasons as

those given above for the electronic transitions observed in the Tr-polarization.

Figures X-3 and X-4 illustrate the temperature dependence that is typical of the

reflectance spectra in the w- and u-polarizations for LaF 3 between 7 K and 295 0 K. It is

evident that a fairly rapid damping of the weaker reflection bands occurs as the tempera-

ture is raised, so that at 295 "K there are only 4 well-defined reflection bands in the

iT-polarization and 7 in the u-polarization. The damping out of the weaker reflection

bands is a continuous process with increasing temperature and there is no evidence for

a phase change.

Kramers-Kronig analyses of the reflectance measurements determined the dielectric

functions WE" and w]" for each lanthanide fluoride. Figure X-5 shows the typical 2hape

of these functions for NdF 3 . Six TO and LO frequencies can be easily distinguished

in the ir-polarization, but only 10 TO and LO frequencies can be easily seen in the
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Fig. X-5. Frequency dependence of the dielectric functions WE" and wi1"
for NdF 3 at 7 'K.
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Table X-1. Transverse and longitudinal k z 0 phonon frequencies and their

associated damping in cm - I for the lanthanide fluorides in the
-l

Tr-polarization. The phonon frequencies are accurate to ±2 cm-1

and the damping to ±20%.

LaF 3  CeF 3  PrF 3  NdF 3

°K 5 78 295 5 78 295 5 78 295 5 78 295

138

3

138

4

166

4

178

3

194

8

246

5

273

8

298

6

318

14

462

14

142

5

143

5

168

4

178

4

195

9

243

7

274

10

297

6

319

14

461

18

168

6

176

7

194

14

239

16

275

12

296

10

323

16

468

62

140

9

140

8

170

5

180

6

199

8

252

8

280

3

302

4

329

6

478

23

141

9

141

8

170

6

181

10

203

11

252

8

285

6

301

7

339

14

475

38

141

5

143

5

167

10

180

20

193

24

249

16

273

20

303

13

321

18

466

17

141

16

142

17

178 175

3 9

183 182

2 6

201 203

10 17

263 261

6 7

234 232

234 232

289

6

308

5

331

8

471

15

288

8

307

4

332

15

474

20

170

16

182

15

195

20

257

20

283

20

308

20

339

20

467

20

144

10

147

10

147

147

176 177

5 4

185 185

3 3

202 202

6 7

268 267

4 6

240 238

3 6

238 236

4 5

294

4

314

5

335

8

470

13

294

6

314

6

337

8

472

18

172

8

184

12

198

15

264

14

236

234

290

17

312

14

337

12

472

44
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Transverse and longitudinal k 0 phonon frequencies and their

associated damping in cm

a-polarization. The phonon
and the damping to ±20%.

for the lanthanide fluorides in the

frequencies are accurate to ±2 cm-l
frequencies are accurate to ±2 cm ,

LaF
3

5 78 295

CeF
3

5 78 295

PrF
3

5 78 295

NdF
3

5 78 295

98
6

108
5

130
4

132
3

142
5

142
2

164
9

186
8

98
6

107
4

130
4

132
4

166
10

186
7

100
7

108
4

130
7

132
7

164
10

186

101
2

110
4

128

3
130

3

144

11
146

11

168
8

184

5

193
10

196
10

210
8

230

8

246
6

268
9

274
8

318
10

107
3

111
3

134
2

136
2

142
8

145
8

169
25

189
2

196
4

197

100

7
110

7

127
8

131
7

144

145

167
10

184
5

193
7

195

208
10

229
10

248
7

268
12

272
13

317
10

268 276
20

278 269 280
10

104
4

110
4

132
5

135
6

143

143

170
5

169
3

102
6

109
6

131
13

133
10

166
14

190
14

104
3

112
3

133
3

135
3

147
6

147
6

170
5

194
3

105
6

111
4

133
4

135
4

170
6

194
4

101
8

110
5

131

136
20

165
17

193
14

204 202
4

204 202

211
11

235
12

205 215
8

228 239
6

252 248
13 25

276 278

278 278

350 350 318 323 322 324
34 15 16 25

364

374

354 355
20 23

373 373

214
10

238
8

255 255
5 8

279 279
5 12

208

233

251
25

278

283 284 278

5 11
334 334 332
12 16 23

369 368 366

8 10 30
381 381
10 12

368 367 356
15

466 462 457
31 19 35

382 385 360
44

472 474 478
26 33 72

QPR No. 92

100
5

108
4

128
8

130
7

168
11

183
18

198 201
6

210 208

218 222 203 213
8

240 235 224 235

4

247 247 244 255
7

264 266 272 278

208
34

222
26

245
19

272

316
16

356 354
9

364
15

13
364

374
16

468
16

375
20

464
23

358
33

467
33

386
9

471
18

385 370
33

471 463
20 30

Table X-2.
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-l
a-polarization. A weak but sharp feature near 125 cm-1 in both WE" and w,9" has been

interpreted as an eleventh fundamental phonon mode, because of its appearance as a

shoulder on the low-frequency side of another fundamental phonon mode and because it

occurs at a frequency lower than expected for two-phonon summation processes. The
-l -1

weak broad feature near 320 cm, which is even weaker than the mode near 125 cm

has been interpreted as a two-phonon summation process because it is at a sufficiently

high frequency and appears on the high-frequency side of a fundamental phonon mode.

Tables X-1 and X-2 summarize the k z 0 infrared active transverse and longitudinal

optical phonon frequencies and their associated half-widths as determined for each of

the four lanthanide fluorides from the dielectric functions described above. These tables

reveal that the frequency of any particular lattice mode in LaF 3 moves to higher fre-

quencies as the reduced mass of the host lattice is increased. This reflects the stronger

interatomic forces present in the heavier lattices as a result of the lanthanide contrac-

tion of the cell volume as the atomic number of the cation is increased.35

40 III I

LoF 3 ~O 8mm

7IK

S30

z

U_ Fig. X-6. Frequency dependence of the
0 - absorption coefficient of LaF 3

Z Elc at 7oK calculated from trans-
mittance data.

a_1077cm

U-) -25cm Ellc
m

10

Eli
c

o
0 50 100 150

WAVE NUMBER cm
-

Figure X-6 shows the frequency dependence of the absorption coefficient from
-1

40-150 cm for one sample of LaF 3 at 7'K in both orthogonal polarizations. In the
-1

u-polarization, a strong band centered near 103 cm dominates the spectrum, as pre-

dicted by the reflectance measurements. In the Tr-polarization, the weak band centered

at 107. 7 cm with a half-width of approximately 2 cm-1 is interpreted as the k = 0 lon-

gitudinal optical phonon frequency forecast from the reflectance measurements to be

between 109 and 110 cm-1 with a half-width of approximately 3 cm- As we have

explained, this weak absorption attributable to the longitudinal mode varies in strength
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from sample to sample and is seen because the crystal c-axis was slightly misaligned

from the E // c and k I c requirements for the iT-polarization. The ratio of the reduced

strength measured in transmission to the full strength measured in reflection suggests

that the angle of misalignment for this sample was approximately 3 degrees of arc. The
-1 -1

equivalent longitudinal mode was seen in transmittance at 108 cm for CeF 3 , 111 cm
-1

for PrF 3 , and 112 cm for NdF3' 31
On the basis of unpolarized emittance spectra, Rast et al. have reported the kz 0

transverse optical phonon frequencies for k // c (equivalent to the a-polarization) to be
-l

at 92, 100, 115, 128, 166, 192, 208, 246, 272, 353, and 368 cm- , and the additional

frequencies of k I c (mixture of u-polarization and Tr-polarization) to be at 170, 203, 235,
-1

264, and 304 cm- In the u-polarization, the emittance frequencies, for the most part,

are quite close to those determined from the reflectance data. The exceptions are that

neither the 92 cm-1 nor the 115 cm-1 transitions seen in emittance are seen in either

reflectance or transmittance measurements. Conversely, the emittance results show

no sign of the phonon modes observed in reflectance just above and below the moderately
-1

strong band near 130 cm- In the ir-polarization, the emission frequencies are not

in good agreement with those observed in reflection, except for the strong lattice
-1

mode at 170 cm This may be due to the fact that the emittance frequencies for the

Tr-polarization were, in fact, recorded with k I c rather than with E // c, as was done

in reflection. As a result, the emittance experiment simultaneously excited the

infrared active modes in both orthogonal polarizations, thereby yielding a strongly

mixed spectrum that is difficult to relate to the dielectric response function in either

polarization.

5. Lattice Space Group

Table X-3 summarizes some results of group theoretical vibrational analysis for

several structures proposed for the tysonite lattice from x-ray diffraction studies. From

the low-temperature infrared measurements, the existence of 6 infrared active modes

in the (z) polarization (E // c) and at least 10 (probably 11) infrared active modes in the

(xy) polarization (E c) can be inferred. Therefore, the P6 3 /mmc (D 6 h 4 ) lattice, 1 3

which predicts 2 (z) and 2 (xy) infrared active modes, and the P6 3 /mcm (D 6 h4 ) lattice,12

which predicts 4 (z) and 7(xy) infrared active modes can both be eliminated as possible

tysonite lattices. The P3cl (D 3 d4 ) lattice 14-16 and the P6 3 22 (D 6
6 ) latticell are both

compatible with the infrared measurements. The P6322 lattice can be eliminated, how-

ever, because it predicts almost twice as many doubly degenerate Raman active modes

as observed,5 and because it predicts that all eleven of the (xy) infrared active modes

should also be Raman-active. Likewise, the noncentrosymmetric P3cl lattice, which
14-16is consistent with the most recent x-ray studies, can be eliminated by either
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Table X-3. Optically active phonons in proposed tysonite lattices.

II II

Lattice LanthanideiiLattice Optical Activity
Space Formula Site

Group 11 Units Symmetry IR-n Raman-A IR-c Raman-E

II II II

P63/mmc ," 2 6m2 2A2u 1A Ig 2Elu 1Elg

(Dh) (Dh) 3E

II II
II II II

11 II

(D6h) (C2) E23d g

IIII II II
II II II

P3cl 6 2 2 A2u 5A u El
3 11 1 1 II

II II II

(D (C2)

3 II II II 
It II II

II II It
II II I]

II I II
II II I

3-4II i II

1R - infrared active; I - //c; - E ; A - nondegenerate; E - doubly degenerate.

infrared or Raman studies. Only the P3cl lattice seems to be consistent with both infra-

red and Raman measurements.

The difference between the P6 3 /mcm and P3cl lattices is determined only by small

displacements, however, which are of the same type as suggested by Oftedal, in 1931,

to fully reconcile his x-ray measurements with his proposed structure. 12 The P6 3 /mcm

lattice can be generated from the P3cl lattice by displacing the four "d" fluorines by

0. 46 A so that they lie in horizontal mirror planes perpendicular to the c axis at

1 a16
z lattice by displacing the twelve g" fluorines by 0.04 A so that they

are contained within vertical mirror planes passing through the origin and the lanthanide

ions. The net result of these displacements is that two B 2u infrared inactive modes and

the four A2u infraredies. Only the P3c lattice seems to be onsistent with both2u infra-
lattice can be s of the D3d group. Four inactive Eby displacin tmodes and the s"d" fluorines byactive

red active modes of the Djd group. Four inactive E2u modes and the seven active
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Blu modes of D6h combine to form the eleven EU modes of D3d. Therefore, the infrared

spectrum associated with the P3cl lattice may be expected to consist of 4 (z) and 7 (xy)

strong reflection bands, characteristics of the P6 3 /mcm lattice, together with two more

(z) and four more (xy) weaker reflection bands allowed only in the P3cl lattice. The

experimental results confirm this, and at 295°K the weaker bands observed at lower

temperatures are almost completely damped out, leaving just 7 (xy) and 4 (z) infrared

active modes. This result might also be expected because the small distances that dif-

ferentiate between these two lattices are comparable with typical vibrational amplitudes

of ions in solids, and the increased amplitude of these vibrations as the temperature is

raised would more strongly affect the weaker bands allowed only in the P3cl lattice.

In addition to adequately explaining the optically active phonon spectrum, the P3cl

lattice has a lanthanide ion site symmetry low enough to be compatible with all of the

reported optical absorption measurements, and has fluorine ion sites compatible with

the spectra of H and D impurities in the lattice.23 Those experiments in which polar-

ized or partially polarized electronic spectra have been observed do not necessarily con-

tradict the low site symmetry found in the P3cl lattice, since the lower site symmetry

merely allows unpolarized transitions, and the depolarization of a given transition

need not easily be measurable.

6. Magnetic Space Group

In spite of our evidence supporting the P3cl lattice, it is not the proper tysonite

structure because it predicts a magnetic ordering that is inconsistent with some of

the paramagnetic and nuclear magnetic resonance experiments. Only 3 magnetically
19inequivalent lanthanide sites are predicted for the P3cl structure, yet 6 magnetically

inequivalent sites have been observed.19, 20

This difficulty can be resolved by considering the 1651 Shubnikov groups,37 which

include the 230 conventional space groups (Fedorov groups) as a subset. The Shubnikov

groups can be generated from the Fedorov groups by assigning positive (+) or negative

(-) signs (or colors black and white) to the points of space, and defining a sign (or color)

inversion (anti-identity) operator associated with these signs (or colors).38 The addition

of this new operation generates 230 major (polar or single color) space groups that are

identical with the Fedorov groups and contain only the new identity operator, 230 major

(grey or neutral) space groups that contain both the identity and the anti-identity opera-

tor, and 1191 minor (mixed polarity or black-white) space groups that contain some

complementary operators, but not the anti-identity operator. Associated with these

space groups are the 32 conventional (polar or single color) crystal classes, 32 (grey)

crystal classes containing the anti-identity operator, and 58 minor crystal classes con-

taining some complementary operators, but not the anti-identity operator.
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For this particular application of the Shubnikov groups, the anti-identity operator

defined above will be considered to be a magnetic inversion operator. A complementary

operation will have the same effect as the conventional operation followed by a reversal

of the local magnetic field (equivalently: followed by a reversal of the electronic or

nuclear spin generated by the conventional operator).

Table X-4 lists significant properties of the six magnetic space groups associated

with the conventional P3cl lattice space group. Since the magnetic inversion operator

does not affect physical displacement vectors or electric field vectors, any of these mag-

netic space groups that has the same space lattice will have the same phonon spectrum

and the same optical absorption spectrum to the extent that magnetic effects can be
37,40ignored. The group P 3cl is based upon one of the 22 new, mixed polarity lattices

c
rather than one of the 14 polar Bravais lattices. Since this latter group does not have a

proper magnetic representation for the atomic sites occupied in the tysonite space

Table X-4. Significant properties of the possible tysonite magnetic space groups
(extracted partly from refs. 37-40).

Number of Number of Independent Constants
Magnetically Magneto-

Magnetic Magnetic Distinguishable Electric
Space Crystal Lanthanide Pyromagnetism Polarizability Piezomagnetism
Group Class Sites H. = a.T H. a. .E. H. = C ijkjk

1 i 1 ijj 1 i jkk

P3cl 3m 3 0 0 2

P3cl 3ml' 3 0 0 0

P3'cl 3'm 6 0 1 0

P3ic'l 'm' 6 0 2 0

P3c '1 3m 3 1 0 4

P 3cl 3m * 0 0 2
c

1H. - magnetic field; ai

electro polarizability;

- pyromagnetic tensor; T - temperature; a.. - magneto-

eit
E. - electric field; C. . - piezomagnetic tensor;

Ojk - stress tensor.

See text. No proper magnetic representation for atomic sites occupied in tysonite

lattice.
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lattice, it will not be discussed further. The other five magnetic space groups have the

same space lattice as the conventional P3cl space group, therefore, they are all con-

sistent with both the infrared and Raman studies reported above.

On account of the C 3 operator of the 3m (D 3 d) group, there will be at least 3 mag-

netically distinguishable lanthanide sites. If there are only three such sites, however,

the lanthanide sites must be equivalent in pairs. Therefore, it is sufficient to determine

whether any one lanthanide site is equivalent to the sites generated from it by the spatial

inversion operator.

The grey magnetic space group P3cl' represents a magnetically disordered or non-

magnetic crystal. Because of the existence of the magnetic inversion operator in this

group, there are no local internal magnetic fields at any point within the crystal, and

Kramers degeneracies are unsplit. Upon the application of an external magnetic field,

any degenerate electronic states may be Zeeman split. Since the group includes the

magnetic inversion operator, however, the same splitting at that site must result when

the external magnetic field is reversed. Therefore, independently of the assumed spatial

or magnetic parity of a magnetic tensor property associated with them, the lanthanide

sites generated from each other by the spatial inversion operator must be magnetically

indistinguishable.

The magnetic space groups P3cl and P3'c'l both have 3 ordinary C 2 operators per-

pendicular to the c or the z axis of the crystal. If x is defined as a unit vector par-

allel to a C2 axis passing through a given lanthanide site and u = z X x, it can be shown

that an external field applied perpendicular to the x axis (that is, in the u-z plane) must

x2 G O =LANTHANIDE ION
P3cl AT z=+ 1/4

)= LANTHANIDE ION
AT z=-1/4

* = FLUORINE ION WITH
D3 SYMMETRY

x' - = LOCAL INTERNAL
MAGNETIC FIELD

x 3

Fig. X-7. Local internal magnetic fields permitted
at the lanthanide ion sites in the P3cl and
P3' c' 1 structures.
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generate the same splitting at that site, whether the field is positively or negatively

directed. Therefore, just as for P3cl', the lanthanide sites generated from each

other by the spatial inversion operator are indistinguishable by magnetic field established

in their common u-z plane.

It may be possible, however, to distinguish these sites from one another by the x

component of the external magnetic field. Figure X-7 shows the local magnetic field

permitted at the lanthanide sites in these two structures. In the P3'c' 1 structure, the

local internal magnetic fields at the two types of sites related by the spatial inversion

operator are antiparallel. The external and internal magnetic fields add at one type of

site and subtract at the other, thereby resulting in a different Zeeman splitting, and

allowing the sites to be magnetically distinguished. In the P3cl structure, the local

internal magnetic fields at these two types of sites are parallel. As a result, the total

magnetic field and the resulting Zeeman splitting at both sites is the same, and the two

types of sites are not magnetically distinguishable, even though the Zeeman splitting at

a given site does change if the magnetic field is reversed.

By similar arguments it can be shown that P3c' 1 has only 3 magnetically distinguish-

able sites and is ferromagnetic, and P3'cl has 6 magnetically distinguishable sites and

is antiferromagnetic. Since neither of these properties has yet been observed for the

tysonite lanthanide fluorides, the only magnetic space group that simultaneously explains

the optically active phonon spectra and the optical absorption spectra of ions in the lat-

tice, and is consistent with the magnetic resonance data, is the P3' c' 1 magnetic space

group.

As indicated in Table X-4, either P3'c' 1 or P3'cl can exhibit the magnetoelectric

effect (E = ai..H., where E electric field, H magnetic field, and a.i is the mag-
i 1

netoelectric tensor). P3'cl possesses only one off-diagonal antisymmetric tensor ele-

ment, a = -a . P3'c' 1 has two diagonal symmetric tensor elements, a = ayy a
xy yx xx yy zz

A study of the symmetry of this effect, if found in the tysonite lanthanide fluorides, could

confirm the proposed P3'c' 1 magnetic structure.

7. Summary and Conclusion

Between 100 cm-1 and 500 cm-1, the tysonite lanthanide fluorides LaF3, CeF 3 '
PrF3 , and NdF 3 exhibit 5 or 6 infrared active (z) phonon modes when E // c and 10 or

11 infrared active (xy) phonon modes when E I c. These results, together with Raman

results, are consistent with a P3cl space lattice, but not with any of the other space

lattices proposed from x-ray diffraction studies.

Two additional strong infrared transitions at 66 cm-1 and 92 cm-1 are observed in

PrF 3 . These are attributable to electronic transitions from the ground state to the first

and second excited states of the 3 H4 Stark multiplet of the Pr ion. One additional
4fte in neadtoa
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-1moderately strong infrared transition at 45 cm - I is observed in NdF 3 , because of an

electronic transition from the ground state to the first excited state of the 4 9/2 Stark

multiplet of the Nd 3 + ion.

Some of the reported magnetic resonance data are inconsistent with a P3cl magnetic

space group, but all of the currently reported data on the tysonite lanthanide fluorides

are consistent with a P3'c' 1 magnetic space group.

R. P. Lowndes, J. F. Parrish, C. H. Perry
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B. FAR INFRARED ELECTRONIC TRANSITIONS IN TYSONITE

LANTHANIDE FLUORIDES

1. Introduction

The 4f electron shell of the lanthanide ions is so well shielded from its external

environment that the effects of a crystalline electric field can usually be considered to

be only a moderate perturbation of the free ion energy levels. Consequently, the 4f - 4f

electronic transitions may be quite sharp within suitable crystals. As mentioned in

Section X-A, it is possible that some of the 4f - 4f transitions, especially those between

the Stark levels of a given multiplet, may be used to generate coherent far infrared radi-

ation. The host lattice must be chosen with some care, however, as it will affect the

lifetime of an electronic state, as well as the transition frequencies, strengths, and

polarizations.

The tysonite lanthanide fluorides have a rugged structure l , 2 into which other lan-

thanide ions may be substituted up to at least one mole per cent.3 Now that the sym-

metry of the lattice and the frequencies of the fundamental long wavelength (k Z0)

infrared (see Sec. X-A) and Raman 4 active phonon transitions are known, the frequencies

strengths, half-widths, and polarizations of the lowest frequency electronic transitions

can be directly observed and unambiguously identified. Such observations can confirm

the currently proposed assignments of the crystalline Stark levels of the electronic

ground states, which previously have been based upon measurements made only in the

near infrared, as well as yield otherwise inaccessible details of the symmetry and the
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multipole strengths of the local electric field within the crystal.
3+ 3+ 3+ 3+

The electronic transitions of Pr 3 + , Nd 3 + , Sm 3 + , and Er in LaF 3 , which have been

predicted to lie below the lowest frequency infrared active fundamental phonon transition
-1

near 100 cm- , are particularly well suited for such direct observation. Based upon

both near infrared 5 - 8 and far infrared9 measurements, two of the Pr3+ ion transitions
-1 -1

may be visible below 100 cm The first is predicted to be at 56 cm in LaF 3 , and
-l -1 -1

at 66 cm in PrF3 . The second should be at 80 cm in LaF 3 , and 90 cm in PrF3.
-1 3+ 10-12

Near infrared measurements predict such transitions at 45 cm - I for Nd 3 + in LaF 3 10-12
-1 3+ 13 -1 3+ 14

at 48 cm - 1 for Sm 3 + in LaF 3, and at 52 cm for Er in LaF 14 Reported here are
3+ 3+ 3+

direct polarized observations of these transitions of Pr , Nd , and Er in the tyson-

ite lattices of LaF 3 , CeF 3 , PrF 3, and NdF 3 . The proposed 48 cm -l transition of Sm 3 +
-1

could not be observed in LaF 3 . Indirect evidence suggests that the 48 cm satellites

observed in the near infrared may be due, in fact, to vibronic transitions involving an
-1

otherwise silent, fundamental k = 0 phonon near 50 cm- , rather than involving a Stark

level of the electronic ground state.

2. Experiment

All of the transmittance measurements were taken on an R. I. I. C. FS-520 Fourier

spectrometer, a far infrared Michelson interferometer, which has been adapted for

12-bit analog-to-digital conversion. A 125-W mercury arc source was used in con-

junction with a liquid-helium-cooled quartz filter and Ga-doped germanium bolometer

detector. A vacuum-evaporated one-dimensional wire grid polarizer was used to reduce

the horizontally polarized radiation to much less than 1% of the vertically polarized

component.

Single crystal rods of LaF 3 , CeF 3 , PrF 3 , and NdF 3 doped with one mole per cent

of appropriate lanthanide ions, and oriented with the c axis parallel to the 10-mm diam-

eter face and perpendicular to the 5-mm long axis of the rod were obtained from

Optovac Inc. 3 Depending upon the observed transition strengths, the dope samples were

cut and polished to thicknesses between 0. 7 mm and 1. 7 mm. The transmittance of

LaF 3 with 1% Sm 3 + was observed in samples that were 2 mm to 5 mm thick. These

oriented slices were placed in a high-purity copper block sample holder attached to a

liquid-helium reservoir. The temperature of the copper block at a point below the

sample aperture was measured with a calibrated semiconductor resistance thermometer

to be constant within 0. 1 'K for any single set of measurements between the limits of

5 K and 8 K

The normalized transmittance was calculated from a ratio of the observed

spectral transmittance of the sample to that of an aperture of the same size as the

sample. The absorption coefficient was calculated from the approximate formula
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T(w) = (1-R(w)) 2 exp(-OC(w)d), where T(w) is the observed transmittance, R(w) is the

observed reflectance, OC(o) is the absorption coefficient, and d is the average thick-

ness of the sample.

3. Results
-1 -1

Figure X-8 shows the absorption coefficient of LaF 3 between 40 cm and 150 cm
-1

in both the r(E II c) and a(EIc) polarizations. The sharp narrow peak at 107.7 cm

in the T-polarization has been identified as absorption attributable to the lowest fre-

quency longitudinal optical (LO) phonon mode of LaF 3 . As explained in Section X-A,

coupling to this mode is possible because the c axis of the crystals is not precisely par-

allel to the crystal face. Similar absorption peaks can be observed in CeF 3 , PrF 3 , and

NdF 3 , and are also attributed to phonon transitions, rather than electronic transitions.
-l

Likewise, many moderately strong absorption bands observed below 40 cm can be

attributed to multiphonon transitions, rather than electronic transitions, because they

are observed with the same strength and in the same locations, independently of the 1%

dopings of other lanthanide ions in a host lattice. Since these higher order phonon tran-

sitions have not yet been completely assigned, electronic and vibronic transitions in this
-1

region cannot be unambiguously identified, and possible Stark levels below 40 cm will

not be discussed further in this report.

50 100

WAVE NUMBER cm-

50 100
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Figure X-9 shows the absorption coefficient of LaF 3 with 1% Nd 3 + . Only one elec-elec
tronic transition, at 45 cmI in both polarizations, can be observed. The transition is
slightly stronger in the Ir-polarization, but essentially it is unpolarized, in agreement
with the predictions based upon a C 2 site symmetry in a P3' c' 1 structure (see Sec. X-A).
Figure X-10 shows the Zeeman splitting observed in an unoriented slice of LaF 3 with
1% Nd 3 + in fields up to 150 kG, which confirms the electronic nature of the 45 cm - 1 Nd 3 +

transition.
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Fig. X-10.

Relative spectral absorption of LaF 3 :Nd 1%
in a magnetic field.

Fig. X-11.

Absorption coefficient of PrF3 :Er 1%
-1from 40 cm to 150 cm-1from 40 cm to 150 cm .

3+ 3+Figure X-11 shows the absorption coefficient of PrF 3 with 1% Er . The Er tran-
sition at 56. 8 cm - 1 in PrF3 is stronger in the rr-polarization, yet the transition is unpo-

3+ -1larized, as predicted. This Er transition at 52 cm in LaF 3 has also been Zeeman
-1split, thereby confirming its electronic nature. The almost totally r-polarized 66 cm

transition of Pr 3 + in PrF3 is weakly observed at 66 cm - I in the a-polarization. The
69 cm - I transition observed in the a-polarization is probably related to the longitudinal
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Table X-5. Electronic transitions below 100 cm in tysonite lanthanide fluorides.

Lattice LaF3 CeF 3  PrF3  NdF 3

Ion I T 7

Frequency (cm - 1 )  56.5 61. 7 66.4 66. 5 68.7

Pr 3 + (I) Half-width (cm - ) 3.0 ? 6. O ? 2. 5 <5 3.5 ?

Strength (cm - 2 ) 84 110 4000 <210 90

Frequency (cm - l ) 80. 0 92. 0

Pr 3 + (II) Half-width (cm - l ) ? 4.5 ? ? ? 2. O ? ?

Strength (cm - 2 )  78 9000
-1

Frequency (cm- ) 45.0 45. 0 45.5 45.5 46. 0 46. 0

Nd 3 + Half-width (cm - l )  3. O0 3. O0 4. O0 4.0 4. O0 4. O0
-2

Strength (cm ) 19 13 27 20 10 12

Frequency (cm - 1 )  52. O0 52. 0 53. 5 53.5 56. 8 56.8 57.7 57. 7

Er 3 + Half-width (cm - l )  4.0 4.0 3. 5 3.5 4. O0 4. O0 4.0 4. 0

Strength (cm - 2 ) ? ? 32 42 280 110 ?
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frequency of the electronic transition, but it cannot be adequately explained by a mis-

alignment of the crystal axes, as can the 94 cm-1 and 111.5 cm-1 peaks in the absorp-
tion coefficient observed in the Tr-polarization.

Table X-5 lists polarized measurements of the frequencies, strengths, and half-
3+ 3+ 3+widths of the electronic transitions of Pr , Nd, and Er in LaF 3 , CeF 3 , PrF 3 , and

NdF 3  3+

All of the samples of LaF 3 with 1% Sm up to 5 mm thick were essentially trans-

parent between 40 cm -1 and 60 cm -1 Thus, if the proposed 48 cm - level is truly elec-

tronic, its transition dipole strength must be much more than an order of magnitude

weaker than those observed for Pr 3 + , Nd 3 + , and Er 3 + transitions. The fact that several

of the proposed multiplets of Sm 3 + have a level 48-50 cm - 1 above the lowest level and
15 3 -1that the reported vibronic spectrum 1 5 of the 3P level 20,926 cm above the electronic

0 -1
ground state of 7% Pr 3+ in LaF 3 also shows a level slightly below 50 cm suggests that

3 -1there may be an otherwise silent phonon mode near 50 cm-1

4. Present Research

3+ 3+ 3+The observed Stark levels of Pr , Nd , and Er in LaF , CeF 3 , PrF, and NdF 3

are now being compared with the frequencies, strengths, and polarizations theoretically

predicted by the electric field that is expected at the lanthanide sites in the previously

determined tysonite structure. Such an analysis should explain the almost total polariza-

tions of the observed Pr 3 + transitions, and, we trust, predict accurately the expected

levels of the Sm 3 + ion.

We wish to acknowledge the use of the facilities of the Francis Bitter National Mag-

net Laboratory, M. I. T., and to thank Richard W. Stimets for his cooperation and assis-

tance in taking the transmission measurements at high magnetic field strengths.
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C. OPTICAL PHONONS IN LEAD TITANATE

1. Introduction

PbTiO 3 is a ferroelectric at room temperature with a Curie temperature (Tc) of
1c

-760 'K. Above T it exists as a cubic perovskite (space group Oh Pm3m). Shirane

et al. have discussed this transition and have studied the dielectric properties in both

phases.2 The dielectric constant obeys the Curie-Weiss law above the transition tem-
1

perature (E ccT T , where E is the dielectric constant, and T the temperature),
c

and suffers a very sharp decrease in value just below T . This transition is accom-
c 1

panied by a change in lattice symmetry to tetragonal (space group C 4 v P4mm) with lat-
S34v

tice parameters a = 3. 904 A, c = 4. 150 A, c/a = 1.063. This structure is isomorphous

with tetragonal BaTiO3 , but does not display the further phase transitions seen in

BaTiO 3 . Another phase transition has been reported4 ' 5 at approximately 173°K,

apparently involving a change to a nonferroelectric form with a multiple unit cell, but

it occurs only when the temperature is very slowly decreased. The further properties

of this phase are not well known, at present. The substantial c/a ratio would indicate

a much larger spontaneous polarization in PbTiO3 than in BaTiO3 . Such drastic changes

in the crystal structure are accompanied by large anomalies in the specific heat and

volume. 2

Perry et al. 6 have studied the infrared reflectance spectrum of PbTiO 3 ceramic at

room temperature. This work extends these measurements to cover the temperature

range 20-900'K. Oriented crystals have been investigated in the infrared. Raman

studies include both ceramics and single crystals over the same temperature range. The

objectives of this research have been to assess the relative contributions of the various

modes to the dielectric value below the Curie point and to determine their symmetries.

An attempt is made to verify the existence of a multiple-unit-cell phase at lower tem-

peratures.

The phonon mode symmetries and their participation in first- and second-order

Raman and infrared interactions have been summarized in a previous progress report.7

With the transition to tetragonal (C 4 v) symmetry, all optical phonons of the cubic phase

of Flu symmetry become both infrared and Raman active (E and A 1 ). The F 2 u mode
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remains infrared inactive in only one of the three previously degenerate components

(B1 ), and all three become Raman active (B l and E). This permits a straightforward

interpretation of the data as the Raman spectra should be primarily first-order

(resulting from phonons at the center of the Brillouin zone).

2. Experiment

The PbTiO3 samples used in this work were in both ceramic and single-crystal form.

The ceramics were thin slabs ~0. 5 mm thick, and roughly 1 cm square. The crystal

samples were either small platelets or a large crystal embedded in epoxy with one face

polished. All of the crystal types consisted of many small ferroelectric domains and

only the epoxy-embedded sample contained regions of uniform domain orientation large

enough to permit polarized studies in either the Raman or infrared regions. One region,

~2 mm square, contained the c axis nearly in the face of the crystal, and was oriented

by using a polarizing microscope. Further examination revealed that while the region

of uniform orientation was fairly large, the size of the domains was of the order of

0. 1 mm. The differentiation between a and c axes was accomplished by means of

Laue x-ray reflection. Study under the microscope also confirmed the general impres-

sion that the interior of the crystal was quite fragmented and in bad condition to perform

experiments involving light in the visible region.

The low transmissivity of PbTiO3 in the far infrared necessitated measurements of

the wavelength-dependent reflectance. These experiments were performed in the

20-600 cm-1 region using a Michelson interferometer, and in the 250 cm- 1-1000 cm-1

region using a Perkin-Elmer Model 521 grating spectrometer. Resolution in both cases
-1

was approximately 5 cm- Temperature control below 300 K was achieved with a cold-

tail dewar, and control above room temperature with a nichrome heating element around

a brass core embedded in Sauer-Eisen. These temperatures were measured using a

copper-constantin thermocouple read with a transistorized null voltmeter. The higher

temperature work was not performed on the epoxy-mounted sample, since (a) the epoxy

would melt and/or decompose, and (b) cooling the sample after having subjected it to

temperatures above T would almost certainly result in a new multi-domain structure,

and very likely destroy the single area of good alignment that was found in the original

sample. The extreme brittleness of PbTiO3 also discouraged any attempt to obtain a

small but good sample out of the larger crystal.

The Raman work was done on a Cary Model 81 spectrophotometer and, because of

the physical configuration of the samples, utilized backscattered radiation from either

a normally or obliquely incident He-Ne laser beam. Low temperatures were achieved

using a Cryotip Joule-Thompson cycle refrigerator, and were measured using a

Chromel-constantin thermocouple. High temperatures were produced by the sample

holder used in the infrared measurements. Data were taken for all of the recorded
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temperatures on the ceramic samples, but only at room temperature and lower on the

epoxy-mounted crystal. Also, polarization studies were made on the latter, with the

incident/scattered beams polarized/analyzed in all combinations of parallel or perpen-
-1

dicular to the c axis. The resolution used was normally 5 cm , although some

detailed studies were made at higher resolution.

3. Results

The infrared reflectance spectra from the two instruments were matched in the over-

lapping spectral regions by renormalizing the grating spectrometer data to the values

given by the Fourier-transformed interferogram spectrum. These results were then

subjected to a Kramers-Kronig (K-K) analysis 9 to derive the dielectric constant E =

E' + iE" and ii = = ' + ii" from which were obtained the conductivity (a =~ ) and the

resistivity (p =-' ), where v is the frequency of the incident radiation. In Figs. X-12,

X-13, and X-14 the room-temperature infrared results are presented for the two dif-

ferent types of sample and for the two different polarizations of the single-crystal

studies. Below each of these figures is the result of the K-K analysis. In Fig. X-15

the low-frequency reflectance results may be seen at all temperatures for the ceramic

sample. Each of these spectra is an average of at least two and of as many as six runs.

The Raman data are similarly an average of several retracings of the regions of

interest, and spectra for several different temperatures may be seen in Fig. X-16. The

gain change noted in the figure is due to the introduction of double-slit operation,

which is feasible with the Cary 81 spectrophotometer above the 100 cm-1 to 200 cm-1

frequency shift. It is important to note that despite several attempts to find a dependence

of these spectra on polarization, none was found in either the large oriented sample

or the small platelets. There is no doubt that PbTiO3 is tetragonal, which should

lead to an exclusively diagonal Raman tensor for frequencies associated with an "Al

symmetry phonon, and an exclusively nondiagonal one for the "E" modes. The orien-

tations of the samples were quite well known, so the polarization of incident and

scattered radiation could be selected parallel or perpendicular to the major crystal-

lographic axes with some precision, and should have resulted in at least noticeable

polarization effects. None were seen, however, and this suggests that the scattering

volume in any variation of the Raman work involved a sufficiently large portion of

the crystal to include the regions of severe defect noticed under optical examination.

The frequencies of the various Raman lines and bands changed in a reproducible

fashion with variations in temperature, but no qualitative change could be induced,

either by slow cooling or by extreme heating with subsequent cooling to temperatures

less than T . This was reassuring, since the material became a yellowish-orangec
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above Tc, and there was some possibility that the sample had decomposed. The color

change itself was reversible, however. Above T c , the Raman spectra were exclu-

sively second-order with very broad, indistinct structure. Finally, no difference

could be seen between the spectra for oblique or orthogonal incidence. This could

be expected, even if the phonon dispersion curves were substantially different for

different directions in the crystal, since the relatively high refractive index for this

substance results in a change of photon/phonon momentum transfer direction that

is less than that required by the orientations of the pertinent wave vectors outside

the crystal. Momentum is conserved by reflections at the surface of the material.

Furthermore, the relatively large acceptance angle for the Raman equipment (roughly

f/4) tends to include a large spread of momentum transfers for any scattering orien-

tation, thereby leading to a large overlap in the phonon wave vectors observed between

oblique and normal incidence. Finally, scattering from the defects discussed above

would tend to complete the randomization of phonon wave vector direction observed.

Of course, such considerations are irrelevant when discussing the results obtained

from ceramic samples.

4. Discussion

The reluctance to use the epoxy-mounted sample at elevated temperatures necessi-

tated the assumption that the ceramic behaved, spectroscopically, as the sum of results

from all possible polarizations. From the infrared data presented in Figs. X-12, X-13,

and X-14, this may seem to be the case at room temperature, and it was found to remain

true at depressed temperature. Therefore the assumption seems valid.

The principal use of the infrared data is to distinguish first- from second-order

Raman interactions. The frequencies of the transverse and corresponding longitudinal

modes may be taken from those of the peaks in the conductivity and resistivity, respec-

tively.10 A comparison of the plots of these two quantities in each of Figs. X-12 through

X-14 verifies that the splitting between the transverse and corresponding longitudinal

mode is considerably less than that between transverse frequencies corresponding

to the different phonon symmetries belonging to the same branch. This confirms

the supposition, based on the large c/a ratio and specific heat and volume anomalies

at T c , that the anisotropy in the short-range forces is considerably greater than in
11

the long-range electrostatic force. The sharp distinction between the two polariza-

tions indicates that the sample was reasonably well oriented, and is far superior to

the Raman results principally because the high reflectivity prevents the electromagnetic

field from experiencing the effects of the poorer regions of the crystal. The x-ray

results were also well defined as a result of the relatively slight penetration of the

crystal by the x-rays, because of its high lead content. It should be noted that

the relatively higher complexity of the spectrum for E // c results from a slight
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misorientation of the axes and a higher dielectric constant along the "a" axis than along

the "c" axis of the crystal. The latter results in stronger coupling, with the radiation

along this axis causing a small component of it lying in that direction to be affected rel-

atively more strongly than the major component along the "c" axis. This causes a sub-

stantial superposition of "E" modes on a spectrum that should be principally from modes

with "A 1 " symmetry. The obverse is true for E I c, thereby giving a very

clean spectrum for the "E" modes. Note that the effect would be enhanced were the

" c" axis not to lie exactly in the face of the crystal, a possibility not completely elim-

inated by the x-ray work, but minimized by the optical examinations.

In Fig. X-17 all of the infrared and Raman frequencies that were observed are plotted,
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together with their symmetry assignments. This allows the identification of the Raman
spectrum as principally first-order. As can be seen, a majority of the lines are quite
temperature-dependent. Figure X-18 shows the temperature dependence of the lowest
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two transverse E modes and their corresponding damping constants. On the basis of12,13 1
the relationship2, E o -, such marked behavior would be expected to result in

important contributions by many phonons to the dielectric constant below T . Barkerl4chas written the Lyddane-Sachs-Teller relation for a multimode crystal with zero damping
in differential form;

de 2ddL ZdwL 2do 2dw21+ 2+ -Eo  WL WL W1 W20 1 L22
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where w. are the transverse phonon force parameters (related to the transverse phonon

frequencies), wL. are the longitudinal phonon frequencies, and Eo is the static dielectric

constant at the temperature under consideration. At room temperature dEo/E o is

approximately 0. 002. The TO1(E) mode contributes -0. 0007 (~35%), the TO1(A 1 ) mode

-0. 0003 (-15%), the TO2(E) mode ~0. 0005 (-25%), and the TO4(E) mode -0. 0001 (-5%).

As can be seen, the two lowest E modes account for approximately 60% of the observed

value of dEo/E o . The equation above is strictly valid only for a particular vibration

direction; however, E was measured on a ceramic (whose Eo may be lower than that

of a single crystal) and the Raman data cover both polarizations. Consequently, only

a rough check on the relative contributions of the modes can be made, and the total con-

tribution may possibly be as high as 80%. The temperature dependence of the damping

of the mode is also quite marked, and bears a striking resemblance to that found for

SrTiO3 by Fleury et al. 1 5

Some of the lack of agreement between the Raman and infrared frequencies

(Fig. X-16) could arise from the predominance of the anisotropic short-range forces

already mentioned. If the crystal axes are not well aligned with the incident radiation,

a phonon will be generated with the wave vector not along the major axes. This would

give rise to a phonon that is neither longitudinal nor transverse, and whose frequency

lies between those two extremes. This would result in a general broadening and shift

of all first-order lines.

Because the Raman spectrum above Tc is exclusively second-order and quite indis-

tinct, it cannot be used to study specific processes such as interactions with low-

frequency phonons that would permit examination of soft-mode behavior. The infrared

peaks, while representing first-order (zone center) interactions, are quite ill-defined

and no consistent temperature dependence could be discerned within the temperature

range that was attainable. Thus a study of soft-mode behavior in the paraelectric phase

was not conducted.

Finally, although an apparent splitting may be noted in the low-frequency infrared

data at lower temperatures, it can be seen to exist at room temperature. Furthermore,

the lack of change in the Raman spectrum as the sample was cooled indicates that the

size of the unit cell did not change, and thus the phase change proposed by Kobayashi 4 ' 5

was not observed.

N. E. Tornberg, C. H. Perry
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D. LATTICE VIBRATIONS AND STRUCTURE OF AMMONIUM HALIDES

1. Introduction

The ammonium halides undergo a number of structural modifications under constant

pressure at certain well-defined transition temperatures. These phase transformations

have attracted considerable experimental and theoretical interest as there are associated

discontinuities in several properties, such as the specific heat,1, 2 dielectric constant, 3

coefficient of expansion, 4 elastic constants, 5' 6 lattice parameters, 7 - 9 and piezoelectric

effects.10 A generalized phase diagram showing the correlation among the phases has

been given by Stevenson,11 who claims that the only difference between the ammonium

halides is the magnitude of the molecular volume.

The phase transformations and crystal structures in the ammonium halides are sum-

marized in Table X-6.

The nature of these transitions has been studied in considerable detail in the near

infrared by Hornig and his co-workers,12- 1 4 but the measurements have been restricted

to the investigation of either the fundamental internal motions of the ammonium ion or

combinations involving the lattice torsional or librational mode and the internal

modes.

Neutron inelastic scattering measurements, 1 5 - 1 7 for the most part, have been con-

cerned with the investigation of the librational mode, since this provides an experi-

mental test of models of the order-disorder transformation. Complementary Raman
18-21

measurements have been made on the ammonium halides by several workers, and,

in certain cases, these have included the study of the external lattice modes. In this
22 23

report, further results22, 23 are presented of the vibrational states of the ammonium

halides crystal lattices determined from both infrared and Raman spectroscopy and

covering a wide temperature range. These studies include most of the various phase

transformations, and the mode activities agree, in general, with the group theoretical

predictions from the proposed structures in each phase.

Simple models of ionic solids lead to the Szigetti relations24 that connect the infrared

lattice reststrahlen frequency, the compressibility, the cell volume, and the dielectric

constant. These relations may be subjected to experimental test and deviations from

ideal behavior may lead to refinements in the models to allow for distortions and over-

lap of the electron-charge clouds.25 Thus important modifications in the long-

wavelength vibrational spectrum may be expected as the crystals undergo the different

phase transitions. Unfortunately, only limited experimental data are available on

the various parameters, especially in the low-temperature phases where these

deviations can only be reliably evaluated and compared with the theoretical pre-

dictions.
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Table X-6. Phase transformations in the ammonium halides.
E, Table X-6. Phase transformations in the ammonium halides.
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NaCl
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h

a > 457. 7°K

a > 348. 4 0 K
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a

Phase II (P)
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h
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>- 78°K
105 0 K <
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2. Experimental Results

The spectroscopic investigations of the ammonium halides have been undertaken on

thin sublimed films, crystalline powders, pressed pellets, and single crystals. The

thin films were prepared by subliming the reagent grade salt onto polyethylene or crys-

tal quartz substrates at room temperature. Films were approximately 1 4, or less,

thick, and appeared to be reasonably uniform. The crystalline powders were loosely

packed in a hollow conical sample cell that was used in the Raman studies. The pressed

pellets (~12 mm in diameter and 2 mm thick) were prepared by using a standard KBr

press. Only single crystals of NH4Cl and NH4Br were available. The deuterated mate-

rials were prepared by repeated exchange, and the sublimed films were obtained in the

same manner as the normal salts. The temperature-dependent studies were made by

attaching the samples (or substrates) to a cold finger in a variety of cryostats. Low

temperatures were obtained by using cryogenic refrigerants or a precooled gas-flow

system. For detailed studies of the various phase transitions below room temperature,

an Air-Products cryo-tip refrigeration system was used, which allowed temperatures

to be attained in the range 300-20 0 K, with a temperature stability of ~+O. 5 0 K. Tempera-

tures were measured by thermocouples attached either to the samples or to the sub-

strates. A calibrated germanium resistance thermometer was used in the liquid-helium

temperature range.

High-temperature measurements in the Phase I modification of NH4Cl and NH4Br

100
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Fig. X-19. Reflectivity of single crystal NH4Cl below and above

the order-disorder phase transition.
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were not reproducible because the materials readily sublimed in the vacuum of the

instrument.

The infrared transmittance and reflectance measurements were performed on a

Fourier-transform spectrometer with the aid of a low-temperature germanium detec-
26

tor.

The Raman spectra were recorded on a Cary Model 81 spectrophotometer, with both

the "Toronto" arc, mercury "e" line (4358 A) and a Spectra-Physics 125 He-Ne laser

(6328 A) used as sources. Right-angle, oblique-angle, and backscattering geometries

were used, depending on the type of sample and the excitation source. The intensities

of the Raman bands and the background scattering depended on the sample (powder,
pellet, or single crystal), and to some extent on the scattering geometry. The fre-

quencies of the lines at a particular temperature were essentially independent of these

effects. The NH 4 Br single crystal could easily be supercooled to helium temperatures

in the Phase III modification, and Phase IV could be completely obtained only by thermal

cycling many times up to approximately 77 0 K. The pellet and powder, on the other hand,
readily transformed into Phase IV, and hardly any thermal cycling was necessary. Sim-

ilar effects were noticed with the NH 4 I pellet, and occasionally it was difficult to obtain

the tetragonal phase. Similar effects were noted in the x-ray investigations. 8

For most phases the Raman tensor elements appeared to be mainly diagonal, but in

100

NH4 BR REFLECTIVITY AAA

- EXPERIMENTAL 1
CALCULATED ~ a
* 300"K

80 0 200°K 00 a 85
0

K

A 85°K

, 60

4

20

0

50 100 150 200 250 300

WAVE NUMBER (CM
-
')

Fig. X-20. Reflectivity of single crystal NH 4 Br in phases II, III, and IV.
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tetragonal NH4Br it was possible to distinguish experimentally between the Raman tensor

elements a = a for B (v") and a = a = a = a for Eg (v' and v7) phonons, and
xy yx 2g 5 zy yz xz zx g 5 7

the results were consistent with the observation that the v 6 (librational mode) also had

Eg symmetry. This differentiation was not possible in NH4I because a single crystal

was not available.

The temperature-dependent infrared reflection measurements of single crystal

NH 4C and NH 4Br are shown in Figs. X-19 and X-20. Portions of the low-frequency

Raman spectra NH4C1, NH4Br and NH4I as a function of temperature are shown in

Figs. X-21, X-22, and X-23, respectively.

3. Discussion

a. Group Theoretical Considerations

The crystal structure of the ammonium halides in the disordered states is NaCl

(Phase I) and CsCl (Phase II) with "one" molecule per unit cell. The site mode symmetry

for both the halide ion and the ammonium ion (as this is completely disordered) is Oh,
and the only allowed external modes are two Flu modes (one of which for k z 0 is an

infrared active translational mode (reststrahlen mode), and the other is an acoustic

mode with v = 0) and an Flginfrared and Raman silent librational mode.

In the ordered (parallel) cubic phase, with one molecule per unit cell, the structure

is still CsCl, but the site mode symmetry of the ammonium ion is now Td, whereas the

halide ion remains O h . The F 2 mode is now simultaneously infrared and Raman active.

The crystal structure in the tetragonal (antiparallel) phase has two molecules/unit

cell, and belongs to the space group D4h (P4/nmm). The site symmetry of the ammo-

nium ions is now DZd, and that of the halide (only Br and I possess this phase) is C4v'
27

The group theory of Halford and Hornig predicts the following external lattice

modes for the tetragonal modification.

(External) = Ag + A2g + B2g + 3Eg + 2A2u+ B2u + 3E u

of which

(Acoustic) = A 2u + Eu

(Translations) = B2g + E + A + E + A + E2g g ig g 2u u

(Librations) = A2g + E + Bu + E .

The correlations between the external lattice modes of the ammonium halide through the

various phase transitions are shown in Table X-7. Also given are the activities and

polarizations of the modes.
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Table X-7. Correlation of the external lattice modes of NH Br through the various phase transitions.

Molecular Molecular Site Modes Unit Cell Modes
Modes Modes Symmetry DZd Symmetry D 4 h

Symmetry Oh Symmetry Td (Phase III)
(Phase I and (Phase IV)

Phase II)

Translational
Mode

(V 5 )
(reststrahlen) (reststrahlen)

E g(R) v (a z y ' a y z , axz, a z x )

(IR, R) in phase

uE (IR) v5
out of phase (E I c)
(reststrahlen)

B (R) v" (axy,a )

(IR, R) in phase
A 2 (IR) v

out of phase (E ii c)
(reststrahlen)

Librational
Modes

(v6)

'Acoustical'
Modes

(V7)

F g(-)
Ig

(z

E (IR, F

F 1 (-)

A (-)

Eg(R) v , (azy, ayz, axz, azx )

E) Eu(IR) v6

out of phase (E I c)

A g(- in phase

SB2u (-) out of phase2u

E g(R) v (azy, ayz , axz, azx)

(- R) in phase
-E E(--) zero root-pure

Fl translation

A (R) v11 (a +a aero root) (zero root) Ag(R) 7 (a 7 xx+ ayy, azz
in phase

B - (--) zero root-nure
2u -

translation

Flu (IR,-) F 2 (IR, R)
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b. Infrared Active Phonon Modes

The reflectivity measurements 2 2 on single-crystal NH4C1 at 300 0 K (P phase) and

850K (6 phase) (shown in Fig. X-19), and NH4Br at 300 0K (p phase), 200 0K and 85 0K

(y phase) and 10 0 K (6 phase) (shown in Fig. X-20) were subjected to a Kramers-Kronig

analysis to obtain the TO and LO phonon frequencies from the dielectric function. The

data were also fitted with a classical dispersion formula.

2 2
S S

E(v) = E' - iE"= E 2 + + 22 2 2 2
v - vT - ivyT v - v 1 - ivyl

where E 0 is the value of the dielectric constant at frequencies considerably higher than

the dispersion frequency, vT. v 1 is a small additional oscillator needed to fit the reflec-

tivity on the high-frequency edge. This sideband is probably due to a multiphonon pro-

cess (such as TO(X) + TA(X), where X refers to the "X" point in the Brillouin zone).

ST and S 1 and YT and yl are the associated oscillator strengths and damping constants,

respectively. The latter are introduced in an ad hoc way to account for anharmonic

effects. The parameters used in the classical oscillator model at the various tempera-

tures are shown in Table X-8.

The thin-film transmission measurements are not shown, because of the large

amount of data accumulated. The frequencies of the transverse modes may be seen

graphically in Figs. X-24 through X-27 as a function of temperature for the three

ammonium halides. The ND 4 C1 and ND4Br transmission spectra 2 3 are essentially sim-

ilar to the normal salts, and the frequency shift is almost completely accounted for

(within ~2%) by the increase in mass of the ammonium ion. According to Table X-7,

the tetragonal phase in NH 4 Br and NH4I should yield two phonon modes corresponding

to the Eu and A2u species. It would appear from our results, however, that the fre-

quencies are degenerate within experimental error. The spectral slit width in the

infrared measurements was 3-4 cm - 1 , and was dictated by the interferogram function.

Any further increase in resolution (by simply increasing the maximum path difference

in the interferometer) would not have changed the line shape of the transmission mini-

mum. Consequently, it can only be assumed that in the case of NH 4Br the splitting
-1

is less than 4 cm .

Durig and Antion 2 8 have found two infrared active bands in the tetragonal phase in

NH4I which may correspond to the EE and A2u vibrations, whereas our results indicate a

degenerate mode as found in the bromide. Vedder and Hornigl 4 state that a small amount

of water vapor present in the NH4I film in the NaC1 phase, or their KBr substrate with an

NaC1 structure, was possibly responsible for the fact that this phase supercooled to

liquid-helium temperatures. The former effect may be present in our NH4I results during
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Table X-8. Parameters used in the classical oscillator model to fit the
infrared reflectivity of NH4Cl and NH4Br single crystals at
various temperatures.

2 2
s s

E(v) =E + 2 + 2 2
v - VT - iv YT v -v 1 - ivY1

NH 4 Cl NH 4 Br

300 0 K 85 0K 300 0K 200 0K 85 0K

-1
s T cm 339.0 341.0 295.0 285.0 280. 0

-l
c T cm 173. 0 184.0 144. 0 151.0 155.0

-l
YT cm-1 18.0 4.0 17.0 9. 0 2.5

rT = (Y/w)T 0. 10 0.02 0. 12 0. 06 0. 02

-1

s1 cm 1  87.0 52.0 52.0 55.0 48.0
11

1 cm 225. 0 246. 0 184. 0 182. 0 192. 0

-1
y -cm1 45. 0 32. 0 30. 0 28. 0 38. 0

E 7. 0 (6. 0) 6.8 5. 8 (5. 2)
o

E 2. 7 (2. 7) 2. 9 (2.9) (2.9)

-I
w cm- 273 281 224 226 229

-1
oS cm 275 (275) 224 (216) (213)

LST

the transfer of the sample to the cryostat. This could explain why only one band

is observed in our measurements. The reduced damping constant, F = yT/coT shows,

however, a marked discontinuity at the 256 0 K phase transition. There was some evi-

dence in our results that the frequency and shape of the band in NH 4I did depend to

some extent on the substrate, but this effect needs to be investigated further.

One infrared active mode is observed in the disordered phases, and only one

band is normally observed in the ordered (5) or tetragonal (y) phases, with an

almost complete continuity through the phase transitions. The volume change is con-

siderably less than 1%0 in all of the halides, 7' 8 except in the Phase I to Phase II
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transition. The largest change occurs in the dielectric constant,3 and it is this func-

tion that largely determines the temperature dependence of the modes.

The damping function, F, at low temperatures (~4 0 K) approaches ~0. 02 in NH4C1,

0. 025 in NH4Br, and 0. 15 in NH4I. The temperature dependence is similar to that

found in the alkali halides, namely 0. 02 in RbCl, 0. 014 in RbBr, 0. 023 in NaBr, and

0. 15 in Lil. The r's determined from the infrared reflectance measurements agree

within 50% of those obtained from the Raman measurements where the mode is active

in both. The transmission data yield r 's roughly two to three times larger at low

temperatures, whereas the room-temperature results agree within 20%. This is

probably caused by imperfections in the thin films, because of strain, impurities,

etc.; possibly, it is the major cause of the discrepancies in the frequency depen-

dence with temperature in NH 4 Cl (see Fig. X-24). The Raman r's are probably the

most reliable, as they have been determined from the bulk single crystals.

c. Raman Active Phonon Modes

There should be no first-order allowed Raman bands in either the NaCl or CsCl dis-

ordered phases. All three materials exhibit moderately strong spectra, however, even
-1at room temperature, and bands are observed at 140, 170, and 196 cm in NH C1,

-1at 55, 135, and 185 in NH4Br, and at 125 cm in NH4I. Tables X-9, X-10, and

X-ll give a complete listing of all of the infrared and Raman modes seen in the

ammonium halides, together with interpretations, and comparison can be made with

the results obtained by other research workers. The modes listed above show simi-

larity in some cases to the first-order Raman active modes observed in the ordered

phases, and may be the remains of ordering of the ammonium ion, even though the

crystal is strictly in a disordered phase. Alternatively, the spectrum could be pre-

dominantly second-order, and reflects a combined density of states spectrum derived

from critical points at the Brillouin zone boundary. Possibly, it is some com-

bination of both effects. In the tetragonal phase in NH 4 Br, ND4Br, and NH4I all of

the Raman active translational lattice modes are observed, and also the v 6 libra-

tional mode.

The temperature-dependent damping constants of the Raman active modes in

NH Br are plotted in Fig. X-26, together with the band intensities of v 5, v5, and

v, showing how they vary through the tetragonal to ordered cubic phase transition.
29Loudon has extended the theory of Raman scattering to cover piezoelectric crys-

tals in which the mode is simultaneously infrared and Raman active (ordered NH4Cl and

NH 4 Br). More first-order peaks should be observed due to a lifting of the group-

theoretical degeneracy of polar lattice vibrations by long-range electrostatic forces

that give rise to an additional electron-lattice interaction. In a cubic crystal both the

phonon displacement and the electric field point in the same direction, so that the
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Table X-9. Infrared and Raman frequencies of NH4CI and ND4Cl in cm - 1

Thin Film Reflectivity Reflectivity Raman Others
Transmission Kramers-Kronig Dispersion

NH4C1 W t Ot  "t  o
(Phase II) (v5)(F 172 1+ 2 175 2 173 ± 2 273 ± 5 (140) 155
300 °K (225) (170) neutronl7

(195)

NH4C1

(Phase III) (v 5 )(F 2 ) 185 + 1 188 + 2 184 ± 2 281 ± 5 188 ± 2 185 ± 6
80 K (246) crystal 2 3 neutron 15

188 ± 2 183

powder22 Raman 19
(275± 5)

ND4C1

(Phase II) (v5 )(Flu) 166 + 2
300 0K

ND 4 C1

(Phase III) (v 5 )(F 2 ) 177 + 1 177 ± 2
80 0K

Frequencies in parentheses were all obtained from broad, weak bands and
may be multiphonon in origin, or possibly indicate some small type of
ordering found only in the tetragonal phase of NH4Br and NH4 I.



Table X-10. Infrared and Raman frequencies of NH4Br and ND4Br in cm-I

Thin Film Reflectivity Reflectivity Raman Others

Transmission Kramers-Kronig Dispersion

(v 5 )(F u)

(v 5 )(E u , AZu)
(v5)(E g)

(v) (Bzg)

(v' )(E g)

(v")(Alg)

(v )(E g)

v 5 (F 2 )

v5 (Flu)

147 ± 1

153 ± 2

159 ± 2

lt
147 ± 2

154 ± 2

159 ± 2

Wt W

144 ± 2
(184)

151± 2
(182)

157 ± 2
(193)

138 ± 1

v5 (E u , Au)
v5(Eg)

v" (B 2g)

v (E g)

v7(Alg)

v 5 (F 2 ) 147 ± 2

224

226

(185) (v'?)
(135)(v"?)

(55) (v7?)

148 ± 6
neutron

NH 4 Br

(Phase II)
300 0K

NH 4 Br

(Phase III)
200 oK

149 ± 2

Frequencies in parentheses are all broad and weak. They may be multiphonon in origin, or

may be the remains of some Phase III ordering in the disordered Phase II structure.

16017

17180179 ± 2 182

133 ± 2 136 Raman

75 ± 2 77

62 ± 2 69

(330 ± 5) 335
333

17
neutron

157 ± 2 165 ± 617

229 (225 ± 5) neutron

16013
inferred

165 ± 2

122 ± 2

75 3: 3

65 ± 3

NH 4 Br

(Phase IV)
20 oK

ND 4 Br

(Phase II)
300 0 K

ND 4 Br

(Phase IlI)
200 OK

ND4Br

(Phase IV)
80 K
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Table X-l1. Infared and Raman frequencies of NH4I.

Thin Film Raman Others
Transmission

NH41

(Phase I) v 5 (F u )  143 ± 1 (1 2 5 ) (v 5 ?)
300 "K

NH4I
(125)t (v" 9)(Phase II) v 5 (Flu) 147 1 (1  5) ( )

240 K (160) t(v ?)
NH4I 135 17

NH4 135t 145 neutron1
(Phase III) v (Eu, A2u) 151 ±+ 142t
100 0K

v5(E ) 155 ± 2 155

v1(Bg) 123 ± 2 123 I 285 2g Raman

v%(Eg) 57 2 -

v" (Ag) 45 ± 2
285 17

v'6(E ) 283 ± 2 285 neutron 31
279 specific heat

Possibly Phase I at all temperatures (see Durig and Antion 2 8

Broad, weak. May be multiphonon or the remains of ordering from
Phase III, even though the crystal is in a disordered phase.

symmetries produced by the two electron-lattice interactions are identical. Con-

sequently, both the transverse and longitudinal optic phonons corresponding to the
reststrahlen mode should be Raman active. A band in NH 4C at 275 ± 5 cm - 1 is

observed at 80 0 K in the ordered phase, and corresponds quite will with the LO mode-1
at 281 ± 5 cm-1 derived from the infrared reflection measurements. A weak broad-1

mode at 225 ± 5 cm-1 in the NH 4Br Raman spectrum is also in agreement with the-1

LO mode at 229 ± 5 cm in the NH4Br reflection results at 200K. The electro-optic

coupling coefficient in the ammonium halides that is responsible for this effect prob-

ably has the opposite sign from that present in CdS or CdSe where the LO mode

observed in the Raman spectrum is an order of magnitude stronger than the corre-

sponding TO mode. 3 0

In summary, the external optical phonon modes in the ammonium chloride and bro-

mide have been observed in all but the disordered NaC1 phase. The number of modes

and their symmetries agree with the group-theoretical predictions of the proposed struc-

tures. The temperature dependence of the frequencies and damping constants will allow

future tests of theoretical models regarding overlap and anharmonic effect in the
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interatomic forces when other independent low-temperature experimental parameters

become available.

We would like to acknowledge the help and cooperation in this work of Professor
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