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1. INTERACTION OF A SPIRALING ELECTRON BEAM AND A PLASMA

The spiraling electron beam waves have been previously described. 1 The theory has

now been extended to include the effects of a background plasma and finite transverse

geometry. Several instabilities result. The wavelength and frequency of the instability

with the largest growth rate appears to agree with oscillations that we have observed in

our spiraling electron beam plasma experiment.

The model studied is described in Fig. X-1. The electron beam is assumed to have

a square spatial distribution. It has velocity components along and across the axial mag-

netic field. The beam is positioned between two conducting cylinders. The region

BEAM

,
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Fig. X- 1. Cylindrical geometry and beam distribution.

between the cylinders is uniformly filled with a plasma of electrons and infinitely mas-

sive ions. Small-signal perturbations were assumed to be of the form e j (o t - m 8- k z )

where w is the radian frequency, and m and k are the azimuthal and axial wave num-

bers. The cylindrical beam was unwrapped1 and a rigid beam analysis performed. 2

The dispersion relation that results for interactions between the beam space-charge

waves and the plasma waves can be put in the following form
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Here, we is the electron cyclotron frequency, o the electron plasma frequency, v the

axial beam velocity, ro the mean radius of the beam, and p the radial wave number.

WB is a reduced beam-plasma frequency given by

80 sin -

2 pb 2

B TDp

where D is the distance between the cylinders, T is the beam thickness, and W0pb is the

beam-plasma frequency. The interaction between the beam cyclotron waves and the

plasma waves can be placed in the following form:

2 m 2
CB 2

2 2 ro
(w-mw -kv) - co = (2)

k 2 K II + p2 m K_

The unstable interaction regions are shown in Fig. X-2. The uncoupled beam and

plasma waves have been drawn for the cases m = 1 and m = 2. Equation 1 describes the

interactions numbered 1, 3, 5, and 7, while Eq. 2 holds for interactions 2, 4, 6, and 8.

The Bers-Briggs stability criteria were used and applied to each of these inter-

actions. All except the coupling at 4 are backward-wave interactions and absolutely

unstable in an infinite-length system. They all have starting lengths and a starting fre-

quency in finite-length systems. 4 The interaction in region 4 is convectively unstable

in an infinite-length system. These interactions were investigated for the plasma

parameters of our experiment.

The e-folding length for the convective instability was found to be several times our

system length. The starting lengths for interactions 3, 7, and 8 are also many-system

lengths. The starting lengths for interactions 1, 2, 5, and 6 are all less than a system

length. The growth rates for the absolute instability at interactions 1 and 5 are, how-

ever, approximately twice the growth rates at 2 and 6. The interactions at 1 and 5 also
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Fig. X-2. Uncoupled beam and plasma waves: (a) for m = 1; (b) for m = 2.

give frequencies and wavelengths that are in good agreement with the observed values.

Two comparisons are shown in Figs. X-3 and X-4.

In Fig. X-3 the vertical position of a data point was determined by the value of the

observed frequency, the horizontal position by using experimentally observed values for

e m I
m m=2 m=2

m=2

80

E
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kv
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Fig. X-3. Observed frequency vs beam
space-charge wave Doppler
shift.

wavelength, v, m, and wc .

by the observed frequency,

of the absolute instability

parameters.
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fBb REAL PART OF BRANCH POINT FREQUENCY (mHz)

Fig. X-4. Observed frequency vs pre-
dicted frequency for infinite-
length system.

Similarly, the vertical position in Fig. X-4 was determined

and the horizontal position by the real part of the frequency

given by Eq. 1 with experimental values for the plasma
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The beam space-charge wave interaction with the backward plasma wave appears to
describe the observed oscillations. At present, we are investigating the role of colli-
sions, thermal effects, and the finite lengths of the systems.

B. R. Kusse
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2. NONLINEAR AND NONLAMINAR OSCILLATIONS IN

INHOMOGENEOUS PLASMAS

Introduction

In a previous report, the computer simulation of a cold, inhomogeneous plasma
that was simulated had an equilibrium density no(x) = nc/(1+x 2) and the electrons were
given a uniform displacement at t = 0. The voltage across the plasma was compared
with the results of a linearized fluid description of the electron dynamics.

To give a more complete treatment of the details of the electron motion, the build-up
of the electron density as a function of time is presented here, and it is shown that local
nonlinearities occur before nonlaminar motion 2 takes place. The results of the com-
puter simulation will be compared with the density as derived from linearized fluid
theory. Furthermore, a linearized Lagrangian analysis of the electron dynamics 2 will
be used to find the electron density; this approach correctly describes the density well
into the nonlinear regime, and is valid until an overtaking occurs.

Finally, the state of the plasma after overtakings occur will be discussed. The
spreading of the nonlaminar motion and randomization of electron velocities in a plasma
with such a smooth density gradient is similar to the effects noted previously for a
sharply bounded plasma. 3

Lagrangian Formulation of Electron Density

The equation of motion for an electron in a cold inhomogeneous plasma is2
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2 xd x - c (x') dx', (1)
dt2  x

o

where x = x(x o , t) is the instantaneous position of an electron whose equilibrium position

is x , and w is the local plasma frequency. The integral on the right-hand side of
o p

Eq. 1 may be expanded in a Taylor series about x 0 to give for the equation of motion

d2x
Z E dw (x 0)

d2  - (x-X ) 2 + (x x - + .+ (2)
dt 0 po 2 0 dx

Equation 2 holds as long as no overtaking has occurred. 3

As long as the displacement from equilibrium is small, in the sense that the second

term on the right side of Eq. 2 is small compared with the first, namely

o (x )

the differential equation (2) will be linear in (x-x ), and has the simple solution

x - x = A cos w(xo) t + B sin w (xo) t. (4)

It is interesting to note that the linearization condition (3) has the interpretation that the

excursion of an electron must be small compared with the scale length of the gradient

in w
p
For an initial displacement perturbation of amplitude 6, where the initial conditions

dx
are x(x , t=O) = x + 6 and dx = 0, the solution (4) becomes

S0 dt I t=0

x = x + 6 cos w (X ) t. (5)

The density of electrons can be obtained from Gauss' law

n(x, t) = no(X) e 
(6)

where E is the electric field in the plasma at a fixed point. From the linearized equa-

tion of motion (2) the electric field acting on a particle at position x is

m2
E(x, x) =- m W(x ) [x-x] (7)

so the electron density (6) becomes
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E E 8xo 8xo I n (x )
n = no(X) - e x a n(x) - n(x) +x (x) - (x-x) . (8)

o o

The density is given as a function of x, once the inversion of Eq. 5 to obtain x0 = x (x, t)

has been carried out. Note that the quantity ax /ax appearing in (8) can be written (by

using Eq. 5) as

ax
o 1
x 1 - 6 ' (x ) t sin [ (xo) t]

and hence this is also a function of x, once x = x (x, t) has been found. The inversion

of Eq. 3 has been carried out numerically so that a comparison could be made with the

computer experiments and the results are given below.

The numerical solution of (5) is not required at t = 0. In this case the solution can

be obtained from (5) directly:

Xo(X, t=O) = x - 6 (10)

and

ax
o

a 1. (11)ax

The electric field (from Eq. 7) is

e6
E(x, t=0) = -- n(x-6), (12)

o0

and the electron density (from Eq. 8) is

n(x, t=0) = n (x) - 5n' (x-8). (13)o o

The Lagrangian theory is linear only in the sense that the equation of motion is

linear. The electric field and electron density are not linear functions of the displace-

ment 6. The electron density contains terms proportional to ax /ax which becomes
2

infinite at the time of overtaking. The theory is valid up to this point, and hence should

predict the density more accurately than the linearized fluid description in which it is

assumed that the perturbation density n << n .

Build-up of Large-Amplitude Electron Densities

The electron density in a plasma with density n (x) = n /(1+x 2 ) was simulated when
o c 1

the initial displacement 6 = 0. 1. As was reported previously, the first overtaking

occurs at a time t/TpC = 4. 16, where T is a plasma period of the electrons at x = 0.

The total electron density as found from the simulation is shown for two times before

overtaking in Figs. X-5 and X-6. The bar graphs in the figures are the results of
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Fig. X-5. Total electron density at t/Tpc = 0. 56.
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Fig. X-6. Total electron density at t/Tpc = 2. 82.

counting electron sheets in "cells" having width 0. 1. The dashed line in these figures

is the electron density as calculated from the Lagrangian theory (Eqs. 5, 8, and 9).

The solid line is the density as calculated from a linearized fluid or Eulerian theory.

In Fig. X-5, all three curves are in good agreement, and the dashed line coincides with

the solid line. In Fig. X-6, however, the density from the simulation has local non-

linearities or "spikes," which are accurately predicted by the Lagrangian theory. The

Eulerian theory is really invalid near these points, since the first-order density is not

much less than the equilibrium density, and this theory does not agree with the simula-

tion results near those points.
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Nonlaminar Effects

In order to investigate the state of the plasma after the first crossing occurs, a

large-amplitude perturbation of 6 = 0. 5 was made. This was done so that crossings

occurred earlier in order to cut computation costs.

The first overtaking was found to occur at t/T = 0. 99. The way in which the non-

linear motion spreads into the plasma is shown in Fig. X-7; the solid lines show the

no(x)

0.99

1.13

1.27

1.41

1.55

1.69

1.83

-2.0 -1.0 0 1.0 2.0 x

t /Tpc

Fig. X-7. Spreading of nonlaminar motion as a function of time
(solid lines indicate where overtaking has occurred).
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regions in the plasma at which crossings have occurred. Note that by the time t/Tpc
1. 8 the nonlinear motion has spread through the center of the plasma.

The distribution in velocities of the electron sheets at t = 3T is shown in Fig. X-8.pc
The distribution was obtained by averaging over one period of oscillation (measured at

x = 0) and the energy in the distribution was found. The total kinetic energy of the ran-

domizing particles is found to be

2
U = 0. 03rm0 n

pc c

while the total initial energy given to the plasma in the uniform displacement perturba-

tion is

U = 0. 06Tmw2 n.
o pc c

Hence, about one half of the original energy has gone into random motion. For much

later times complete randomization should be observed.

H. M. Schneider
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3. STEADY-STATE OSCILLATIONS IN INHOMOGENEOUS PLASMAS

Introduction

Previous reports1,' 2 on oscillations in inhomogeneous plasmas have been concerned

with nonlinear and nonlaminar effects that occur in the transient response of a plasma

to initial density or velocity perturbations. In the steady state, nonlinear effects will

also be important near the cold-plasma resonance point, unless some physical mech-

anism limits the nonlinearity.

In this report, the response of a cold inhomogeneous plasma to a steady-state

driving field will be discussed. Three mechanisms for limiting the nonlinearity are

described: collisions, a spread in oscillator frequency, and thermal effects.

The impedance of the plasma will be calculated and it will be shown how the
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inhomogeneity in plasma density contributes a real part to this impedance. The relation-

ship of the real part of the impedance to the power dissipated in collisions and thermal

motion is also discussed.

Inhomogeneous Cold- Plasma Response

In a one-dimensional inhomogeneous cold plasma with density n (x) the electric field

is given by E(-o, w)/E(x, w), where E(-oo, w) is the Fourier transform of the electric field

at x = -oo (the point at which the plasma density is assumed to be zero), and E(x, w) is the

relative plasma dielectric constant. In the absence of collisions the field is given by

E(-oo, w)
E(x, w) = (1)w (X)

1 2

where w (x) is the local electron plasma frequency. In Eq. 1, the motion of the ionsp
has been neglected because they are assumed to form a stationary neutralizing back-

ground.

When the electric field at x = -0o is a single-frequency source such as

E(-oo, t) = cos w0 t (2)

the plasma electric field becomes

cos W t
E(x, t) 2 (3)

co (X)
p

1
2
o

Note that at the points in the plasma where the driving frequency wo is equal to the local

plasma frequency, o = w (x), the field in (3) exhibits a resonance. Nonlinear effectso p
are obviously important near this point unless other physical effects become dominant

near the resonance point. Three mechanisms that can limit the amplitude of the field

at this point will now be described.

Collisions

In a one-dimensional plasma with collisions described by a collision frequency v

the electric field in the plasma is

E(-oo, o)
E(x, w) = 2 (4)

co (X)
p

1--
co(co-jv)
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Near the resonance point the denominator of (4) may be expanded for small v/w, and the

response to a driving field E(-om,t) = cos wot becomes

w
p

E(x, t) - -sin w t (5)
V p

1 << (6)
p

at the resonance point wo = w . The field thus becomes infinite as p /v, for small col-
o p p

lision frequency. If we use the fact that the first-order electron density is nl(x, w) =

-(E /e) aE/ax, the time-dependent density at the resonance point is

E p
n(x t) e cos o t. (7)

The power dissipated in this plasma has been shown by Gil'Denburg,3 and Briggs

and Paik4 to be independent of the collision frequency v in the limit as v approaches

zero. This can be seen by writing the power dissipated as

P = I Re E 2dx, (8)
2 -0oo

where the plasma conductivity5 is

2

1 + j v/ << 1. (9)
o

Using the expression for E given by (4) in the limit of v/w << 1, the power dissipated

becomes

2

1 op (00 vdx
P = 2 IE(-o, w) Y 2 (10)

W p Wp 2

2- +4 2

As the collision frequency v goes to zero, the major contribution to the integral in (10)

comes from the vicinity of the resonance point w = w (x). Expanding the denominator in

the integral (10) gives the result

3
P=Eo 2 IE(-0, O)12 (11)

p
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in the limit of v going to zero. The prime denotes differentiation with respect to x. Note

that the power dissipated (Eq. 11) is independent of v in the limit of v going to zero.

Spread in Oscillator Frequency

If the driving electric field has a spread in frequencies about Wo, the electric field

near the cold plasma resonance point remains finite. As an example, suppose the elec-

tric field E(-oo, w) has the form

E(-oo, w) = exp 2 exp
5W 5W 2

-(+wo 2 (12)

which is shown as a function of w for the case 6wo << w in Fig. X-9. The time-dependent

driving field which is the inverse transform of Eq. 12 is

E(-oo, t) = exp [- (8)2 t2 cos Wt,1 - 4O 2 O t, (13)

which reduces to the steady-state drive at w0 as 6w -0. (Note that in this limit the
o

transform E(-oo, w) approaches a pair of impulses having area Tr at w = +w0 and w = -wo

E(- co,, w)

2 w

-Wo

2 w

- - JW

(a)

E(- co,w)
I

-Iw0
-_W Wo

Fig. X-9. (a) Transform of the
quency about wo

(b) Transform of the

field if the source has a spread 6w in fre-

field if 6o -0 (a steady-state source at wo) .
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as is also shown in Fig. X-9.)

Multiplying E(-oo, w) by 1/(1-/w2) to obtain the field inside the plasma and inverse

transforming gives

1 .2 j0 t w

E(x, t) = exp -6c2t 2  cos wt - -Re e o Z - 6 J 2

+ e - o Z - J , (14)

where Z( ) is the plasma dispersion function, 6

200-X
Z( ) = 1_ e- dx Im > 0 (15)

and the relation Z(- *) = -[Z()]* has been used in obtaining (14). To find the behavior

of the electric field near the resonance point, let w approach wp in (14). By using appro-
6 o p

priate expansions of Z as 6w becomes small, the field at the point w = wp may be

written

E(x, t) = exp 1 w2t2 os Wt - sin w (16)
4 p 26 P

Thus the electric field becomes infinite at w = p as (w p/6w) in the limit of small 6w.

The first-order charge density near the resonance point can be found from Gauss'

law again, n 1 =-(Eo/e) aE/ax, with the result that

n (x, t) = e 0  exp _L 12t 2 cos w t, (17)
1 e 5w 4 p

which shows that the density becomes infinite as (w /6w2.

Thermal Effects

When the electrons in an inhomogeneous plasma have nonzero temperature, nonlocal

effects are introduced and the singularity in the electric field at the point w = w (x) van-P
ishes. The problem of wave propagation in a warm inhomogeneous plasma has been

considered in general by Baldwin, but the results of Gil'Denburg3 for a specific density

profile will be used here to study the field near the resonance point.

Consider the density profile shown in Fig. X- 10. Under the assumption that the
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wavelength of the electric field is much larger than the Debye length XD , a hydrodynamic

formulation for the electric field can be used. This assumption is violated in the regions

n(x)

-(L+£) -L

n---

L L+£

Fig. X- 10. Inhomogeneous plasma slab.

of low density where the hydrodynamic description must be supplemented with results

of kinetic theory.

The differential equation for the electric field E 1 inside the plama is 3

Vth 1
W 2 d2w dx

p

( 2 El = Ext' (18)

where vth is the average thermal velocity, and Eex t is the complex

outside ( Ix I > L + 1) the plasma which is oscillating at frequency w.
the constant in the equation of state used for the electron pressure,

(18) that if vth is zero, the cold plasma result is recovered.

The solution to (18) in the uniform region is

E ext
E 1  2 + C 1 cosh kox,

p
1- 2

where wpo is the plasma frequency in the uniform region, and

2 2
CaW -W

po
ko 2

Yvth

amplitude of the field

The quantity y is

p ~n . Note from

(19)

(20)

In obtaining (19), the antisymmetric solution, sinh k x, was discarded, since the slab

is driven by a symmetric external field. The constant C1 is determined by connecting

the solution in the tapered region to the uniform region solution at x = f and requiring

that E 1 and dE /dx be continuous there.

In the tapered region (using (-L-f) < x < -L as an example), the solution to Eq. 18 is
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E = CBi(z)jAi(z) + aEext Bi(z) Ai(t) dt - Ai(z) Bi(t) dt= B C[i(z)-jAi(z)] Ee i(z)-o -oo

(21)

where

z = -a 1 - (22a)2 2

and

a = L2 (22b)

th po

The functions Ai and Bi are Airy functions of the first and second kind. 8 If the resonancE

point is in the tapered region, the first term that is the homogeneous solution in (21) can

be shown to represent a "disturbance" propagating in the negative x direction toward

the plasma boundary. The other homogeneous solution (which would represent a distur-

bance propagating in the +x direction) has been discarded because it could be excited

only by a reflection at the plasma boundary. Gil'Denburg argued that the negative-

traveling disturbance will be heavily Landau-damped in the region of low plasma den-

sity, and hence this reflected disturbance will not be excited. The second term in (21)

represents the cold plasma solution far from the resonance point.
3

Connecting the two solutions (21) and (19) at x = -L determines C 1 and C . The
3

field near the resonance point (z = 0) in the limit of small thermal velocity then

becomes

2
o

E P E p(23)
Eext ( 2 Y1 /3

while the electron density goes as

(2 Y 2
en P P

, (24)
E o E ext 4/3

Lvth p

The time average power flow in the plasma disturbance that propagates away from

the resonance point agrees with the result given in Eq. 11 in the limit of zero thermal

velocity.
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Impedance of the Inhomogeneous Plasma

The transient response of an inhomogeneous plasma reported previously 9 may be

used to find the steady-state impedance of an inhomogeneous plasma placed between two

capacitor plates as shown in Fig. X- 11. The plates are assumed to be located where the

plasma density vanishes.

Z (j w)= R + jX

R \X

PLASMA WITH 3 I

___DENSITY _____

[ 12
C A ITO CAPCTO .. 

W pC WpC

PLAT E -v 
+ PLATE

Fig. X- 11. Inhomogeneous plasma between Fig. X- 12. Impedance of the plasma-
a pair of capacitor plates. filled capacitor.

Using the fact that for a plasma placed between a pair of plates the uniform displace-

ment perturbation at t = 0 corresponds to a capacitor current excitation which is a trip-

let function of time, the relation between the capacitor current and particle displacement

is

I(s) = s , (25)

where s is the Laplace transform variable. The voltage response of the plasma 9 is

(c0 n (x) dx
V(s) = se 2 2 (26)

o o- s + W (x)
p

so the impedance Z(s) = V(s)/I(s) becomes

2
I W (x) dx

Z(s) =2 (27)
o 0 oo s + (x)

p

For the general class of density functions n (x) = nc/(1+x2k ) , the impedance is
o /ort)hheipeacei
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2

pc 1
Z(jw) = - (28)

o k sin- (1+1/k) 2 2 (1-1/2k)
2k (jw) (w -W )

pc

where we have written s = jw. As an example, consider the case k = 1, a plasma with

density n = n /(l+x ). The impedance becomes
o c

2

Z(jw) pc 1 (29)

oE 2 2

which is sketched in Fig. X-12. Note that for w < wpc the impedance is pure real; one

would calculate the power dissipated as

2

1 pc ]I p
p 1 (30)

2 o 0 2 2
pc

Using the relation between the circuit current and the electric field at the plates,

I = -jEoEext ,' the power dissipated becomes

2

1 2 IEext !
P =-TEw (31)

2 o pc / 2 2
w -w

pc

This result, obtained from the impedance formulation of the cold plasma can be shown

to agree exactly with the expressions for power dissipated in an inhomogeneous plasma

in the limit of zero collision frequency or zero thermal velocity.

Finally, note that the singularity in the power dissipated at w = w p (Eqs. 30 and 31)

is a consequence of using the current I to the plates, which is not constant with frequency

if a nonideal source such as that shown in Fig. X-11 is used. In fact, the current I in

this case is given by

I
I s (32)

1 + ZG
s

where G is the source conductance, and Z is the plasma impedance. The power dissi-

pated in the plasma in terms of the source current I s (for Z = R) becomes

QPR No. 91 131



(X. PLASMAS AND CONTROLLED NUCLEAR FUSION)

P 2 ' (33)
(I+RG s )

which remains finite for all R as long as Gs is nonzero.

H. M. Schneider, A. Bers
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1. HIGH INTENSITY 14-MeV NEUTRON SOURCE

We are studying a new design for a 14-MeV neutron source with 1014/cm2-sec sur-

face flux. (See Fig. X-13.) The key feature is the use of the Mach line of a freely

expanding deuterium gas jet as the target for a high-energy tritium ion beam. The neu-

trons are produced by the D-T fusion reaction. The density gradient at the Mach

line serves as a "windowless" target, while the energy deposited by the tritium beam

(-200 kW in this design) is removed from the small interaction region by the flowing gas

stream. The beam energy is eventually removed from the system far downstream of the

reaction zone in a region of much larger surface area.

Fig. X-13. Conceptual scheme of the high-intensity neutron source.

This work was supported by the National Science Foundation (Grant GK-2581).
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The detailed properties of the unperturbed gas flow are known. Our goal now is to
gain an understanding of how the flow properties are modified by strong local heating,
especially in the transonic interaction region. A full description of the interaction
requires the solution of the full set of gasdynamics equations in two dimensions coupled
to the range-energy relation describing the slowing down of the tritium beam. The dif-
ficulties associated with this problem are the following.

1. The system of equations is nonlinear not only in the usual sense of gasdynamics
but also in the interaction between the deuterium and tritium flows.

2. The free-boundary problem for the D 2 jet.

3. The boundary conditions are given upstream for the deuterium (reservoir condi-
tions) and downstream for the tritium (energy, intensity of the beam).

4. The zone of strongest interaction is located at the position where the Mach num-
ber passes through unity. The flow behavior changes radically at this point.

5. The stability of the flow to small perturbations is not known. This requires the
solution of an auxiliary time-dependent set of equations to determine the transient
behavior.

Steady-State Solution

Because of the many problems involved, we have chosen to solve a simplified model
first. The results of a one-dimensional, time-independent treatment will be described
here. For this case, the system of equations to be solved is

pAu = C 1  (1)

du dp
pu = dx (2)

dT 2 du IT 2 (3)p Cu + pu dx AV 2 In (CVT (3)
T

p = pRT (4)

T dVT Bp (C 2VT), (5
MTVT dx 2n C2T(5)

T

where the subscript "T" refers to the tritium beam, and B, C1, C 2 are constants. Equa-
tions 1-3 are simply the moment equations of gas flow in conventional notation. The term
on the right-hand side of the energy equation describes the D-T energy exchange (the
momentum of the tritium beam is negligible). Equation 4 is an adequate equation of state
for the moderate-temperature, moderate-density deuterium jet, and Eq. 5 describes the
slowing of the tritium ion beam on the neutral gas. The approximations made in deriving
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Eq. 5 break down below 20 keV ion energy, but only 10% of the initial beam energy

remains and the D-T reaction rate is almost completely negligible. We neglect the D-T

interaction below 20 keV in the present solution.

A typical solution, as well as a comparison with a case without tritium, is shown in

Fig. X-14. Both solutions have the same conditions at the sonic line (computations were

800 -
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500 - 2.04

400 - 1.36 -

300 - 0.68 -

200 - 0.00 -

Fig. X-14.
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Comparison of flow patterns with and without tritium for
the same sonic conditions and nozzle.

started from this line) and take place in the same geometry (same nozzle and free expan-

sion). The flattening of the upstream conditions for the tritium case occurs when the

tritium energy has reached 20 keV; that is, when the tritium deuterium interaction is

assumed to vanish. The maximum temperature in the nozzle is only approximately

850 'K. This choice led to a rather large deuterium mass flow rate (32 g/sec) but, on

the other hand, it did not introduce complications as far as dissociation of D 2 was con-

cerned. The main feature of these curves is, however, that the density gradient in the

transonic region is almost as sharp in both cases.

Time-Dependent Solution

(i) System of Equations

First, we note that the tritium velocity is 3-4 orders of magnitude greater than

the deuterium velocity, and so we do not need to include the tritium dynamics in a
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time-dependent solution for the deuterium flow field.

In a variable cross-section geometry, the complete equations for the deuterium

dynamics read:

8p 8 1 dAa- +x (pu) + pu A dx = 0 (6)
8 8 2 2 1 dA

- ( pu) + _x (pu2+p) + pu A d= 0 (7)

at a I dA _

Sp(e + u2 + a rpu(e + u2 +pu + pu e+-u2 +pu A d AV n CV T

(8)

p = pRT (9)

to which the energy range relationship for the tritium must be added:

dVT Bp
mTVT d VT (10)

T

In Eqs. 6-8, A has been assumed to be independent of time (that is, the assumption is
made that the tritium does not bring any change in the boundaries).

At this point it is interesting to take as new variables the physical quantities p,

pu = M, pe + u2 E. Besides the obvious advantage of expressing the conservation
laws in their simplest forms, they lend themselves readily to a powerful treatment of

shocks. These variables were first used by Lax.
(3-y) M 2  yEM (y-1) M3

Defining R = (y-1)E 2 we can rewrite the system
above in the following form: P

ap 8M M dA
+ + - 0 (11)'t ax A dx

aM aR M 2 1 dA+  +  - 0 (12)at ax p A dx

8E aT 1 dA IT (ST - n CV (13)at ax A d AV 2
T

dVT Bp
mTvT dx - In CVT (14)

T

It can be shown that this system is hyperbolic and that some care must be taken in
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choosing the boundary conditions. A well-posed problem needs only to have the boundary

values (p, M, E) specified at the origin, xo , plus a complete set of initial values at t = 0,

the boundary condition remaining at xL for the tritium velocity. The specification of

some boundary values at an extra point would almost necessarily lead to an ill-posed

problem. This can be seen best in the supersonic part of the flow where upstream prop-

agation cannot occur.

To ensure nearly correct treatment of shocks (thermal shocks are expected), the fol-

lowing "viscosity" terms will be introduced in the previous system of equations. Since

they have the same form for the first three equations, we shall consider only the first

one. In finite difference form the first term will be written

1 k +(k- 1)p , (15)6-t Pi, j+1 - (Pi+l, j+Pi-1, j) i, j

where i is the space index, and j the time index. Expression (15) can be rewritten

t Pi, j+1Pi, 2 (6x)2+ (16)

This expression is, in fact, the finite difference form of the following terms:

ap a 2
- D (17)

at 2'
8x

k(6x)2

where D - 26t
Substituting terms of the form (17) in the system (Eqs. 11-13), we get:

2
ap +M M dA D- = 0 (18)
at ax A dx x2

aM aR M 2 1 dA aM 0 (19)
T +  +  D - 0 (19)
t ax p A dx ax2

8E aT T dA 82ET) (20)
- + + -D In CV (20)at ax A dx ax2  AV2

T

This system can be rewritten in more conventional variables:

ap a pu dA
S+ -x (pu+m) + A d (21)

at ax A dx
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(pu) a 2 1 dA
8 +(pu) [p+q+u(pu+m)] + pu A d 0 (22)at x

pe+ u2  + u(p+q) + (pu+m) (e + u2) + h

[ 1 2 1 dA IT C V
2

+ pu(e+--u +pu A dx 2 n (C VT (23)

T

p = pRT, (24)

where

ap
m = -D

q = -Dp ax

ae

h = -Dp ae

play the roles of mass diffusion, viscosity, and heat-conduction terms. Varying k con-

trols the influence of these effects, and setting k = 0 gives back the original equations.

(ii) Computational Scheme

Because of the two different time scales involved in this problem, it is evident that

the tritium velocity distribution will be obtained at once at the end of every time step of

the computations of the deuterium flow field, by a backward integration of the energy-
range relationship. So we shall not emphasize this point, but rather concentrate on the

equations governing the deuterium flow.

Our aim is to solve the equations for the whole transients and to see how they reach

the steady state. Since the time involved might be several transit times, we are inter-

ested in maximizing the size of the time step used in the computations. This goal has

led us to an extensive study of different schemes and algorithms. The first physical

limitation to the size of the time step is the fact that one cannot follow the motion of a

perturbation in the flow at intervals of time greater than the time it takes for the per-
turbation to be carried one space-step away. This condition, namely T = At < Ax

iu+c!
is the stability condition of standard hyperbolic schemes (c = speed of sound); however,

it has been known for some time that implicit schemes allow the easing of this restric-

tion. The idea is to use in the computation the values of the terms which do not contain

the time explicitly at both ends of the time step considered. For example, (6) in finite
difference form will be written
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(Pi, j+1-Pi, j)

+ + (M -M. ) + M. .+1  dt 26x (Mi+l,j+l i1 j+l + , j+ A d

+ (-X) (Mi+ -Mi-1, 1) ] = 0, (25)

x i+l ij A dx

where X = implicit factor (X = 0 is called explicit). The stability of this scheme is still

not known in general.

Several comments about this scheme might be made at this point. The choice of the

central-difference scheme for the gradient operator is essential to produce the implicit

scheme. Any backward or forward difference scheme coupled to the boundary conditions

at the origin leads to an explicit formulation and to its restrictive stability condition.

Moreover, the central difference scheme requires the specification of other boundary

conditions, since we now have a system of 3 X (N-2) equations for (3N-3) unknowns (N is

the number of spatial points used in the computations). We have discussed the addition

of another boundary condition to the problem and seen that it was not desirable. This

seems to be the price, however, for using the implicit scheme. We can be guided in

our choice by the steady-state solution. Since the solution of the equations that we are

trying to solve will eventually reach steady-state conditions, and there is practically no

interaction between tritium and deuterium beyond Mach number 3 or more, we shall

take some value of the far downstream steady-state solution obtained previously as

new boundary conditions. It should be remembered that this boundary should never be

adjusted later on because this would mean propagation upstream in the supersonic part

of the flow.

These ideas have been tested on real cases, at first, involving no tritium, to find

out what size of time step could be used. We started with a steady-state condition, and

a time evolution of these conditions was sought. For every time step, iterations were

performed until convergence was obtained. We first realized that, because of the large

spatial gradients in the problem, Ax had to be chosen rather small. Ax = 0. 0125 cm was

adopted for the following series of tests. This choice is in itself a restriction for the

absolute value of At, since it is proportional to Ax, but we are more interested in dis-

cussing the relative advantages of implicit schemes over explicit ones.

Very soon the scheme described above produced instabilities either when iterations

were continued after convergence had been achieved or when several time steps were

computed. The explicit scheme seemed to be more stable as far as the iterations were

concerned, but broke down much earlier when the time was increased. All instabilities

observed took place in the subsonic part of the flow. Subsonic and supersonic parts of

the flow were then tested separately. Values of 100 T could be used as time steps in the

supersonic region without producing any instability, whereas values of a few T only

could be used in the subsonic part. The complete central-difference scheme developed
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instabilities first at the lowest Mach numbers. Their growth rate was very large (2 or

3 time steps or iterations would be sufficient to make one of the variables become neg-

ative), and their wavelength was of the order of a few space steps.

Other schemes were tried which combined the central-difference scheme and the

backward/forward difference schemes as suggested by R. Lelevier,2 the idea being to

transport one quantity throughout the flow. These schemes proved unstable too, but at

Mach numbers close to unity, their growth rate was smaller than for complete central-

difference schemes, as well as the wavelength of the instabilities.

Finally, a predictor-corrector scheme was tried as suggested by Gourlay and

Morris.3 This scheme proved unstable both for Mach numbers low and nearly equal
to 1.

In order to try to damp out these instabilities, viscosity, as described above, was

included in the equations. Not much improvement was observed. From these tests, it

seems that the practical limitation on At has to be of the order of a few T and, since the

instabilities are growing fast enough, the solution will not deviate for a long time before

the computations are stopped automatically. Some initial perturbation to the steady-

state conditions was then included to constitute a second series of tests. Few conclu-

sions from these runs differ appreciably from the previous ones. We noticed, however,

that the viscosity worked effectively in bringing back the steady state, and it seemed

that during these transients At could be increased to 5 T without affecting the precision

of the solution.

In conclusion, it might very well be that the low stability condition of these schemes

is due to the overdeterminations. This fact has been discussed at some length by

Parter. 4 Even if the extra boundary value is the right one, it will not be exactly com-

patible with the set of finite-difference equations, and an error will be introduced and

propagated in the solution.

D. Colombant, L. M. Lidsky
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2. PARTICLE FLUX MEASUREMENTS IN A HOLLOW-

CATHODE ARC

Introduction

The relation between enhanced plasma transport and observed oscillation spectra is

complicated and, in fact, still confusing. The magnitude of the enhanced plasma trans-

port attributable to a finite-amplitude instability cannot usually be deduced from lin-

earized calculations. A rigorous nonlinear theory of induced plasma losses predicting

experimental amplitudes and phase difference has not been reported. There is still need

for experimental data.

Indirect measurements of classical and enhanced radial fluxes are complicated by

specific problems, for example, the separation of fluxes from other losses such as

charge exchange, DC drifts, volume or end plate recombination. Direct measurements

of these fluxes are also complicated, because of the small velocities involved, the

changes in local plasma density and its gradient in the presence of probes. Thus far,

measurements of radial fluxes in experimentally produced plasmas have all been mea-

sured by using indirect methods. We propose to measure the radial particle flux in a

hollow-cathode arc by a direct method. Investigation of the experimental method and

preliminary radial flux measurements will be presented and discussed in this report.

One-sided Langmuir probes rotating about their axes were used to measure radial

fluxes (see Figs. X-15 and X-16). The major effect of a drifting distribution function

on ion-saturation current for a nonsymmetrical probe was isolated for the range of probe

plasma parameters in our experiment. The magnitude of this change was related to the

average velocity of the drifting particles.

Preliminary results of measured radial fluxes have demonstrated that this method

is sensitive enough to distinguish between enhanced and collisional radial fluxes.

Although it is too early to draw definite conclusions, there is strong indication that dif-

fusion over a defined range of plasma parameters is related to the ion enrichment in the

anode sheath.

Probe Work

Probe theory has been developed for symmetrical probes in a plasma with no mag-

netic field. In the case of a magnetic field, Pi/R > 1, where i is the gyro radius, and

R is the probe plus insulator radius, it has been shown experimentally that ion saturation

current and the transition region current are described by nonmagnetic field probe the-

ory. Probe theory for ion-saturation current takes two different forms, depending on

whether R/A d > i or R/X d < 1, where Xd is the electron Debye length. 1 For the case

R/\ d > 1, theory tells one to expect nonorbital motion with a sheath thickness << R. For

the case R/kd < 1, theory tells one to expect orbital motion with a sheath thickness >> R.
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The probe work was restricted to the following range of parameters: X>pi>R>kd
R/Xd > 40, Ti/Te 0. 1, Pi/R > 3, where K is the collision mean-free path, Te and Ti
are the electron and ion temperatures. The operating conditions in the hollow-cathode

arc2 establish the probe parameters listed above.

The theory for ion-saturation currents measured by symmetrical probes within the

described range of parameters predicts 3

I = I' R/Xd T./T , q( # )/kTj,s s d' e p s e]'

where I is the ion-saturation current, p and s are the probe and space potentials. Ion-
s p s

saturation current is affected by three physical processes that are described by the func-
i -

tional dependence of Is on R/Xd, Ti/T , and q( p-s)/kT e . The total sheath thickness

is a measure of how far into the plasma the probe can affect particle motion. Conserva-

tion of orbital angular momentum describes the probability that a particle will be col-

lected, provided that the particle falls within the region of probe influence. The sheath

condition on the ion velocity at the sheath edge describes the drop in potential across the

quasi-neutral region and corresponds to the drop in density through this region. For

Ti/T < 0. 1, it has been demonstrated that conservation of orbital angular momentum

is a secondary effect and can be neglected. For T.< T e the ions must have a velocity
1 e'

rkTe/Mi at the sheath edge in order to satisfy the boundary conditions between the

sheath's edge and the quasi-neutral region. For R/\d > 40 but <150, the effect of finite

sheath thickness can be bounded by a factor of two, and therefore represents an impor-

tant effect. Because T.i 0. 1 T , the drop in density through the quasi-neutral region

is also an important factor.

The response of a nonsymmetrical probe is usually estimated by scaling through the

ratio of areas to the response of a symmetrical probe. Experimental work conducted

with both symmetrical and nonsymmetrical probes within the range of parameters

described above, has demonstrated the following:

1. The response of different shaped probes does not scale with area.

2. The response of individual probes to local changes in the plasma when normalized

to some arbitrary state, scales almost one for one.

Therefore we conclude that nonsymmetrical and symmetrical probes respond in the

same fashion when subjected to the same local plasma conditions.

Adding a drift velocity to the particle's velocity distribution for a plasma changes

the response of a symmetrical probe by either affecting the total sheath thickness or the

potential drop across the quasi-neutral region. Provided that the drifting velocity is

< NkTe/M i , it can be shown that the sheath thickness - not including the quasi-neutral

region - is unaffected by the drifting velocity. The density drop through the quasi-neutral

region is affected by the drift, and causes either an increase or decrease in the
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+(ui/Uo
) 2

saturation current (on a scale of e , where ui is the ion drifting velocity, and
v = N 2kTe/Mi). These results have been verified by comparing the response of a one-
sided probe facing upstream and downstream from the drift to the response of a spherical

probe. Using these ideas along with Bohn's 4 sheath condition and Langmuir's 5 space-
charge-limited current equation to estimate the sheath thickness, one finds the following
relationship:

qA D2 v e (ui/u ) 2 - (u i/Uo)
Als = qA e+ AiNo/ o - eu o}, (1)s 0e

where

2

2 (xd
= 4. 98 A p /2+0. 8), = q4p/kTe.

i
Here, AI s is the change in ion-saturation current seen by a one-sided probe looking
upstream and downstream. Therefore, by measuring AIs, Te, and No, one can find
the magnitude of the drifting velocity.

Equation 1 was checked by using it to measure the azimuthal drift velocity caused
by the E (radial electric field) X B drift. The direction of E predicted by Eq. 1 was
found to be in good agreement with results predicted on similar machines by other people

6using different methods. The magnitude was also found to be in good agreement.

Diffusion Experiment

The radial flux was measured by a one-sided probe rotating about its axis and asso-
ciated equipment (see Fig. X-17). The reference signal is provided by a continuous

rotatable sine-cosine potentiometer, and there-
fore provides a sinusoidal signal at the frequency

REFERENCE BOXCAR _ at which the probe is being rotated. The refer-

INTEGRATOR GATE OUTPUT ence signal and modulated ion saturation current

were recorded on a visicorder. The fast opera-
FFRNCE FAST tional amplifier is used as a gating amplifier,

IK CMR > 50,000 OPERATIONAL LOCK-IN
BANDWIDTH AMPLIFIER AMPLIFIER with the gate voltage provided by the timing cir-DC TO 1 MHz

cuit of the boxcar integrator. The boxcar inte-

grator is triggered by the reference signal. The

output from the gated operational amplifier has

ANODE an AC amplitude at the rotating probe frequency

Fig. X-17. Diagram of the dif- which is proportional to the difference in ion
fusion experiment, saturation current. The magnitude of the
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Fig. X-19. Radial flux vs magnetic field.

AC component was measured by using a lock-in amplifier. A typical modulated ion satu-

ration current response measured by the rotating one-sided probe can be seen in

Fig. X-18.

The following are some preliminary results of the radial flux, together with other

plasma parameters. Figure X-19 shows the radial flux as a function of magnetic

field. Also shown is density, temperature, and floating potential as a function of

magnetic field. Figure X-20 shows potential and density fluctuations as a function

of magnetic field, together with the current drawn by a grounded cylindrical probe

(see Fig. X-21). The source field (field in the region where the plasma is produced)

was kept constant at the value producing the most quiescent plasma. The radial

position of the probe was kept constant at 3. 5 cm.

Some interesting observations can be drawn from Figs. X-19 and X-20.

1. The radial flux decreased by almost an order of magnitude for a 20% change in

magnetic field.

2. Density, floating potential and temperature remained almost constant over the

same range of B.

3. For B between 1. 35 kG and 1. 54 kG, the radial flux, potential, and density fluc-

tuations remained almost constant.
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Fig. X-20. Potential and density fluctuations vs magnetic field.

Fig. X-21. Grounded cylindrical probe.
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4. At B = 1. 5 kG the radial flux, potential, and density fluctuations underwent an

abrupt change in magnitude.

5. The slope of density versus magnetic field changed abruptly at the same value

of B.

A simple calculation suggests that for f > +3 V, the anode sheath becomes ion-

enriched, while for 4f < +3 V, the anode sheath becomes electron-enriched. The anode

wall probe indicates that the sheath is ion-enriched for B < 1. 5 kG, but is electron-

enriched for B > 1.5 kG. This strongly suggests the possibility that a low-frequency

long-wavelength (X > length of the machine) wave exists for B 5 1. 5 kG, and this wave is

causing enhanced diffusion.

A spectrum analyzer was used to examine the spectrum of both Aff and AN as a func-

tion of B. These results can be seen in Fig. X-22. A definite low-frequency wave

B = 1.4 kG POTENTIAL
FLUCTUATIONS

(40-dB LOG SCALE)

B = 1.12 kG

B = 0-84 kG

I I I f (Hz)

-50k 0 50k

B = 1.4 k DENSITY
FLUCTUATIONS

(40-dB LOG SCALE)

B = 1.12 kG

B = 0.84 kG

I I I f (Hz)
-50 k 0 50 k

Fig. X-22. Spectrum-analyzer results.
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(f = 12 kHz) exists and decreases in amplitude when B is increased. The wave along with

all of the low-frequency noise completely disappears for B > 1. 5 kG. T 0. 1 e'there-

fore, based on classical theory, E > - D V N (D is the diffusion coefficient). Given

the last relationship and the fact that E = 1 V/cm, the relationship ~ E r = 10 cm/sec
r I 1

(G is mobility) follows. Therefore the measured radial flux for B > 1. 82 kG agrees with

the value predicted by collisional processes. Although this is not conclusive evidence,

it is at least a strong indication that such a phenomenon may exist in the secondary

plasma of the arc.

Additional information must be obtained before conclusive proof can be presented.

Along with the low-frequency wave there also exists a high-frequency wave (f = 750 kHz).

This wave does not disappear for B> 1. 5 kV, and it is not clear whether this wave could

also be affecting the radial flux.

M. Hudis, L. M. Lidsky
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1. SURFACE WAVELENGTH MEASUREMENT OF MICROWAVE

EMISSION FROM InSb

We have made preliminary measurements of the surface wavelength of the low-field

microwave emission from n-type InSb. These measurements will help in distinguishing

among possible mechanisms for generation of microwave emission.
1 2

The generating mechanisms that have been proposed involve acoustic waves, ' heli-

con waves 3,4 or carrier waves.5,6 All of these waves are slow waves, in that their

phase velocity is much smaller than the velocity of light. For such slow waves, in the

bulk and on the surface of the material, the fields outside the material, in free space,

will decay exponentially away from the surface. The plane-wave dispersion relation

shows that the decay constant, a, is the same as the propagation constant, p, of

the wave along the surface. Thus, if a slow wave exists on the surface of InSb

emitting microwave radiation, we can measure the wavelength, X = 2r/p, by mea-

suring the decay rate of the fields away from the surface. Since the wavelengths

of various proposed generation mechanisms are very different both in magnitude

and in their dependence upon applied fields and frequencies of observation, measure-

ment of the wavelength should yield important information for determining the correct

mechanism.

To measure the decay vs distance above the sample, a moving electric field probe

was constructed. The probe was designed with a micrometer drive to move it precisely.

Figure X-23 shows the tip of the probe and its relation to the sample. Care was taken

in the construction to avoid coaxial or re-entrant cavity resonance. It should also be

noted that the probe tip is large compared with the wavelengths that are expected so that

changes in capacitive coupling caused by probe motion should be small. In use, the

probe was connected to radiometers at 3 GHz and 30 MHz whose output was fed to

a chart recorder.

,This work was supported by the National Science Foundation (Grant GK-2581).
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The 2 X 2 X 10 mm bar of n-type InSb was prepared by lapping the surfaces with

9. 5 4 abrasive. Platinum leads were attached with indium solder. The crystal was x-ray

oriented as shown in Fig. X-24. The material that was used had a mobility of 5. 9 X

105 cm /V-sec and a density of 1. 9 X 10 14/cm at 77 0 K.

Figure X-24 gives the surface wavelengths obtained from one sample. When

examining these results, one must remember that they are surface wavelengths, X s,

which are related to bulk wavelengths, X , by the angle, c, of incidence of the wave on

the surface:

cos

Thus, the surface wavelengths can be longer than the bulk wavelengths. Figure X-25

shows the wavelengths vs frequency of some of the slow waves that have been considered

as possible generating mechanisms. The experimental data are also shown. Of these

waves, the acoustic wave is the best fit. Recent theoretical work (see Sec. X-C. 5) has

shown that in the presence of a small number of holes a two-stream instability generating

waves with phase velocities close to that of the holes may also be possible. The specific

variations of the wavelength with the applied fields cannot be fitted to either of these the-

ories because the problem of preferred propagation directions in the material for given

applied fields has not been worked out. More accurate measurements must be made

before this is attempted.

Work is under way to improve these measurements. An interferometer is being

built to measure the wavelengths by mixing the signals from a stationary probe and one

that is moved along the sample. The preliminary measurements have helped in the

design of such an interferometer.

D. A. Platts, A. Bers
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2. MICROWAVE INSTABILITIES IN A SEMICONDUCTOR SUBJECTED

TO DC ELECTRIC AND MAGNETIC FIELDS

We are continuing the investigation of the emission of microwave radiation from

n-type InSb when a sample is subjected simultaneously to parallel DC electric and mag-

netic fields. It has been observed1,2 that once certain thresholds in DC electric and

magnetic fields are exceeded the emission consists of discrete spikes superposed on a

background continuum. The first part of this report illustrates the frequency bandwidth,

as well as magnetic-field frequency dependence of the spike emission. In previous work,

the DC electric field was pulsed on for a very short time (typically 2-5 f1sec) at a low

repetition rate (100-200 pulses/sec) in order to prevent excessive sample heating. This

made spectral analysis of the emission difficult - if not impossible. In the present work,

the DC electric field was not pulsed and thus a certain amount of sample heating was tol-

erated. This allowed the resulting emission to be observed on a microwave spectrum

analyzer.

These measurements were made on a sample (S2-7) 1.4 X 1. 4 X 2. 4 mm, which had
5 2 -1 -1 14 -3a mobility 1 = 4. 84 X 10 cm V sec , and a density n = 1. 47 x 10 cm , and a

5 2 -1 -1sample (S1-128) 1 X 1 X 7.6 mm, which had a mobility . = 5. 9 X 10 cm V sec , and
14 -3a density n = 2.6 X 10 cm The contacts were made by first electroplating Indium

to the crystal ends and then soldering Gold wire with Indium solder to the plated sur-

faces. The electric field was not pulsed, but was obtained from a regulated, well-

filtered DC power supply. Microwave emission, both spike and continuum, were
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Fig. X-26.

Spectrum analyzer output. Sample S2-7.
Magnetic field = 2790 G; electric field =
9 V/cm; T = 77 0 K.
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Fig. X-27.

Spectrum analyzer output. Sample S2-7.
Magnetic field = 2400 G; electric field =
12 V/cm; T = 77 0 K.
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observed from -20 MHz up to 3 GHz. The bandwidth for the majority of reproducible

spikes varied from approximately 11 MHz to approximately 4 MHz, but there did not

appear to be any systematic variation of bandwidth with frequency. The output of the

spectrum analyzer for a particular spike is illustrated in Fig. X-26. In varying the

electric and magnetic field some very narrow-bandwidth emission was observed; this

is illustrated in Fig. X-27. This type of emission was different from that of Fig. X-26,

in that the very narrow-bandwidth spikes were very erratic. They appeared as bursts

of noise that continually jumped in frequency, whereas the spiked emission illustrated

in Fig. X-26 was steady and very reproducible from day to day.

1300 - 0

O

O
1200

00
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1000

0

900
2200 3000 3800

B (GAUSS)

Fig. X-28. Frequency magnetic-field characteristics of
a microwave spike at constant electric field
(8. 5 V/cm). Sample S1-128. T = 77 0 K.

In Fig. X-28 is illustrated the frequency of a prominent spike with varying magnetic

field, at a constant electric field. It is seen that as B increases the spike moves to

higher frequency. This is in contrast with the way a spike moves with electric field

strength 1 at constant magnetic field; here with increasing electric field the spike moves

to lower frequency.

It has been observed that identically prepared samples have different emission spec-

tra. In most cases the samples exhibit polarity sensitive emission. We are therefore
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considering the role (if any) played by

the contacts on the emission. To facil-

R TO GATED R itate this investigation, a means of
1 BOXCAR 2

INTEGRATOR very accurately measuring the resis-

tance of the sample as the pulsed DC

PULSE _= electric field is varied was developed.
GENERATOR

PULSE TRANSFORMER It consists of a modified Wheatstone

bridge, the circuit for which is illus-

RSAMPLE RBALANCE trated in Fig. X-29. The output of the

bridge (via the boxcar integrator) is

plotted on an x-y recorder as a function

of the voltage across the sample. It is

easy to show that the resulting plots

Fig. X-29. for Rsample = Constant, independent

Pulsed bridge circuit. R1, R 2 are carbon of voltage, are straight lines of dif-

resistors. RBALANC E is a high-frequency fering slopes, the slope being propor-

decade resistor. tional to the bridge unbalance. A sample

(S2-29), etched in the usual way 1.25 X

1. 37 X 13. 5 mm, doping and mobility being the same as for S2-7, was prepared using

In-Te solder to affix the Au leads. Figure X-30 illustrates the resistance voltage char-

acteristics for this sample as obtained from the bridge circuit. The constant-slope lines

7 42

73 /

72T 25

NEGATIVE 20 Fig. X-30.
POL20 - Fig. X-30.

POS TIVE Resistance voltage characteristics of
1 POLARITY 15 ' sample S2-29 at B = 0, T = 77°K, as
70 / - obtained from the bridge circuit of

10U o Fig. X-29.
69R

0

(Rs= 6. 9 2 -7.4 2) were obtained by substituting a high-frequency decade resistor in

place of the sample. In this way, an accurate method of calibration was obtained. It is

well known 3 that the mobility of charge carriers in a semiconductor is dependent on the

strength of the applied electric field. This phenomenon is due to the fact that the

charge-carrier distribution is no longer in thermal equilibrium with the lattice. We
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shall be concerned with small rises in carrier temperature, T e , such that (Te-T)/T << 1,
where T is the lattice temperature. For such "warm" carriers the mobility is given

by4

= lo(l+E 2),

where 1o is the Ohm' s law mobility, E is the electric field strength, and p is a quantity

that depends on the energy gain and loss rates of the carriers. Since in the low-field

regime the Hall constant is constant (that is, the charge density is constant), we can

write

S= 0-o(l++E2,

or

R
R- o

1 + POE2

where Ro is the resistance of the sample at E - 0. Since PE 2 is in general small we
may write

R-RAR o R E2
R R -E

o o

In Fig. X-31, AR/R is plotted as a function of (sample voltage) 2 for sample S2-29.
-4 2 -2The value of P was found to be -1. 8 x 10 cm V . No low-field microwave

emission was obtained from this sample. To see if the addition of Te played

a role in determining the low-field emission, an identical sample (S2-30C), 1. 4 X
1. 27 x 10. 9 mm was prepared, using plain In to solder the Au leads to the sample.
This sample showed drastic variations of resistance with electric field and no

2linear relation of resistance on E was obtained. The resistance as a function

of electric field is illustrated in Fig. X-32. This sample emitted copious amounts

of microwave noise. The threshold electric field for the onset of the microwave

noise at B = 2150 G was 2. 75 V/cm. It appears that the contacts play an important

role in the emission process, and work is now under way to determine whether

the contacts provide added carriers via injection and/or provide local regions

of high electric field. The latter would imply that the so-called low-field emis-
sion process is actually a form of the high-field emission process studied by

5
Larrabee and Hicinbothem.

E. V. George
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3. EXPERIMENTAL DETERMINATION OF CARRIER

LIFETIME IN InSb

This report describes a possible method for obtaining the carrier lifetime in InSb.

To create the excess carriers, a Q-switched CO 2 laser (10. 6 [), with peak powers of

~40 kW, ~200 nsec pulsewidth, was focussed onto a sample of InSb. The InSb samples

were mounted in a high-speed (~1 nsec rise time) infrared detector, and the subsequent

signal was capacitively coupled to an oscilloscope. Figure X-33 illustrates the detector

and associated circuitry.

Samples 1 X 1 X 0. 5 mm were constructed from both n- and p-type InSb. The n-type
5 2-1 -1 14 -3

crystals had a mobility .= 5. 9 X 105 cm 2 V - sec and a density n = 2.6 X 1014 -3
3 2 -1 -1

while the p-type crystals had a mobility . = 8. 5 X 10 cm V sec and a density

OSCILLOSCOPE
INPUT

COUPLING
CAPACITOR

IDDKIT I IAITI VACUUM SEAL In Sb NaCL
ri ,DDII I MIIb WINDOW

Fig. X-33. Sample holder (high-speed infrared detector) and external circuit.
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n = 1.9 1014 cm -3. Figure X-34 illustrates the output of the oscilloscope for an n-type

sample. In plotting the log (pulse height) against time a straight line was obtained, as

is shown in Fig. X-35. The slope of this line yields the value of the carrier lifetime.

The values for T were found to be Tn  0.77 sec in n-type material, and 7T

0. 5 [psec in p-type material. These results compare within an order of magnitude with

those obtained by Laff and Fan.l In p-type material at 77 K, Tp >> T . This is most

likely, because of the strong trapping of electrons by donor-type centers. We had hoped

that both Tn and T would be obtainable from the p-type sample, but this was not possible,
n p

perhaps on account of the poor waveform of the Q-switched laser pulse. On account of

the large ratio of electron-to-hole mobility in n-type material, only the electron life-

time T is determinable.n
Marie D. Beaudry, E. V. George, A. S. Ratner
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4. DIELECTRIC RESPONSE FUNCTION OF A PLASMA IN APPLIED

ELECTRIC AND MAGNETIC FIELDS

In this report we shall give the results of a general solution to the linearized

Boltzmann equation which explicitly includes both the applied DC magnetic field B 0 and

the applied DC electric field E 0 at an arbitrary angle to B . This allows us to determine

the dielectric response function which can then be used to study various interactions, for

example, acoustic wave amplification, two-stream instabilities, and so forth. Our

interest here is in applying these results to plasma phenomena associated with the free

carriers in a solid. The unperturbed transport properties in such plasmas are domi-

nated by collisions. We shall, therefore, assume that a time-independent distribution

function f0 is established by the applied electric field EO, and study perturbations that are
0, 2

superimposed upon this unperturbed state. As in our previous studies, ' the distribu-

tion function f(w, r, t) will be assumed to satisfy the Boltzmann equation with self-

consistent fields and a collision term modeled according to Bhatnagar, Gross, and Krook.3

Unperturbed State

We model the free electrons in the solid by a homogeneous electron gas of density

no, having a collision frequency v (with the lattice) which is independent of energy, and

assume an isotropic effective mass m . The Boltzmann equation for the unperturbed

distribution function f 0 (w) is

-e (f 0 (w)
-ea(E0+wXB _ = -v[f0(w)-f0L(w)], (1)

m aw

where f0 L(w) is the local distribution function to which the electrons relax. We shall

assume that f0L(w) is a two-temperature Maxwellian distribution function with thermal

velocities ull= (KTI/m 1/2 along B and uL = (KT / m * )  across BO'

- 3/ 2 2 2
(2 ii) w zf0L (w ) ) 2 exp 2 2u (2)

ul 2u2u

We further restrict our analysis to weak electric fields E 0 such that the resultant drift

velocities, v0 11 along B 0 and v0 1 across BO, are small compared with the thermal veloc-

ities (v 0 11 << u and v01 << u). Under these conditions, we approximate f0 (w) by a drifted-

Maxwellian

32 2 2
(2) (w -V ) 2 + (w -v ) (Wz Z)

f (w ) - 2 exp 2 2 (3)
UIIU-L 2ul 2ull
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-4
where the drift velocities are determined by the applied fields E 0 and B0. 4 This is sum-

marized in Fig. X-36, with

v 0 11 = -. E 0 11  
(4)

b E 0  (5)

(1+b2) 1/2 B 0

a= E+p-r (6)

tan p = b = B 0 = (7)

where . is the electron mobility, and we c is the electron-cyclotron frequency. Equa-

tions 2-5 are consistent with Eq. 1 under the stated assumption that the drift velocities

remain small compared with the thermal velocities.

Vol Fig. X-36. (a) Orientations of applied electric and
Eo1 magnetic fields.

E011 B Voil (b) Orientations of resultant drift veloc-
Y it ie s.

y

(a) (b)

Linear Response

Here we shall consider only electrostatic perturbations (E 1 =-V 1) for which the

linearized Boltzmann equation is

f f f en 0  af
1 f -e - f 0

at a m a-* l0L' (8)
t + W *- + -,(E+ 0  + 1 =- + v 1 ( )

0r m aw m a

where nl = f 1 d 3 w is the electron density perturbation that is related to the total elec-

tric field E 1 through Poisson's equation. In order to solve Eq. 8 for n 1 , we first trans-

form it to a form in which the E O afl/aw term does not appear explicitly. We have

previously shown2, 5 a transformation that eliminates E " fl/8w. Moreover, to this

transformation that gives n 1  g d 3 w, we now also transform coordinates in velocity

space

E E
Oy E0x

w = w' + i- - i (9)
x B 0 y B 0
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and assuming that all perturbations vary as exp(-iwot+ iq r), find

-ien 0

- qm
+ vn 1 g0 L,

where

E
01 sin (E-

C'=m B sin (E-)

(2) 3/2 I (w-v0y /b) 2 + (w'+v x/b) 2

g0 (w') 2 exp 2
ullcu 2u

lid I

(2rr)3/2

g 0 L(w ' ) = 2 exp -

u llcul

(w'- )

2
2ull c

(wx+E 0 y/B 0 ) 2 + (w -EO/B0) 2x ~ (w'0-EOx 0/)

2u 1I

w'
Z

2Ul
2u

11ci

Ull c = U 1
ieEO-] 1/2

+ n- -
q K~ (14)

and the orientations of q and w' are as shown in Fig. X-37.
By using an appropriate integrating factor, Eq. 10 can now be solved for nl/

Bw
// 

Wl

q

Y

Fig. X-37. (a) Velocity-space coordinate systems
oriented with respect to the applied
magnetic field.

(b) Wavevectors oriented with respect to
the applied magnetic field.

The longitudinal dielectric response function K (w,-q) is defined from Poisson's equation
and can be written

e l
K (w, q) = 1 + e d

EL
q  1

where EL is the effective lattice dielectric constant. Hence, we find

(15)
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v 1
c i(' + i -qw')gl
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Pq
2 2

q Ullc n

e in(O-) e-A in()

K( , q) - 1 =
iv N

1 + lic n
in(0- e )

e e
-A

e e) n )

2
Uc2 cZ(nl- IT
u 2 q U llc

cos (o- ) +
qvb sin (0-a) + i i +

c
I1' (71)

xn

Jn('1)/

sin (0-)

(17)

W' + iv - nf=  l c

n Ilu k1 N

,' - q I 011 + iv - n e
6nIt

W = o - q v e sin (E-O)

( wc

A=L +

Tl = A I

sin

tan = -

2

Vb/u
iV±cos (0-a)

1/2

x

A

Vb
sinZ ( 1)/2

sin (0-a)]

Vb/UI
O + i sin a

k 1/2

Vb/UI
cos 0 + i cos a

x1/2

with

Vb =
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where

(16)

Z'(2 nl )

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)
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E
v - ,0 1  (26)
e BO

and (A e , e' ge) are obtained from (A, T, ) (Eq. 22-24, respectively), by replacing vb
with ve and the angle a with the angle E. In Eq. 16 and 17, Z is the plasma dispersion

e 6 th
function, I is the n -order modified Bessel function, and primes on these functionsn
denote the derivative with respect to the argument. Equation 16 is most general and

rather complicated, but can be readily reduced to several special cases of interest,

some of which we have treated in the past. For example, if E 0 1 = 0 but Ei * 0, we have

v b = v e = 0, = e = 0, and Eq. 16 reduces to the results given in a previous report, 2

except for the fact that in the present formulation we have allowed for ull # u .

The effect of explicitly including the electric field in the Boltzmann equation can be

seen by comparing Eq. 16 with the Doppler-shifted longitudinal dielectric response func-

tion which we have used in the past 1

2 2 n 2 2

qUll n u± qlU llN-2"J
K (w, q) - 1 =iv e , (27)

1 e-  I (k) Z(nD)qlllu nn n

where

w + iv - q vD - n(

nD =D (28)
q11ull

We note that both the real and imaginary parts of K 2 ( , q ) from Eq. 27 can differ from

those of Eq. 16. Strictly speaking, Eq. 27 is only applicable to cases in which the drift

velocity is established by injection of the electrons with a drift velocity vD and E 0 = 0.

Special Cases with E011 = 0

For the special case of E 0 1 B 0 the results are new. In this case, a simple form for

K (0w,q) is obtained when q I% ¢01 so that 0 = a and therefore = 0. Further simplification

results if we choose E = r- P so that a = 0. Then, Eq. 16 becomes

2 
2

p eA Z'( n) ull XnwcZ(n
- 2- In(A)
q uIl n u1 qllull 2-

K (,o,q) - 1 = ± i , (29)

iv e -A1 + lu ll e e - (In(e ) Z( n)2
qll1 U; 11 q n
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where

a + iv - qv 01 - nec
n (30)

vb/u v01/u (31)A = 1 +i - = I + i (31)
S1/2 j L

(e/ut) 2  2vb/u±l
e X I k + k1/2 j

1- v01 /u (1+b 2) 1  (32)

tanc X i 0/ul (33)
e iA

with I = u /v the electron mean-free path. For E = 0 and v = 0 Eq. 29 reduces to

the result of Harris7 for the anisotropic temperature plasma which may be unstable for
2 2

u2 > 2u l. In the presence of an electric field, this instability condition will be modified

by the factor (X/A).

Finally, we consider another special case in which the propagation is entirely across

B0' that is, qll = 0. In this case, Eq. 29 reduces to

2
S2 -A no I(A)

2 2 A w + iv - qzv0, - noc

K (w, q) - 1 c n i (34)

1 - iv eA e In(e)
o + iv - q1v01 - noc

n

where A, ile, and le are given by Eq. 31-33, respectively. For E 0 1 = 0, u = ul, and

v = 0, Eq. 34 reduces to the result of Bernstein.8 In the presence of the electric

field, the arguments of the modified Bessel functions are complex and the dielectric

function is oscillatory with q 1 . In fact, for qI << (v 0 1 /u) << 1

A iX X/2 e (35)
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re i (l+b 1/ 2 = i1/2 (36)

and the modified Bessel functions become ordinary Bessel functions. In this case, the

dielectric function may oscillate and change sign, for example, with k (that is, the

applied magnetic field). In the limit of long wavelengths (q -0) X - 0, and Eq. 34 may
be written to first order in A and re of Eqs. 35 and 36.

2
- W' 2 2

p V 3w/2 v 3( w ( +iv)

-W w v C WF,(w, 2_WK(0,q) - 1 ( 1 i + ik/2 b ( + ,cv (37)

where

S= W + iv = - v01 + iv. (38)

The first term in Eq. 37, to zero order in X, is identical with the result one would obtain

from a hydrodynamic model of a cold plasma. The lowest order correction terms are
proportional to q1 , in contrast to the case of no applied electric field in which the cor-

2rection terms are proportional to q . Hence, in the presence of applied electric fields
nonlocal effects will set in for larger wavelengths than in the absence of electric fields.

A. Bers, S. R. J. Brueck
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5. TWO-STREAM, ELECTROSTATIC PLASMA INSTABILITIES

IN A SOLID

The instabilities of electrostatic waves associated with drifted electron-hole plasmas
1-4

have received considerable theoretical attention. Thus far, however, no clear-cut

experimental verification exists for any of the proposed interaction mechanisms. Sev-

eral theoretical analyses have also included an applied magnetic field, 5 - 7 but usually

with other restrictive conditions related to specific experiments that they were trying

to explain. A deficiency common to all of the theoretical analyses mentioned is that they

have only considered the conditions for marginal instability (that is, the onset of tem-

poral growth of fluctuations with real wave numbers). In this report we shall initiate

a more detailed instability analysis and look for conditions for the onset of absolute

instabilities. Such instabilities should be readily observed experimentally.

Absolute Instability

Consider one of the simplest situations in a solid in which the electrons are much

more mobile than the holes (InSb is a favorite example). Under the action of an applied

DC electric field, the electrons stream in one direction, whereas the holes move much

more slowly in the opposite direction. Let us further simplify the model and assume

that the electron-lattice collisions are not too frequent so that the electron-stream wave

can be identified as possessing negative energy. The holes, acting as a resistive back-

ground, will drive the negative energy wave unstable. But more importantly, since the

holes move in the opposite direction to the electrons, they can provide a feedback path

and thus set in an absolute instability in the over-all system. For this to happen, the

resistive mechanism of the holes must be either capable of moving sufficiently fast (that

is, drift velocity of holes, v0h > vOe the electron-drift velocity) or, if moving slowly,

must maintain the signal that it feeds back for a sufficiently long time (that is, dielectric

relaxation frequency in hole medium, (h/E) < pe the electron plasma frequency). The

first condition is not consistent with our original assumption of holes that are much less

mobile than the electrons. Hence the second condition must be satisfied sufficiently

well. This leads us immediately to the conclusion that for the existence of an absolute

instability it will be necessary to have much fewer holes than electrons.

A straightforward analysis of the simplest dispersion relations shows this also math-

ematically. First, ignoring electron-lattice collisions, we have the dispersion relation

2
0pe j(ah/E)

I - 0. (1)
(w-qv 0oe (w+qv h )

It can readily be verified that the onset of the absolute instability is at o = 0 and
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q = jw pe/v0e and the condition for the existence of an absolute instability is

(ah/E) __ vO(2)

pe Oe

which can be written

nh e< 2  e (3)
n (3)

e pe,

Since we have assumed in Eq. 1 that ve << pe Eq. 3 implies nh << ne. By including

electron-lattice collisions in the dispersion relation, Eq. 1 becomes

2
ope j(h /E)

1- - = 0, (4)
(w-qv0e) (-qv 0 e - j e) + qv0h

and the condition for the onset of an absolute instability changes from Eq. 2 to

(ah/E) VOh (2 vh < Oh 2 e (5)
pe VOe pe

which can be written

n v
e pe pe

This shows that we require (v / pe) < 2, and again a hole density smaller than the elec-

tron density.

Thermal Effects and the Action of an Applied Magnetic Field

Thermal motion of the electrons has a profound effect on the absolute instability just

discussed. This is particularly true for electrons in a solid where their drift velocity

VOe rarely, if ever, exceeds their thermal velocity vTe = (cT/m) 1/2, and usually v0e <<

VTe. To properly account for thermal effects, a kinetic theory model should be used

for describing the electron dynamics. We shall first use a simpler model based on

hydrodynamic theory. The holes will still be assumed to move in a collision-dominated

manner so that vh (o+qv) and vh(w+qv0h) 2 vTh. The hydrodynamic dispersion

relation is then

2
ope j (ah/E)

1 - 2 2 = 0 (7)
(O-q-qv(w- 0eJVe ) -q VTe (O+qOv0h)
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and the condition for the onset of the absolute instability at w = 0 is found to be

2 1

h/E

pe

e

pe

From Eq. 8, we note that two conditions must be fulfilled

V0 e
VOe

and

v
e <2

pe

2 1/2
VTe

2
v Oe

The condition of Eq. 9 is rather difficult to achieve in a solid. In fact, we may ask

any instability can occur at all. Solving Eq. 7 for the onset of complex frequencies

small real values of q = qr, we find

w = -qr Oh + 5o,

where

ah
6W = -j h

E

q21(VQe+v)2 2VTe1e2 - 2 h+VTe
r[Oe Oh Te

pe E rv Oe+VOh vTe)

(9)

(10)

if

at

(11)

(12)

Hence, for Im (5w) < 0 we require

ve + Oh > VTe (13)

which is the condition for any instability to occur and is also difficult to achieve in a

solid.

An applied magnetic field can be used to reduce the thermal diffusion of the electron

bunching. This we have shown previously in a different context. 8 We can assume that

the applied magnetic fields are moderate, so that their effect on the much more massive

holes is negligible (wch/vh << 1), but at the same time the electrons' motion is strongly
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affected (b = c /v e >> 1). Under these conditions, if the magnetic field is applied across

the DC electric field, the thermal velocity of the electrons, as well as the effective elec-

tron plasma density, are effectively reduced by a factor b. Equation 8 for the onset of

the absolute instability may then be conjectured to require

2 V/b 2 -1/2 V
vTe e

ah/E vL e _J pe/b

V eS2 2(14)pe/b vTe/b

vwhich in turn requiresVT eVOe > b (15)

and

S2 1/2

b < 21 Teb2 (16)W 2pe v0e

Conditions (15) and (16), although restrictive, are achievable in solids, and Eq. 14 can

then be satisfied, provided nh << ne. Since large values of b may be easily achieved,

somewhat easier conditions (particularly than Eq. 16) may be expected if the DC electric

field is not exactly across the applied magnetic field, for then the effective electron

density is reduced by a factor smaller than b. A complete analysis of this situation has

just been undertaken. The dispersion relation for this case is

w2 B2 ahpe
1- 2 2 2 2 2 = 0, (17)

(W -- " 0e)(-q "VOe -JV e ) -q VTeB ( + h) -h jq Th/ h

where

2 1 + b2F 2 cos 2
B 1 + b2 F2  (18)

w -2

F = 1 - jve (19)

and 0 is the angle between q and B o. A computer (M. I. T. Project MAC Kludge-Display)0
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stability analysis of this dispersion relation has been carried out for parameters rele-

vant to n-type InSb at 77 K. With a 10-kG magnetic field applied at 45 to the DC elec-

tric field, a fast growing absolute instability is achieved for vTe ~ 1. l v0e and nh
10-2n . Under these conditions, the frequency of the absolute instability is approxi-

e -3 -1
mately (3-j) X 10 pe and the wave number is approximately (-5+j) X 10 ope/VOe,

pe -2 cor-
responding to a phase velocity of approximately 10 v0e v0h. In view of our recent

measurements of the surface wavelength of microwave emission from InSb (see

Sec. X-C. 1), these results offer a new possible mechanism for the generation of the

observed emission.

Further studies will continue for finding other suitable parameters for observing

this absolute instability. In conclusion, it should be clear that a more refined disper-

sion relation based on kinetic theory (see Sec. X-C. 4) should be used to check our sim-

plified calculations based on Eq. 17.

A. Bers
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