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A. ON THE NONLINEAR STABILIZATION OF THE CONVECTIVE

LOSS CONE INSTABILITY NEAR THRESHOLD

1. Introduction

The purpose of this report is to examine the stabilization of the convective loss cone

instability -4 near stability threshold in infinite media. A discussion of the quasi-linear

stabilization has been given previously.5 Quasi-linear diffusion stabilizes instabilities

in plasma physics, however, by removing the source of free energy which drives the
6.7

instability. In the case of a loss cone instability, this means enough particles must

diffuse into the loss cone to remove the anisotropy in the ion distribution function.

In a laboratory mirror machine, however, clearly the ions have a loss cone distri-

bution function in any steady state that evolves. Therefore, it is of interest to examine

stabilization mechanisms that allow a loss-cone distribution function in the steady state.

We shall examine two stabilization mechanisms, resonant mode coupling and electron

heating. The principal conclusion is that each mechanism does stabilize the instability,

but that the final wave amplitude is so high that it is likely that some other nonlinear

mechanism stabilizes the instability first. Also it can be concluded that electron heating

generally stabilizes the plasma at lower wave amplitude than mode coupling.

2. Mode Coupling

We shall consider a plasma with a hot-ion and cold-electron component. The hot-ion

component will be taken to have a loss-cone distribution and the electrons will be con-

sidered Maxwellian. We shall assume the density to be slightly above the threshold for

convective instability, although sufficiently above that electron Landau damping may be

neglected, This limit has been studied previously 8 and it was found that two important

simplifications result in the algebra: (a) The electrons, as long as they are sufficiently

This work was supported by the U. S. Atomic Energy Commission (Contract
AT(30- 1)- 1842).
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cold, are the active species and they determine the electric field and the dispersion rela-
k

z
tion o = wpe k-. (b) The instability is a resonant instability whose growth is given by

2
' pi 2 (k v k 5fi  Zci fi

- dvJv J k I+ z (1)
L 2 Jkl 1 uc z av z - 8v

Vz k
z

In order to make the problem more specific, let us consider the ion distribution function

f.= 1 exp , (2)
T 3/2 3/2 exp

2

where we also take = 10. The linear analysis in this case has been worked
m ae e

4
out. The conditions for marginal stability are

2

pi kza ka
- 0.02 ~ 0. -= 1.3. (3)

W ci cici

If the density is just above threshold, the frequency of an unstable wave is approxi-

mately the ion cyclotron frequency w ci. As the density is increased, waves at the cyclo-

tron harmonics become unstable. In general, for instability at the n t h harmonic,
kla

> n. We will be concerned here with densities such that only waves at the first
Cl
ci

cyclotron harmonic are unstable. In this limit, kL = k >> kz
For the above-mentioned parameters, it is not difficult to see that the ion contribu-

tion to the dispersion relation is smaller by an order of magnitude than the electron

contribution.

Let us then consider a plasma unstable at the first cyclotron harmonic. We shall

examine the coupling of two waves (wl, kl) and (o 2k 2 ) at the ion cyclotron frequency to a

wave ( 3=1 +w2 , k 3 =k +k2 ) at twice the ion cyclotron frequency. In order for the wave

(W3 ,k 3 ) to satisfy the linear dispersion relation, we must have kzl = kzz and

k31 z k11 = kZ . If k 1 z k2 , the angle between kl1 and k21 is approximately 120 ° . If
k3a

these conditions are satisfied, k 1 and k2 couple to a wave k. Since -- < 2, this wave-3
k 3 is a damped wave. ci

We shall then calculate the rate at which energy is produced at the second cyclotron
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harmonic. Using the fact that for each plasmon produced at 2w ci, two are destroyed at

wci, we can calculate the rate at which energy is lost by the wave spectrum at ci.9 By

equating the nonlinear loss rate to the linear growth rate for waves in the spectrum at

w ci, we may determine the equilibrium wave amplitude. Also, by equating the nonlinear

production rate to the linear damping rate, we may determine the equilibrium amplitude

for the spectrum at 2wi.. We shall assume, for the present, that the energy in the

spectrum at w.c is much larger than the energy in the spectrum at 2W .. This assumption

will be clearly justified at the end of the calculation.

The rate at which energy is coupled to the second harmonic can be computed from

the matrix element for the coupling of the waves at k klk2k 3 10 The result is

4 2
22 z 22

d IE( 3 )1= pe e kz2z E(kl) [2 8 o -w] I Ekz12
_dt I 41 kl+k 2 2 e 2 k--

k k m k1 k 22

w 2 +2'wl 2)kzl(kzl +kz )+ 2 +2W' Z) k z Z(kzl+k z  21

• 21 Z 2 '2- 2y E(k 3 )
2 , (4)

(w1 +2) W 2

where k1 + k 2 = k 3 , and yl is the linear damping rate for the wave at Z ci. Making use

of the fact that W1 z2 , kz = k 2 and Ikl+k2 1 = k1 near threshold, and

w2 k2

pe z

2 2

Eq. 4 reduces to

2
dlE(k3 )I

2 

k

dt 3 2 m j2 E() 2 (1 2[w 3- 1-w z - 2yL E(k3,)2 . (5)

k 1
2

The kinetic equation for a wave at w . immediately follows 9 :
c1

dlE( 1 )12  2 9 e 2  k4
-- LIE~_ -- 2 -k22z2 E(k) 2 C E1k-12

dt I2 2)1

k

6 [w(k+k 1 )-w(k)-w(k )], (6)

where the summation over k is over all waves in the spectrum at the first cyclotron

harmonic.11 We would like to determine the order of magnitude of the last term on the
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right-hand side of Eq. 6. To do so, let us say the spectrum at ci has cylindrical

symmetry and has characteristic width Akz about kzo and Ak about klo in the parallel

and perpendicular directions, respectively. Within these limits E(k) 2 = E2. Then

converting the summation over k into an integral in cylindrical coordinates,

term on the right of Eq. 6 becomes

the second

2 k 4

9r e z
2 2 Z2

m k pe
1 pe

E(k) 2 E2

k +Ak
V k z

3 
(2ro) koz

k +Ak
dk1

z
0

1 1 
2

k dk\
I 00

k kz z
k 1 'Ik

Z

k
where V is the total volume of the system, w = w ZI-, and k >> kz N

form the integrals over 6. Assuming that the spectrum is narrow so

kl , we have seen that the argument of the delta function is zero when
z

Doing the integral over the delta function gives

2 k
3

9w e z

IT m ko 2co
E(k)12 E Z

Ve shall first per-
1

k k and kz

2rr 4r0= and 0 = -
3 3

VV3 Ak k Ak .
(2w)

(8)

Then making use of the fact that E
V
( )3  Ak Ak

(21T)

=E 2  ,Eq. 6 becomes
rms

I (k)l2  9
2 9

2 k3
e z E(k ) E

2 2 rms
m kpe

pe

Equation 8 predicts a steady turbulent state when

S22
E 2 y mZk oZpe 3 m y

rms L 1. 7 X 10 e L 2
SnMa

2Tr 9Tr 2 3 Zr" M. w
ek 1 pez

where we have made use of Eq. 3.
m

e l
e thenM. 1836'

L
E ~ E.

wave rw ions
pe

Assuming that the plasma is a hydrogen plasma with

(11)
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Thus we see that mode coupling does indeed stabilize the convective loss-cone

instability near the stability threshold, and the total wave energy is considerably less

than the ion energy. The wave energy is quite high, however, and it seems likely that

some other mechanism may stabilize the loss cone instability at lower amplitudes than

does resonant mode coupling.

Finally, let us use Eq. 5 to determine the amplitude of the spectrum at 2W . Using

the same techniques as previously yields

2
E (2 .) yrms ci L

E2ms (ci) 2 ' y)
rms ci L

1
Assuming we are sufficiently near threshold, we find that yL < L so the rms spectrum

at w ci is much less than the rms spectrum at w ci

3. Electron Heating

Another possible stabilization mechanism is electron heating. If the parallel elec-

tron temperature is initially Te and the wave spectrum grows to final amplitude Erms'
the final electron temperature is roughly

e2E2 k2

rms zT +
e 2mw 2 k2

As the electron temperature increases, however, electron Landau damping becomes

important. According to Callen,4 the instability will be stabilized when

- 2. 5. (13)

k e

Assume initially that

k 3.

ke

Then the loss-cone instability will stabilize by electron Landau damping when E wavewave
Eelectron. Since the electron energy density is less by a factor of 1000 than the ion

energy, it appears likely that the convective loss instability near threshold, in infinite

media will be stabilized by electron heating before it will be stabilized by mode coupling.

W. M. Manheimer
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B. STRIATIONS AND THE STEADY-STATE DISTRIBUTION

FUNCTION IN A LOW-PRESSURE DISCHARGE

1. Introduction

The purpose of this report is twofold: to describe the problem on which I am working,

and to present some theory of a low-pressure discharge.

First, I shall describe the experimental observations of striations in a low-pressure

(p- 5X 10-3 Torr). Second, I shall derive the equations for ion and metastable produc-

tion and loss discharge, and give an overview of the theoretical problem. Third, I shall

examine the electron equations, using the Boltzmann equation. Fourth, I shall make

approximations germane to my experiment, and present calculations of the steady-state

electron velocity distribution.

a. Problem

Barrett and Little,l ' 2 among others, have observed waves in low-pressure glow dis-

charges which have backward-wave characteristics (by "low-pressure," I mean the pres-

sure regime where the electron and ion mean-free paths are larger than the discharge

tube' radius). The waves have several characteristics in common:
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1. Their phase velocity is from anode to cathode.

2. Phase and group velocities are in opposite directions (hence the name "backward

wave" ).

3. Phase velocities are usually slow, of the order of 103-105 cm/sec.

4. Frequencies are also low (very much less than plasma frequency, for example),

with observed frequencies in the range 1-100 kHz.

Sometimes these waves have been self-excited, at other times they have been excited

externally. They have generally been given the rather broad, hazily defined label of

"striations." Recently, Pekarek 3 ' 4 and others have worked out theories for striations,

but these theories are all made under the assumption that the discharge is diffusion-

dominated (that is, mean-free paths much less than tube radius). Thus far, there has

been no theory that has tried to explain these waves in the low-pressure region.

At present, I am observing these waves in a hot-cathode glow discharge under the

following experimental conditions:

Gas: Argon

Pressure: 5X 10-3 Torr

Tube radius: 1.8 cm

Discharge current: 20-150 mA

Cathode-Anode distance: 130 cm.

The waves are excited by applying a sinusoidal signal of from 1 Volt to 10 Volts peak-to-

peak to an annular electrode located 30 cm from the cathode. The waves are observed

on the anode side of the electrode, with a phase velocity directed toward the cathode.

These waves are damped, their amplitude slowly decreasing as one moves away from

the exciter. Frequencies of observation have been from 5 kHz to 45 kHz. Details of

the experimental arrangement will not be given in this report. By measuring the wave-

length X as a function of the frequency v of the waves, the highly dispersive nature of

these waves is clearly shown. A plot of X against v is shown in Fig. VIII-1. The data

can be roughly approximated by the equation

v = KX2

to give a phase velocity

v = Xv = KX3 = K - 1 /2 V3/
p

and a group velocity

2 dv 3
v = -X dk -2K = -2v

g dX p

Now you have an idea of the experiment. The other part of the problem is to try to
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Fig. VIII-1. Frequency vs wavelength of the striations.

explain theoretically the properties of these waves. The rest of this report deals with
the mathematical model used in the theory. At the present time, the theory is incom-
plete, but the basic equations have been formulated and the steady-state electron dis-
tribution function has been calculated.

b. Introduction to the Theory

The energy balance in the discharge will be discussed to give some insight into the

physical processes present. The energy source is the axial electric field, E . Thiso
field accelerates the electrons and ions, thereby giving them a velocity along the z axis.
Since electron mobility is much greater than ion mobility, most of the energy is gained
by the electrons.

Electrons lose their energy by collisions. They may suffer elastic collisions with
neutrals, thereby losing a small fraction of their energy in each collision, or they may
have inelastic collisions with neutrals or metastable atoms, in which they may lose a
large fraction of their initial energy. Coulomb collisions between electrons occur, and
tend to make the distribution function more nearly Maxwellian. There is, however, no
net energy loss because of these collisions, since they are between particles of the

same species. Electron-ion collisions will be neglected because of the low density
9-3(n 109 cm- 3 ) of the discharge under consideration. It will be shown that electron-

electron collisions may be neglected also for this case. Finally, some electrons will
strike the wall of the tube, and recombine with ions there. In the theory of higher

pressure discharges, this effect is usually neglected, but in the low-pressure case it
will be shown to be of major importance.

The inelastic collisions that the electrons undergo with the neutrals excite or ionize

the neutrals. The ions and metastables created are lost by recombination or

de-excitation, either in the discharge or at the wall. It is a good approximation to
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consider the ions and metastables as having Maxwellian velocity distributions. The ion

temperature will be somewhat higher than the neutral temperature, but will still be much

less than the electron temperature. When this assumption of Maxwellian ions and meta-

stables is made, it is then permissible to use the moment (or MHD) equations to describe

the ion and metastable properties.

The electrons will not have a Maxwellian distribution, and it will be necessary to

use the complete Boltzmann transport equation to obtain the distribution function.

2. Ion and Metastable Equations

The equations for ions and metastables will now be derived, with source terms

(ionization and excitation rates) depending implicitly on the electron distribution func-

tion. The equations will also contain wall loss terms.

a. Moment Equations

Assume that ions and metastables have Maxwellian distributions, and the moment

equations can be used. Then the conservation of particles and conservation of momen-

tum equations for ions and metastables have the following forms:

aN

at + div(N+V+) = SiNm (1)

dV

MN+ dt - -grad p + qN +E - MN v+V (2)

aN

at + div(N V ) = S N - yNN (3)

dV
MN - -grad p - MN v V (4)

m dt m mm

where

m, M = electron, ion mass

N = density

V = velocity

v = momentum transfer collision frequency

S. = ionization frequency of a metastable1

S N = creation rate of metastables
m o

yN _ N = rate of metastable de- excitation by electronsSubscripts +, -, m, o refer to ions, electrons, metastables, and neutrals.

Subscripts +, -, m, o refer to ions, electrons, metastables, and neutrals.
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Now we consider the problem in cylindrical geometry, and assume that all quantities
are independent of the azimuthal angle 6.

Divide all quantities into two parts, DC (steady-state) and AC (time-variant) parts,
of the form

X = X + x ei(kz - wt)

As usual, assume x << X for all quantities, and then linearize the equations to obtain DC
and linearized AC sets of equations.

i. D- C Equations

For the ions, the DC equations are

1 8S.N - (NV ) (5)1 m r ar + r+

qE = M V+Vz+ (6)

a0 (NT) + qN E - MN+v . (7)0 r + + + r ++r+

Now assume that T = To constant, where T is the ion temperature in units of elec-
tron volts. Equations 5 and 7 yield

N+

i m M r r r- qN+Er (8)

The left-hand side is the creation rate, and the right-hand side is the loss rate to the
walls. The right-hand side is then the ion density divided by the characteristic time,

o+, of an ion lifetime. (The value of T+ will be calculated in section 2. b.) Thus the
DC equation for the ions becomes

N
S.N + , (9)

+

and similarly for the metastables the DC equation can be written

N
S N = (10)m o T )

m

ii. A-C Equations

The linearized AC equations for the ions are
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n N 6T+

-iwn + (N vz++Vz+n ) ik = S.n + N s. - +
+ + Z+ Z+ + m mIn 1 T+ T+ T+

-iwMN +v z+ = - ikT+n + qN+ez - v+MN+VZ'

where ST+ = AC part of T+.

since the radial dependence

k2D+ + ik4+E
-iW + +

1 -

Substituting (6) and (12) in (11) and dropping z subscripts,

has been eliminated, yields

T+1
ik +N 6T

n+ e = S.n + s.N + N ,
ii 1 m 1 m 7+
V1
V.

(13)

where

T
D -
+ My '++

Here, the assumption of quasi neutrality has been made. That is, it has been assumed

that

N +=N =N

n +n = n.

This can be shown to be equivalent to the assumption that the Debye length, ) D , is small

compared with the radius of the tube and wavelength of the wave. This assumption is

justified, for XD = 0. 65 mm in this experiment. Now dividing (13) by (9) yields

(kZD+ + ikV+E)T+
+ i + 1

1
V+

iki ET n s. T+
n + +e m +
N io E N S . T

1 m +
+

= ×1- 6 sc
By plugging in appropriate values of k < ZT/5 cm, E = 1 V/cm, T 6 X 10 sec,

+ = 1.5 X 105 cmZ/V-sec, one finds that k 2D+T+ = 0. 038 << 1, but k+E = 1. 08, so

the first term may be neglected, but the second may not. In practice, as the pressure

increases, L+ decreases, so that at higher pressures the second term may be neglected

also.

In the same manner as for the ions, the AC equation for the metastables may be

derived. If the metastable diffusion is neglected, the metastable equations yield

n s
(1-iTm) mN - y' T m n.

m m
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Finally eliminating nm/Nm from (14) by the use of (15), we obtainL k:+ETJ ki ET -1 s. 5T
- - = (1 -im) NTm N +

1 -- -- m -N- +
+ + + +

(16)

S. S 6 Tn m + eThis is an equation in the AC quantities N m , and --. In section 3, the

Boltzmann equation is solved for the DC and the AC components of the electron distribu-

tion function. When this is done, it will be seen that the first four quantities can be

written as proportional to e/E. That is, for a given set of discharge conditions,
s. s 6T

= (function of k) , and the same for, , and . Therefore, (16) becomes
1 m +a homogeneous equation in e/E, of the form D(w, k) - = 0. D(w, k) = 0 is then the dis-

persion relation for the waves, which must then be solved to obtain W vs k.

iii. Relation of Macroscopic Quantities to the Electron

Distribution Function

Assume that the cross section for ionization of a metastable atom under electron
bombardment has the form

-. = io(v 2 -v ) for v> v.

=0 for v< v.,
1

where 1/2 mvy = eU i, and Ui = ionization energy of the metastable in Volts. Then the

total number of ionization/sec is

N S. N (v) vf(v)d 3 v,

soSO
S. = 4Tr 0-i.(v) v3f(v) dv.i 1

If we write f(v) = F(v) + 7(v) ei(k z- wt), then

= iK v 2 3v) v (v) dv v2v) v3 F(v) dv, (17)
1 V. V.1 1

and similarly,
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5 = 5 2 - 2 vv 3  (v) dv (v 2 - 2  3F(v) dv (18)S m 2Vm -v v3F(v) dv (18)

m vm m

n v) dv F(v) v 2 dv. (19)
N 0

Also, since 3 NT = 1/2 f mv 2 f(v) d 3 v, then to first order in the perturbations,

+ n 00 
4  (v) dv 0 4F(v) dv. (20)

Note that in the equations above the "temperature" T is defined as being equal to 3/2

the average energy of an electron. This is a generalized temperature, however, since

f(v) may not be Maxwellian. Although 8T/T does not appear in the ion equations, it will

be shown below that

6T
+ _ _8T (21)7T 2T'
+

so that 6T /T+ is also known.

Thus, Eqs. 17-20 give relations between the quantities appearing in Eq. 16 and

//F, and we shall find that /F cc e/E.

b. Evaluation of the Radial Loss Rate

The discharge under consideration is one in which all mean-free paths are longer

than the tube radius, R, but shorter than the tube length. Under these circumstances,

it is necessary to use a free-fall theory of ion loss. Self 5 has a theory for this case in

which he makes the following assumptions:

1. Electrons are almost Maxwellian.

2. Electron temperature does not depend on r.

3. Inertial effects of electrons may be neglected.

4. S. >> v
1 C+

5. N + N_,
+ -

where vc+ = ion elastic collision frequency. He then derives a set of equations that are

solved numerically, giving the electron density and electrostatic potential vs radius.

In the process, by equating the creation and loss rates, an expression for the ionization

frequency is obtained of the form

sb(K)
S. = v

i c K
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where sb is Self's notation for a nondimensionalized radius, and K = v RNIM T. Now,
3for K < 5 X 10 , Sb(K) = 1, so that in this case

S R' T = electron temperature.

In an Argon discharge, with conditions which have been described, T = 4 eV, v =
7 -1

2. 5X 10 sec , so

K 1. 4X 102<< 5 X 10

and

5 -1S. = . 75 X 10 sec
1

Equating creation and loss rates gives T = S-1 = R so

6T
+ 6T

2T (Eq. 21).

Self's assumptions 1 and 4 are not really valid, since f(v) is not Maxwellian and

v c+ S . The bulk of the distribution function does have, however, a form that may be

approximated as Maxwellian. Since the ion losses are primarily influenced by ambipolar

fields generated by the bulk of the electrons, this approximation is good. In another
6paper, Self gives a more approximate treatment for the case when S. is not >> v c+, and

finds that there is not an appreciable change between the cases S. I vc and Si = c+'

c. Ion and Electron Current to the Wall

In the following analysis, a crude attempt will be made to solve for the ion and elec-

tron current to the walls, and the potential of the wall relative to the center of the dis-

charge tube. First, the ion current to the wall is obtained for a Maxwellian distribution

of electrons. Second, a generalization is made to distributions that are approximately

Maxwellian in the body of the distribution function but may not be Maxwellian in the tail.

The assumption of planar instead of cylindrical geometry may make quantitative results

not very accurate, but a qualitative feel for what wall losses do will be obtained.

i. Solution for Maxwellian Electrons

Self 7 obtains an exact numerical solution to the plasma-sheath equation in planar

geometry. He makes three assumptions.
1. Electrons are Maxwellian.
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2. Collisions are neglected for both ions and electrons.

3. Ion creation rate cc to electron density.

He then solves for N(r), c(r), and J+ (), where - is electrostatic potential. The solutions

for ion and electron current densities are

J+() = q /LM N(r=O) I(q4/T), (22)

J-( ) = q -- m N(r=O) e

I(T) = e- ds d

T
(23)

(24)

where il = qc /T, and s = x/L, with L the width of the discharge tube. Because of the

e - 11 in the integrand, the integrand becomes small for r1 > 2 (also ds/dj decreases with

increasing rl). Thus, I(rT) -- const. for large values of 11. The value of the constant is

slightly dependent on the ratio XD/L. In the case under consideration, XD/R = 103/2,

which implies that I(n) -- 0. 388 for r~ 2.

For an insulating wall, the net current of charged particles to the wall must equal

zero, so setting J_(4) = J (4) yields

q w 1 M 1/2 1

T In 2 I/2

Iq T

where -4w = wall potential, and 4(r=0) = 0. For Argon, this expression gives

T
w 5. 29 -

ii. Effects of a Non-Maxwellian Electron Distribution

For a discharge in which the electron distribution function departs from a Maxwellian,

(22) is no longer valid, For the one-dimensional problem, the current in the x-direction

is

J (b ) = q f(v) v d v,
- V =V -0 -0 X

x w
where

vew w
W - m
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If f(v) is spherically symmetric (that is, f(v) = f(v)), then Eq. 25 can be written

J_(4 ) = Trq (v 2 -v 2 ) f(v) v dv. (26)

w

Therefore, if we consider only the spherically symmetrical part of f(v), the require-

ment of equal electron and ion current to the walls yields

q NI = q (v 2  ) f(v) v dvq N I T Trq -v w

w

or

S(v2 2 )f(v) v dv =  I ( (27)

w

Since I is approximately a constant, (27) is to be solved, given f(v), for the value of v

that satisfies the equation. This then gives the value of the wall potential, 4w .
There is a question as to the validity of using (22) for the ion current, if the elec-

trons have a non-Maxwellian distribution. If, however, one examines the form of I(n)

in Eq. 24, the main contribution is from those portions of the discharge where r9 is

small. It is exactly in this region that the bulk of the electrons (which are at low

energies) exist, so that the shape of the potential curve would not be changed much if

the low-energy portion of the electrons has an approximately Maxwellian form. A more

serious objection might be directed at the use of a planar geometry. The physical

significance of Eq. 27 is, however, that the electron current represented by the

integral on the left-hand side will equal the ion current, which will be approximately

equal to the right-hand side. In practice, it will turn out that the value of vw determined

from Eq. 27 is not very sensitive to changes in the value of the right-hand side. The

reason for this is that f(v) is a rapidly decreasing function out in the tail, which is where

vw usually is. Thus, changing vw by 10-20% may change the value of the integral by

more than 100%, and hence make vw relatively insensitive to the ion current magnitude.

3. Boltzmann Equation for Electrons

a. Expansion in Spherical Harmonics

The Boltzmann equation may be written

af
at + v - gradr f - a - grad f = B(v), (28)
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where a = q E/m is the acceleration of an electron, and B(v) is the collision term, which

will be described later.

Now, let f be expanded in Legendre polynomials,

oO

f(r, v, t) = fn(z, v, t) Pn(Cos 0), (29)

n= 0

where 0 is the angle in the velocity space, between v z and v. In the expansion above,

the following assumptions have been made:

1. f does not depend on any spatial coordinate except z.

2. f has azimuthal symmetry in velocity space.

In making assumption 1, the mathematical model is departing somewhat from reality,

because the electron velocity distribution function depends also on r. But the radial

electric field is small, and the density relatively uniform until the sheath region is

reached near the wall of the tube. 5 The assumption is then fairly good for r < rsheath

Most of the plasma is in the region r < rsheath' and this region is where almost all of

the ionizing collisions take place. Therefore, the first assumption is equivalent to the

assumption that the characteristics of the striations are determined primarily by the

electrons in the bulk of the plasma, and not by the electrons in the sheath. Of course,

the presence of the wall does affect f, even for small values of r. The effect of the

wall will be brought into the equation as a wall-loss collision term on the right-hand

side of (28). This term will be derived (see Eq. 36).

If the collision term is also expanded in Legendre polynomials,

00oo

B(v) = Bn(v) Pn(cos 0),

n= 0

then substituting (29) in (28) gives an equation in the fn and the B n . Now assume that

If l (v) l << f(v)l, and that all higher order terms may be neglected. Physically, this is

equivalent to the assumption that the DC drift velocity attributable to the axial electric
8

field, is much smaller than the average thermal velocity of the electrons. In the

experimental case under consideration this assumption is valid. Neglect all higher

orders than fl, then the equations are

8f0 Ivf a 8 21 o
+f a 8 (vfl) = B (30)

at 3 8z 2 av3v

and

8fl o af o B I. (31)
at + z av
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Before we can proceed further, it will be necessary to investigate the form and size of
the collisional terms.

b. Collision Terms

i. Elastic Collisions

The evaluation of the collision terms for elastic collisions have been carried out in
8 m

Dreicer. For M << 1, the results to lowest order in that parameter are

1 1
Belas -v (v) f (32)elas c

o m l3B 0  m (v 3V(v)fo (33)elas M 2 av cv

where v c(v) is the usual momentum transfer collision frequency, which is defined by

v (V) = 2rNo v (1-cos ) sin Poelas (, v) d1,

where o- elas(p, v) is the differential cross section for an electron with velocity v being
scattered by an angle P in a collision with a neutral atom.

ii. Inelastic Collisions

As with elastic collisions, inelastic collisions have a collision frequency associated
with them of the forms

v (v ) = 2rN v sin per (P, v) dp = N vex (v)
ex ex o ex

vi(v) = 2nN M v sin Pa-i(p, v) dp = Nm vi(v).

Note that vi(v) is proportional to N m, since the assumption has been made that ionization
is predominately due to the ionization of metastables. Therefore, a-. is the cross section1
for an electron to ionize a metastable. vex is the rate of excitation from the ground state

to the metastable level. Excitation to higher states is neglected.

An excitation collision by an electron with velocity v will then deplete f(v)dv, and
will put the electron at f(v') dv, where 1/2 my = 1/2 my' + eU , with U = exci-

v ex ex
tation potential of the metastable level. In practice, most electrons suffering inelastic
collisions will lose almost all of their energy, and will be returned to the distribution

QPR No. 91



(VIII. PLASMA PHYSICS)

with essentially zero velocity. To simplify computation, one can write

6(v) y00
Bo = -Vex(v) fo(v) + V v (w) fo(w) wZ dw. (34)

x e x 0 ex

Note that this expression conserves particles exactly; that is,

S ex

An ionizing collision has the same form as Eq. 34, except that one ionizing collision

creates two low-energy electrons, so

6(v) co
B = -v(v) fo(v)± +2 6(v) 00 Vi(w) fo(w) w2 dw. (35)

v "0 1

iii. Wall-Loss Collisions

It is difficult to treat wall losses exactly, so in the following analysis several approx-

imations will be made to simplify the expressions. They should give a rough idea of the

effects of loss to the walls. In order for an electron to reach the walls,

1 22-mr > q w"

For fo, which is isotropic, the number of electrons with vr > v will be one

third of the number having v > vw.

For v > v , the time that it takes an electron near the center of the tube to reach
r w

the wall for a parabolic potential is

T - sin V
w vw

and

R
w v

r

for a potential that is zero except for the sheath region. These two expressions do not

differ greatly from each other, and the second potential is closer to the real case, so set

B -I o(v) S(V ) (36)
wall 3 T 3 (R S(vvw)'

w
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where

S(x) =1 x > 0

=0 x < 0.

For a given velocity distribution of electrons, vw must be determined by equating ion

and electron currents to the wall, as described previously.

iv. Coulomb Collisions

Allis 9 and Dreicer 8 give detailed calculations of the effects of electron-electron

collisions on the distribution function. They use a Fokker-Planck collision model, and

calculate the rate of change of fn. The equations to be used in the numerical computation

may be written in the form

B = A (fo)2 (I- 4+ +2Il-)f A 4+ 1) }a v  (37)cl 4 3v + 3 I-1 2 (37)
3v v av

2
6

A = _ In A = 0. 835 X 1019 cm n A
o sec

Ik= wkf (w) dw; for k > 0,

= w f (w) dw; for k < 0.

Here, A is the ratio of the Debye length to the average distance of closest approach. It

is usually >>1, so that In A is a slowly varying function of electron density and temper-

ature.10 A will be treated as a constant. For the densities now under investigation,

Bc willbe negligible relative to B e' for example.cl ex

v. Relative Sizes of Collision Terms

The dominant term in the equations is usually vc , since the average value of vc is

greater than B cl B ex Bi , or B when averaged over the distribution function. Note
1 o m m

that Belas is proportional to v , while Bo is proportional to v v is not theelas c elas M c M c
largest collision term, and, in fact, may be neglected, as we shall show.

c. Simplified Equations

Equation 31 may be written
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f+ vafo a =fo -f + B t
8t a- av c other

af 1
at i 1, and may be neglected, since 0 << v c. Neglecting Bother also, as discussed

above, yields

1 1 f afof (v) = (v) a - v (38)
v c (v)aZ

Also neglecting the time-dependent term in (30), the equation may be written

1
vaf a a (v21 f B + B + B + B +B (39)
3 az 3v 2 v elas ex i wall cl'

where the terms on the right-hand side are given in terms of fo by Eqs. 33-37. Thus

(38)and(39)form a closed set for fo(v).These equations may be used to derive equations

for the DC and the AC parts of fo, denoted by Fo and /0, respectively, as before. At

this time, however, the quantities will be made nondimensional, and then the equations

will be derived.

d. Nondimensional Equations

Let

Fo = Nu-3yo

o -3 o
=Nu Y0

1 2- mu = leV
2 0

x = v/u 0 (x = velocity in "square root Volts").

Then, in terms of the nondimensional quantities Y and x, Eqs. 38 and 39, for the DC

quantities, become

-A 6(x)

S d (x 2 v C(Yo, x) + m d v (x)x3 o) d c e 2
3u x Mx x

o

u xYo

- (V e+2v ) Yo(w) w 2 dw O S(x-xw) (40)
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1 Ao dY
Y - dx

v (x) u

where

A =eE
o m

-3
v = ANu-3
cl o

(41)

B 0

cl
C(Y 0 , x) A '

as given in Eq. 37, with fo and v replaced by YO and x. Equations 40 and 41 are the

equations that must be solved for the DC distribution function.

The equations for y, the AC part of the normalized distribution function, is more

complicated, since to first order the AC equation will have products of the form Ya and
qe

Ao Y, where a = - is the AC part of electric field acceleration.o m
It will be shown in section 4 that the elastic and Coulomb collision terms in (40) will

be negligible. Therefore, these terms will be omitted from the AC equation. Then

Eqs. 38 and 39, after linearization in the AC quantities, become

iku
o 1

3

A
o d 2 1 a d 2yl

2 dx (x y ) 2 d(x )
3u x 3u x

o o

6(x) (V u xy
-(Vexi)Y + (vex(w)+vi(w)) y (w) w dw o3R S(x-xw) (42)

S 0dyo 0+ dY0 iku Y (43)So dyo a dYo
v )u dx u dx iku0xy (43)

In terms of normalization and evaluation of macroscopic quantities, the Y have been
defined such that

4Tr

0

Yo(x) x2 dx = 1

o 2 ny (x)x dx = -N-

(44)

(45)
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T (in eV) =5 Y(x) x4 dx (46)
0

T+ d y o 4 (47)
T 3T0 y x dx

= x-x j x3 yo(x) dx 0x2x x 3 y (x) dx (48)

and similarly for sm/S m .

Substituting (43) in (42) yields a differential equation for y . In symbolic notation,

the equation can be written

Ly = (L'Y 0 ) = (L'Yo) e (49)S E(L'y)  -
O

L and L' are differential operators and, since YO is known, L'Yo is also a known

function of x. As with all perturbation equations, only the inhomogeneous solution to

Eq. (49) is desired. Therefore, the form of yo is independent of e/E, but the amplitude

of y is proportional to e/E. Thus, putting the solution for yo into Eqs. 45-48 gives

n 6T Si M
relations between , - , and . These may then be substituted in (16) to obtain

N T' SS E'
1 m

the dispersion relation.

The AC equations will not be discussed further in this report, since work has not

been completed on solving them. The solution to the DC equation will now be discussed.

4. D-C Equation-Numerical Results

a. Equations to be Solved Numerically

Multiply Eq. 40 by x2 and integrate from o to x. Substituting from (41) for Y1

yields

22
3vz x d x w

Sd ex ()+vi(w) Y(w) wz dw + vL x Y(w) w3S(w-x) dw
dx o exo

v (x) a ooc

-vc x C(Y, w) w2 dw --- M v(x) x3 Y, (50)
0O

where

A 7 -1
S =0. 99 X 10 E sec (E in V/cm)

a 3u
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u 8
o 0. 196 X 10 -1VL R R sec (R in cm)

6
19 cm -3= 0. 835 X 1019 cm n A N u - 3

cl 4 o
sec

For E = 1 V/cm, R = 1.8 cm, N 10 cm , T= 5 eV, and p = 5 X 10 - 3 Torr,

7 -1v 1 X 10 sec
a

7 -1v L ; 1. 1 X 10 sec

Vcl X 106 sec -

m 2 -1
v 1. 2 X 10 sec

M c

Here, the superscript o has been dropped. Bearing in mind that C(Y, x) is usually <<1,

we see that the last two terms in Eq. 50 may be neglected. Actual numerical calcula-

tions retaining these terms have been carried out, and the results differ negligibly from

solutions without the terms. Therefore, they will be neglected.

The equation representing energy conservation may be derived by multiplying (40)

by x4 and integrating from 0 to oo. This gives

Z oo 3 dY(x) 0 i)x 4  0
-6v dYx) (V +V)x Y dx + vL x Y S(x-xw ) dx. (51)a 0 v (x) dx ex 1 L

c

This equation simply states that the power put in by the electric field equals the power

lost in inelastic collisions and to the walls.

From Eq. 27, the equation for xw may be obtained:

x 2 - Y(x) x dx = T 0.46 X 10 - 3 T-. (52)
x -xO w  Tr

w

Finally, the equation for the particle creation rate is

2 -5 -1
4w v(x) Y(x) x dx= S i  2 X 10 sec (53)

0 ec,153
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from section 2. b.

Equations 50, 52, and 53 completely specify the problem. The unknowns to be deter-

mined are Y(x), xw , and Nm which occurs in the definition of vi. These equations will

be solved after the various collision frequencies are evaluated. v = vp P where p =

pressure in Torr. This equation becomes

v(x) = 0. 592 X 108 px P(x) sec-1 (54)

when expressed in terms of x, with P in collisions/(cm-Torr). For Argon, an analytic

approximation to P is 1 1

c

P = 3.4 0<x< 1
c

=7.87x 2 - 4.47 1 < x < 3.42 (55)

-. 06x
= 172 e x > 3.42

which will be used in the numerical calculations.
12

v can be determined from P as given by Brown. A rough analytic fit to P ex(x)
ex ex ex

for energies between 10. 75 and 16 eV is given by

P (x) = 0. 185(x 2 -10. 75)1. 35 collision (56)ex cm- Torr

P = 0 for x2 < 10.75 eV
ex

b. Evaluation of v.1

There do not seem to be good data on the ionization cross section of an Argon meta-

stable by electron bombardment. Therefore the approximation will be made that the

cross section increases linearly with energy, starting at zero at the threshold energy

of 4.2 eV.

2 2
oi = o- (x -4. 2); x > 4.2

=0; x < 4.2

If the metastable cross section were expressed in similar form, = a (x 2-10.75),
-16 2 ex

the value for a would be approximately ac = 0. 23 X 10 cm . This value will also
exo exo

be taken for Y. . Thus
10
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. 0. 23 X 10 1cm (x -4. 2); for x > 4. 2
1

v. = N -.v = 1.36 X 10 9 N (x 2 -4. 2)x; for x > 4. 2 (57)1 m m

= 0; for x2 < 4. Z

c. Method of Numerical Solution

Equation 50 is now

dY c(x) x 2dYx v2 [ ex (W) + Vi(w)+ LWS(W-x )] Y(w) w dw. (58)

3vx 2 c
a

Starting at x = 10, where Y(x) should be very small, we set

Y(10) = 0

dY(l0)

dx- = -0. 0001
dx

x = x ( 1)

w w

N = N( 1 )
m m

Then the interval (0, 10) is broken up into N intervals, each of length Ax, and (58) is
integrated by Euler's method into x = 0. This gives an unnormalized Y. The integral

0c 2
4Tr J0 Y(x) x dx is then calculated, and Y(x) is divided by this number, so that it is now
normalized.

By using Y, Eqs. 52 and 53 are checked to see if they balance. If they do not, xw
and Nm are changed in the appropriate directions, and Y is calculated again. This

cycle is iterated until values of Y, x , and N are determined which simultaneouslyw m
satisfy the three equations. As a check on the computations, energy balance is checked
by using (51).

d. Results

Figure VIII-2 is a plot of Y(x) against x, with the values of N and x determinedm w
for equilibrium. Also shown is Y(x) for xw = 10. It is evident that the value of xw has
a strong effect on the tail of Y(x). This shows that neglecting losses to the wall would

be a very poor approximation for this discharge. The value of N does not have am
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Fig. VIII-2. Y(x) as a function of x. Solid line: x = 10. 0.

Dashed line: x = 4. 46, which is the value that

balances wall current.
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significant effect on Y, until metastable densities get to be approximately a factor of 10

larger than they are here. It should be pointed out that N is not a well-determinedm
number, since the value of o-. in Eq. 57 is only a rough guess; however, N o-. is

10 m 10

fairly well determined, since it is this product that enters into v., and the calculation
1

of S..
1
Work is now in progress on the solution to the AC equations. The solution and the

evaluation of the dispersion relation will be the subject of future reports.

D. W. Swain
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