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Abstract. In the present work, various thermal parameters of an annular fin sub-
jected to thermal loading are inversely estimated using differential evolution (DE)
method. In order to obtain the temperature field, the second order nonlinear differ-
ential equation for heat transfer with variable thermal conductivity and internal heat
generation is solved using Homotopy Perturbation Method (HPM). Classical thermo-
elasticity approach coupled with an HPM solution for temperature field is employed
for the forward solution of thermal stresses. It is interesting that the internal heat
generation does not affect the radial stresses, while the temperature field and the
tangential stresses are influenced by the heat generation parameters. As the tan-
gential stresses are mainly responsible for mechanical failure due to thermal loading
in an annular fin, the unknown thermal parameters are inversely estimated from a
prescribed tangential stress field. The reconstructed stress fields obtained from the
inverse parameters are found to be in good agreement with the actual solution.

Keywords: heat conduction, inverse problem, nonlinear problem, perturbation method,

mathematical model.

AMS Subject Classification: 65H20; 31A25; 80A20.

1 Introduction

In todays engineering development, heat dissipation has become an important
concern. There are different modes to enhance heat transfer. Among them,
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extended surface is one mode of heat transfer which has wide application for
industrial purposes. Kraus et al. [19] presented an extensive review on heat
transfer in extended surfaces. Fin has effective application in the case of nat-
ural convection and it is always applied towards less heat transfer coefficient.
In this regard, the increase of surface area helps to decrease the convective
thermal resistance. A comprehensive literature review reveals that most of the
heat transfer studies neglect the influence of internal heat generation. This
consideration certainly simplifies the mathematical formulation of heat trans-
fer. However, because of heat conduction, the contribution of internal heat
generation cannot be ignored and it varies with temperature in a real situa-
tion. Furthermore, due to large temperature variation from the base to the tip
of the fin, the thermal conductivity varies with the temperature.

Cumo et al. [13] first considered the internal heat generation for two di-
mensional heat transfer analysis of a straight fin of general profile. In their
analysis, computationally efficient numerical approach, Gauss-Seidel iteration
method was employed. Later, the internal heat generation along with the vari-
able heat transfer coefficient and variable thermal conductivity was taken into
account for longitudinal fins of various profiles by Melese and Wilkins [23].

The properties of thermal parameters play an important role in transfer
of heat from the hot surface to the cold surface. In many equipment and
industrial application such as motor vehicle, air conditioning system, electronics
equipment and refineries, there is a need of efficient heat transfer. Thus, many
researchers had concentrated on the improvement of thermal efficiency through
the enhancement of heat transfer [7, 26].

Most of the closed form solutions for heat transfer in a conducting con-
vecting fin are solved with an assumption of constant thermal parameters.
However, physically the heat transfer phenomena are nonlinear. Thus, obtain-
ing a closed form solution emulating a real situation of heat transfer through
fin is extremely difficult. Due to this reason, the researchers prefer to put
their effort in numerical solution or semi analytical solution of heat transfer
problems. An extensive literature survey reveals that various numerical meth-
ods and semi analytical approaches such as the least squares method (LSM),
variational iteration method (VIM), Adomian decomposition method (ADM),
differential transform method (DTM), homotopy analysis method (HAM), ho-
motopy perturbation method (HPM) have been employed to solve the nonlinear
heat transfer equation of fin [10, 11, 12, 24]. Some of the recent works related
to the solution of nonlinear heat transfer equation of the fin are presented in
the following section.

Recently, Aziz and Bouaziz [4] applied LSM to study the temperature distri-
bution in a longitudinal fin with temperature dependent internal heat genera-
tion and thermal conductivity. Singla and Das [25] employed ADM to solve the
heat transfer equation for a straight rectangular conductive-convective fin with
linearly variable heat generation and thermal conductivity. In their study, an
inverse method was applied for predicting the unknown thermal parameters and
the heat generation number from the forward solution of the temperature field.
Optimum profile of thin fins with volumetric heat generation was obtained by
considering different profiles by Kundu and Das [20]. It may be noted that a
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constant heat generation rate throughout the fin volume was assumed in their
analysis. The temperature distribution due to heat transfer in a porous fin
(Si3N4 and Al) with temperature dependent heat generation was studied by
Hatami et al. [16]. In their analysis, three different mathematical approaches,
DTM, Collocation method (CM) and LSM were employed and compared.

It is well known that the non-uniform temperature distribution is mainly
responsible to develop thermal stresses in the fin, and consequently material
failures such as crack propagation, delamination, fatigue, creep occur in the
fin material. In spite of that critical issue, very few researchers addressed the
effect of thermal stresses in fin analysis. Some of them are Wu [29], Yang
and Chu [30], Chiu and Chen [9], and Mallick et al. [22]. The objective of
their study was to evaluate the thermal stresses in an annular fin by solving
the governing equation of heat transfer coupling with the thermo-elasticity
equation and proper boundary conditions. Such type of solution is well-posed
and referred to as the forward or direct problem. However, the challenge is to
estimate the optimal parameters and material properties, and therefore solving
the inverse problem is of greater importance for efficient designing of the fin. A
group of authors presented inverse solution approaches to estimate the unknown
parameters of fin [8,14]. However, their analyses were limited to heat transfer,
and thereafter temperature distribution only. They estimated the unknown
parameters inversely from a predefined temperature distribution. Recently,
Mallick and Das [21] have presented an inverse analysis to predict the unknown
parameters of an annular fin subjected to thermal stress. In their analysis,
the internal heat generation was neglected and constant thermal conductivity
was assumed. A simple perturbation method coupled with thermo-elasticity
equation was employed for the forward solution of thermal stresses, and then
simplex search method was adopted for the inverse solution.

The above literature review shows that no effort yet has been made towards
the inverse as well as forward analysis of an annular fin having variable thermal
conductivity and internal heat generation. The aim of this study is an inverse
estimation of unknown thermal parameters for an annular fin subjected to ther-
mal stresses. In this regard, first the forward solution for temperature field of
an annular fin with variable thermal conductivity and internal heat generation
is obtained using HPM, which is a semi-analytical approach. The solution of
temperature field is then coupled with the thermo-elasticity solution for stress
field. Differential evolution (DE) method is employed for the inverse prediction
of unknown thermo-mechanical parameters. The stress field is reconstructed
using various combinations of thermal parameters obtained from the inverse
solution. It has been observed that the reconstructed stress fields is in a very
good agreement with the actual solution.

Next we give the nomenclature, used in the text: ri, r0, t defines inner
radius, outer radius and thickness of the fin, h is coefficient of convective heat
transfer, k(T ) denotes thermal conductivity, k0, q0 are thermal conductivity
and internal heat generation at ambient temperature, κ describes the varia-
tion of thermal conductivity, β is non-dimensional parameter describing the
variation of thermal conductivity, N is non-dimensional thermo-geometric pa-

rameter,
(
2hri

2

k0t

)0.5
, G = q0ri

2/k0(Tb−T∞) is non-dimensional heat generation
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parameter, ε is parameter describing the variation of heat generation, EG is
non-dimensional parameter describing the variation of heat generation, Tb de-
fines the base temperature of fin, T∞ is ambient temperature, r, φ are polar
coordinates, α is linear coefficient of thermal expansion, E is Young’s modulus,
χ is dimensionless coefficient of thermal expansion, α(Tb − T∞), ν is Poisson’s
ratio, εr, εφ are radial and tangential strain, σ̄r, σ̄φ are dimensionless radial
and tangential stress, σr/E, σφ/E, ξ = r−ri

ri
is dimensionless radius of fin,

ξ1 = ξ + 1 is dimensionless radius of fin, R = r0/ri is dimensionless outer ra-

dius, θ = (T−T∞)
(Tb−T∞) is dimensionless temperature, p is imbedding parameter, η

is fin efficiency, Qf is actual heat transfer, Qmax is the maximum possible heat
transfer, F (ξ) is an objective function, σφj (n) is a guessed tangential stress
field.

2 Problem Formulation

2.1 Description of the problem

Consider an axisymmetric annular fin of uniform thickness, t, inner radius, ri,
and outer radius, r0. The fin is made up of homogeneous isotropic material as
shown in Figure 1. The fin’s surfaces are exposed in a convective environment
at temperature, T∞ and its base is attached to a surface with fixed temperature
Tb. The radius of the fin is very large as compared to its thickness. Hence,
the fin’s tip is assumed to be insulated due to the negligible heat transfer
through its tip. Due to axisymmetric nature and small thickness, the heat
flow is considered to be in radial direction r only. For one dimensional heat
transfer, the law of conservation of energy gives the following energy balance
equation [19]

t
d

dr

[
k(T )r

dT

dr

]
− 2hr (T − T∞) + q(T )tr = 0,

where T represents the temperature, h is the convective heat transfer coefficient,
k(T ) is variable thermal conductivity, and q(T ) represents the internal heat
generation. The variation of thermal conductivity and internal heat generation
are assumed to be linear with temperature as:

k(T ) = k0 {1 + κ(T − T∞)} , q(T ) = q0 {1 + ε (T − T∞)} ,

where k0 and q0 are thermal conductivity and internal heat generation at the
ambient temperature respectively. The parameters, κ and ε represent the vari-
ation of thermal conductivity and internal heat generation. Assume that the
thickness of the fin wall is very small. Thus, employing zero conductive thermal
resistance in the fin wall, the following boundary conditions can be obtained
for the energy balance equation,

r = ri : T = Tb, r = r0 :
dT

dr
= 0.
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Figure 1. Geometry of an annular fin.

For simplicity and convenience in the analysis, various non-dimensional param-
eters are introduced as,

θ =
T − T∞
Tb − T∞

, Bi =
hri
k0
, β = κ(Tb − T∞), EG = ε(Tb − T∞), (2.1)

ξ =
r − ri
ri

, R =
r0
ri
, N2 =

2hr2i
k0t

, G =
q0r

2
i

k0(Tb − T∞)
.

The use of aforementioned nondimensional parameters (i.e (2.1)) reduces
the governing equation and boundary conditions into the following nondimen-
sional form:

d2θ

dξ2
+βθ

d2θ

dξ2
+βθ

1

1+ξ

dθ

dξ
+

1

1+ξ

dθ

dξ
+β

(
dθ

dξ

)2

−N2θ+G (1 + EGθ) = 0. (2.2)

ξ = 0 : θ = 1, ξ = R− 1 :
dθ

dξ
= 0.

2.2 Homotopy Perturbation Method (HPM)

HPM is a relatively new mathematical technique for solving linear and nonlin-
ear differential equation efficiently. This method was first introduced by J.H.
He [17,18] and is extensively used now-a-days for nonlinear initial and boundary
value problems. In this method, the standard homotopy and perturbation are
merged to take full advantage of homotopy and perturbation by introducing an
embedding parameter instead of small variational parameters in an equation.
Using this method, one can obtain an approximate closed form solution of the
nonlinear equation without linearizing the problem. The method converges
very fast with high accuracy [3, 5]. In order to understand HPM, consider a
general nonlinear differential equation as follows:

L(u) +N(u)− f(r) = 0, r ∈ Ω

Math. Model. Anal., 21(5):699–717, 2016.
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with boundary conditions,

B
(
u,
∂u

∂n

)
= 0 at r ∈ Γ,

where L and N are linear and nonlinear operators respectively, f(r) is known
as analytical function, B is a boundary operator, Γ is the boundary of the
domain Ω, and ∂

∂n represents the directional derivatives in outward normal
direction to Ω.

The homotopy may be constructed as,

H(v, p) = (1− p)[L(v)− L(u0)] + p[L(v) +N(v)− f(r)] = 0, (2.3)

where p (p ∈ [0, 1]) is the artificial embedded parameter which always changes
from zero to one and u0 is an initial approximation which satisfies the boundary
conditions.The (2.3) becomes H(v, 0) = [L(v) − L(u0)] = 0 and H(v, 1) =
L(v)+N(v)−f(r) = 0 when parameter, p is 0 and 1 respectively. The solutions
of (2.3) can be approximated as a power series of p,

v = v0 + pv1 + p2v2 + p3v3 + . . . . (2.4)

The values of v0, v1, v2, v3, . . . can be determined analytically. The best
approximation is obtained by putting p = 1:

u = lim v
p→1

= v0 + v1 + v2 + v3 + . . . .

2.3 Fin temperature calculation

In order to solve the governing equation of heat transfer, homotopy is con-
structed for (2.2) in a manner similar to (2.3) as follows:

(1− p)[L(θ)− L(θ0)] + p[L(θ) +N(θ)− f(r)] = 0, p ∈ [0, 1].

Here L = d2

dξ2 , θ0 is the initial approximation and θ is a function of ξ. Now,

(2.2) can be expressed in the following HPM form:

L(θ) + pL(θ0)− L(θ0) = −p
[
βθ
d2θ

dξ2
+ βθ

1

1 + ξ

dθ

dξ
+

1

1 + ξ

dθ

dξ

+β

(
dθ

dξ

)2

−N2θ +G (1 + EGθ)
]
. (2.5)

Similar to (2.4), the solution of (2.5) has the form of power series of p as,

θ = θ0 + pθ1 + p2θ2 + . . . . (2.6)
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Substituting the value of θ from (2.6) into (2.5) and equating the terms of
identical powers of p gives the following:

p0 : θ0 = θ0 with BCs ξ = 0 : θ0 = 1 and ξ = R− 1 :
dθ0
dξ

= 0, (2.7)

p1 :
d2θ1
dξ2

= −G(1 + EG) +N2 with BCs (2.8)

ξ = 0 : θ1 = 0 and ξ = R− 1 :
dθ1
dξ

= 0,

p2 :
d2θ2
dξ2

= −β
{
θ0
d2θ1
dξ2

+
1

1 + ξ
θ
dθ1
dξ

}
− 1

1 + ξ

dθ1
dξ
−GEGθ1 +N2θ1 (2.9)

with BCs ξ = 0 : θ2 = 0 and ξ = R− 1 :
dθ2
dξ

= 0.

Solving (2.7), (2.8), (2.9), the following approximate closed form solution
for temperature field is obtained from (2.6) considering p = 1:

θ = 1−
{
G(1 + EG)−N2

}{
ξ2/2− (R− 1) ξ

}
− βθ1 (2.10)

− (β + 1)
{
G(1 + EG)−N2

} [
R {(1 + ξ) ln(1 + ξ)− (1 + ξ)} − ξ2/2

]
+
(
N2 − EGG

) {
G(1 + EG)−N2

}{
(R− 1)

ξ3

6
− ξ4

24

}
+ c1ξ + c2,

where c1 and c2 are the integral constants. The constants c1 and c2 are evalu-
ated from the boundary conditions of (2.9) as follows:

c1 = (β + 1)
{
G(1 + EG)−N2

}
{R lnR− (R− 1)}

−
(
N2 − EGG

) {
G(1 + EG)−N2

}
(R− 1)

3
/3,

c2 = −(β + 1)
{
G(1 + EG)−N2

}
R.

2.4 Thermal stresses

It is evident that the stress distribution in an axisymmetric annular thin fin
varies along the radial direction only. Neglecting the body force and inertia,
the equation of equilibrium for axisymmetric plane stress condition in polar
coordinate system is given as [28],

r
dσr
dr

+ σr − σφ = 0,

where σr and σφ are radial and tangential stresses respectively. Let us introduce
a stress function, ψ , such that

σr = ψ/r and σφ = dψ/dr. (2.11)

(2.11) identically satisfies the equation of equilibrium. The strain-displacement
relationship can be expressed as [6],

εr =
du

dr
and εφ =

u

r
, (2.12)

Math. Model. Anal., 21(5):699–717, 2016.
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where u is the radial displacement. (2.12) gives the following strain compati-
bility equation,

r
dεφ
dr

+ εφ − εr = 0. (2.13)

Following Hooke’s law for plane stress condition, the stress-strain relationship
is given as,

εr =
1

E
(σr − νσφ) + αT and εφ =

1

E
(σφ − νσr) + αT, (2.14)

where E, ν and α are the modulus of elasticity, Poisson’s ratio and coefficient
of thermal expansion respectively. Substituting (2.14) and (2.11) into (2.13)
yields the following compatibility equation in terms of the stress function,

1

dr

[
1

r

d

dr
(rψ)

]
= −αEdT

dr
.

The solution of the above equation for ψ yields,

ψ = −αE
r

∫ r

ri

(T − T∞)rdr + C1r + C2/r, (2.15)

where C1 and C2 are the constants of integration which can be estimated
from the boundary conditions. The inner and outer surfaces of the fin are
considered to be traction free, and hence the radial stress, σr = 0 at r = ri
and r0. Employing these boundary conditions, the constant of integrations are
obtained using (2.11) and (2.15) as follows,

C1 =
αE

r20 − r2i

∫ r0

ri

(T − T∞)rdr, C2 = − r2i αE

r20 − r2i

∫ r0

ri

(T − T∞)rdr.

Now, the stress components can be evaluated directly from (2.11),

σr = −αE
r2

∫ r

a

(T − T∞)rdr +
αE

r20 − r2i

(
1− r2i

r2

)∫ r0

ri

(T − T∞)rdr, (2.16)

σφ = −αE(T−T∞)+
αE

r2

r∫
ri

(T−T∞)rdr +
αE

r20 − r2i

(
1 +

r2i
r2

) r0∫
ri

(T−T∞)rdr.

The above stress equations can be expressed in the following dimensionless
form

σ̄r = − χ
ξ21

∫ ξ1

1

θξ1dξ1 +
χ
(
ξ21 − 1

)
(R2 − 1) ξ21

∫ R

1

θξ1dξ1,

σ̄r = −χθ +
χ

ξ21

∫ ξ1

1

θξ1dξ1 +
χ
(
ξ21 + 1

)
(R2 − 1) ξ21

∫ R

1

θξ1dξ1,

where the various dimensionless entities are

σ̄r =
σr
E
, σ̄φ =

σφ
E
, ξ1 =

r

ri
, χ = α(Tb − T∞).
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The relationship between two dimensionless radii ξ and ξ1 is ξ1 = ξ + 1. For
consistency in the solution, the stress field can be expressed in the same non-
dimensional radius ξ, as used in temperature field. Thus, the stress field equa-
tions now can be expressed in the following form

σ̄r = − χ

(ξ + 1)
2

∫ ξ

0

θ(ξ + 1)dξ +
χ
(
ξ
2

+ 2ξ
)

(R2 − 1)(ξ + 1)
2

∫ R−1

0

θ(ξ + 1)dξ, (2.17)

σ̄φ = −χθ +
χ

(ξ + 1)
2

ξ∫
0

θ(ξ + 1)dξ +
χ
(
ξ
2

+ 2ξ + 2
)

(R2 − 1)(ξ + 1)
2

R−1∫
0

θ(ξ + 1)dξ. (2.18)

2.5 Fin efficiency

The fin efficiency is defined as a parameter to measure the thermal performance.
It is the ratio of the actual heat dissipation of a fin to the maximum possible
heat dissipation if the entire fin surface is at the same temperature as its base.
The efficiency for an annular fin is formulated in the non-dimensional form
as [2]

η =
Qf
Qmax

=

4πh

∫ rb

ra

(T − T∞)rdr

2πh(r22 − r21)(Tb − T∞)
=

2

∫ R−1

0

(1 + ξ)θdξ

(R2 − 1)
, (2.19)

where Qf and Qmax are the actual heat transfer rate and maximum possible
heat transfer respectively.

2.6 Inverse technique using differential evolution

The differential evolution (DE) is a fast and reasonably robust population-
based search method proposed by Storn and Price [27]. This method is used
to optimize the unknown parameters iteratively in various field of engineer-
ing. As compared to most other evolutionary methods which do not use any
form of deterministic update, DE’s update scheme includes a small portion of
the direction to the currently best candidate as a semi-deterministic update.
DE starts with a population of Np number of vectors randomly chosen from
the solution space. The vectors are updated in each iteration using two com-
ponents, one being stochastic mutation component and the other being the
semi-deterministic component. In each iteration, among all the vectors from
the current and updated population, Np vectors with the least value of cost
function are retained. Thus, it is expected that DE converges to a popula-
tion whose best vector represents the global minimum. DE is controlled by
the manipulation of three key parameters (i) population size, (ii) cross over
and (iii) selection ratio. The basic difference between other population-based
metaheuristic techniques (particularly genetic algorithm) and DE is the not so
random mutation operation that is described below. In the present study, the
population size is considered to be 100. For example, let us consider a mem-
ber, s̄p,i in the ith population. The mutation process for this affiliate can be

Math. Model. Anal., 21(5):699–717, 2016.
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expressed as follows [15],

s̄p,i = d̄⊗ s̄p,i ⊕ ∼ d̄⊗ {s̄p,i + cm (s̄best,i − s̄r,i)} ; r 6= p, best. (2.20)

In the above, ⊕,⊗,∼ operators represent logical OR, AND, and NOT opera-
tives, respectively. Additionally, d̄ is randomly-chosen Boolean vector of the
same size as s̄p,i with probability described by a cross-over ratio cr , which for
the present work is considered to be 0.5, whereas, s̄r,i is a randomly-chosen
member of the population. In (2.20), cm is referred to as the mutation proba-
bility (differential weight) which in the present work is taken as 1.0 and s̄best,i
is the member of the ith population for which the value of the relevant objective
function is the least.

It is notable that the update scheme in (2.20) has the form of the original
DE as follows [1, 15,27],

s̄p,i = d̄⊗ s̄p,i ⊕ ∼ d̄⊗
{
ā+ cm

(
b̄− c̄

)}
, (2.21)

where, ā,b̄, c̄ are randomly-chosen members of the current population. However,
in (2.21), ā and b̄, are not randomly chosen but are represented by ā = s̄p,i, and
b̄ = s̄best,i respectively. In (2.20), the mutation is directed to some degree by the
preeminent member in the population and is not fully stochastic. In general,
the entire population in the next iteration is stimulated by the best member
of the current population in some or other manner, therefore, inculcating some
deterministic or elitist characteristics. Inverse estimation is of great importance
for an efficient design in any heat transfer problem. In the present study,
the objective of inverse analysis is to predict the various unknown thermal
parameters from a known stress field. As discussed before, the known stress
field is obtained analytically using HPM method coupled with thermo-elasticity
equation. To obtain the n unknown parameters (n ∈ β,N, χ,G,EG) inversely,
the difference between the direct stress field and measured stress field is to be
minimized iteratively. For this purpose, the following objective functions are
used in the DE optimization for noise-free and noisy scenarios respectively,

F =

p∑
j=1

{(
σφj

(n)− σ̄φj

)/
σφj

}2
, F =

p∑
j=1

{(
σφj

(n)− [σ̄φj
+ er]

)/
σφj

}2
,

where σ̄φj
is the direct tangential stresses obtained from the closed form forward

solution of HPM and σ̄φj
+er represents the same stress field with measurement

error. The term, σφj , is the guessed stress field estimated for a candidate vector
in the solution space. This guessed stress field is computed for each vector
in the current and updated populations of each iteration until the objective
function is either below a threshold value, or saturates and does not improve
over a few iterations, or the number of iterations exceed a maximum number of
iterations. The subscript, j denotes the number of measurement points along
the fin’s radius. Further details of optimization using DE can be found in the
reference [1, 15].
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3 Results and discussion

The main purpose of this study is the inverse estimation of various unknown
thermal parameters for an annular fin subjected to thermal stresses. It is well
known that for an efficient and cost effective fin design, various thermal and
geometric parameters are required to be optimised. Here, we present some
numerical examples to illustrate the design using the proposed methodology.

Let us consider a situation where a fin should be designed in such a way that
the maximum stresses due to the variation of heat transfer should not exceed
certain limits. This condition helps to avoid the early damage of fin material
from the thermal loading. With this intention, the various thermal parameters
are estimated inversely using DE method from a prejudged stress field. The
prejudged stress field is obtained from the HPM based forward solution viz.
(2.17) and (2.18). The effects of thermal parameters on the non-dimensional
temperature field are examined in Figure 2.

0.0 0.2 0.4 0.6 0.8 1.0

0.6

0.7

0.8

0.9

1.0

G  = 0.2; 0
β = 0.0; -0.1

E
G

 = 0.2; 0

θ

ξ

Figure 2. Effect of various non-dimensional thermal parameters, G, EG, and β on
temperature distribution. Unless mention otherwise the values of parameters are, G = 0.4,

EG = 0.4, β = 0.3, χ = 1, N = 1.

It can be seen that the fin temperature gradually falls from its base to the
tip, i.e. ξ = 0 to ξ = 1, and the temperature decays sharply near the base.
The temperature field decreases with the decrease of thermal parameters, β,
G, and EG. It is worth mentioning that the parameter χ does not affect the
temperature field, as it is connected with the stress distribution.

Figure 3 shows the contour plots representing the variation of temperature
distribution as a function of the thermal parameters: (a) β, (b)G and (c) EG. It
can be seen that in all cases the tip temperatures are monotonically increased
with the increase of the parameters. Higher value of thermal conductivity
parameter pertains to fast conduction process, as a result of which, high tip
temperature is observed. Furthermore, higher tip temperatures can be observed
with the increase of heat generation parameter.

The thermal stresses developed due to heat transfer through the fin are
presented in Figure 4. It can be seen in Figure 4(a) that the magnitudes
of radial stress (compressive) increases with the decrease of variable thermal
conductivity parameter β. This is because of the thermal resistance increases
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710 A. Mallick, R. Ranjan, D.K. Prasad and R. Das

0.2
0

-0.2
-0.41

0.5

0

0.7

0.75

0.8

0.85

0.9

0.95

1

ξ

θ

β

0.6

0.4

0.2

01

0.5

0

0.85

0.9

0.95

1

0.75

0.8

0.7

ξ

θ

G

0.6

0.4

0.2

01

0.5

0.95

1

0.9

0.85

0.8

0

ξ

θ

G
E

a) b) c)

Figure 3. Contour plots of temperature distribution as a function of thermal parameters.
The values of parameters: (a) N = 1, G = 0.4, EG = 0.4 and β = −0.4 to 0.4, (b) N = 1,
β = 0.3, EG = 0.0 and G = 0 to 0.6, and (c) N = 1, β = 0.3, G = 0.4 and EG = 0 to 0.6.

when the parameter β decreases. As a result, the local free expansion of the fin
material is obstructed. Interestingly, it can be seen that the radial stress fields
are not influenced by the heat generation parameters G and EG. However,
as shown in Figure 4(b), the tangential stress fields are influenced by all the
thermal parameters. The influence of heat generation on the tangential stresses
is minimum near to the base and gradually increases towards the fin tip.
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Figure 4. Effect of various non-dimensional thermal parameters, G, EG, β, and χ on (a)
radial stress distribution and (b) tangential stress distribution. Unless mention otherwise

the values of parameters are, G = 0.4, EG = 0.4, β = 0.3, χ = 1, N = 1.

To show the effect of heat generation only, the variation of temperature and
stress fields are plotted separately in Figure 5. The magnitude of radial and
tangential stresses are directly related to the magnitude of coefficient of thermal
expansion, χ. The next step of our discussion is the inverse estimation of the
various unknown thermal parameters. It can be seen that the tangential stress
is significantly pronounced than the radial stress (σ̄φ|max ≈ 10σ̄ r|max). As a
result, it is expected that the thermal loading in the fin may cause material
failure due to tangential stress only. Based on this, in the present analysis, the
inverse parameters are estimated from the predefined tangential stress field,
considering it as the reference stress field. For all the inverse simulations, the
predefined tangential stress field is obtained from the forward solution of HPM,
considering the values of parameters, β = 0.3, N = 1.0, χ = 1.0, G = 0.4, and
EG = 0.4. In the inverse simulations, β, N , and χ are considered the unknown
variables.
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Figure 5. Effect of heat generation parameter on the (a) temperature field, (b) radial
stress field and (c) tangential stress field.

Table 1. Various combinations of three parameters inversely estimated using DE consider-
ing zero measurement error. Range: [β, N , χ] = [0 - 0.5; 0.6 - 1.4; 0.5 - 3].

Process β N χ F (ξ) Temp.(tip) Efficiency

Direct 0.3 1 1 < 10−3 0.7105 0.7530
Run-1 0.2247 1.069 0.8775 < 10−3 0.6699 0.7083
Run-2 0.4056 0.8949 1.2448 < 10−3 0.7676 0.8156
Run-3 0.4785 0.8142 1.5 < 10−3 0.8073 0.8592

Table 1 presents the estimated values of three inverse parameters, β, N ,
and χ estimated using DE. The lower bound and upper bound of the param-
eters used in the simulation are mentioned in the table. The corresponding
fin efficiencies obtained from the direct solution and inverse solutions are also
presented in the table. For the correctness of the inverse parameters (Run 1
to Run 3), the tangential and radial stress fields are reconstructed using those
parameters and compared with the direct stress field in Figure 6.

It can be seen that the data points of direct vs. inverse stress fields make
a 45◦ line. This result suggests that the stress field obtained from the inverse
parameters agrees with the reference stress field.

Now, we consider a more challenging inverse problem in which five ther-
mal parameters, β, N , χ, G and EG are considered to be unknown. These
five parameters are simultaneously estimated using DE, and the different com-
binations of their values are obtained in different runs. Table 2 presents the
estimated values of five thermal parameters, β , N , ξ, G and EG, obtained
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Figure 6. Direct stress field vs. inverse stress field considering three inverse parameters
(N, β, χ) estimation for (a) Radial stress and (b) Tangential stress.

Table 2. Various combinations of five parameters inversely estimated using DE considering
zero measurement error. Range: [β, N , G, EG, χ] = [0 - 0.5; 0.6 - 1.4; 0.05 - 0.8, 0.05 - 0.8,
0.5 - 3.0].

Process β N G EG χ F (ξ) σθ Temp. Efficiency
(max.) (Tip)

Direct 0.3 1.0 0.4 0.4 1.0 < 10−3 -0.0815 0.857 0.753
Run-1 0.378 0.919 0.327 0.435 1.174 < 10−3 -0.0815 0.879 0.801
Run-2 0.43 0.83 0.257 0.475 1.386 < 10−3 -0.0814 0.897 0.851
Run-3 0.475 0.803 0.227 0.565 1.523 < 10−3 -0.0815 0.902 0.865

using DE. The corresponding fin efficiencies are estimated using (2.19). These
five parameters are simultaneously estimated using DE, and the different com-
binations of their values are obtained in different runs. Using these estimated
parameters, the new temperature field and radial and tangential stress fields
may be reconstructed using (2.10), (2.17), and (2.18) respectively. In Table 2,
it can be seen that the maximum stresses obtained from the inverse parameters
of all the runs are same as the reference ones. However, the fin tip temper-
atures obtained from the inverse parameters are different from the direct one
and truly depend on the value of inversely-estimated parameters. All three
runs generally indicate that various combinations of five parameters inversely-
estimated using DE can meet a given maximum stress criterion. However, each
combination yields a different temperature distribution that in turn results in
different values of the fin efficiency. These results reveal that the efficiency of
fin can be improved by optimizing the fin parameters without causing excess
stress in the fin material.

Figure 7 depicts the reconstructed temperature and stress (radial and tan-
gential) fields. As the inverse simulations were performed based on the forward
solution of tangential stress field, the reconstructed temperature fields do not
match with the direct temperature field. However, both the stress fields (radial
and tangential) agree with the reference stress fields, as expected.

The convergence histories of the objective function and the iterative vari-
ation of all the five parameters with zero measurement error in the forward
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Figure 7. Comparison between the direct (exact) and reconstructed (inverse) (a)
temperature fields, (b) radial stress fields, and (c) tangential stress fields with no

measurement error.

solution are presented in Figure 8. It can be seen that in all the cases the
values of objective functions gradually reduces with the increasing number of
iterations or generations (Figure 8(a)). However, the values of the five un-
known parameters undergo random adjustment with the iterations. In most
cases, the values of the unknown parameters stabilize approximately after 60
iterations there is insignificant update between 70-100 iterations. So, for the
present work, 100 iterations of DE are satisfactory.

Table 3. Various combinations of five parameters inversely estimated using DE considering
±15% random error in the forward solution. Range: [β, N , G, EG, χ] = [-0.3 - 0.5; 0.6 - 1.4;
0.05 - 0.8, 0.05 - 0.8, 0.5 - 3.0].

Process β N G EG χ F (ξ) σθ Temp. Efficiency
(max.) (Tip)

Direct 0.3 1.0 0.4 0.4 1.0 < 0.02 -0.0815 0.857 0.7530
Run-1 0.236 0.809 0.289 0.243 1.115 < 0.02 -0.0794 0.8818 0.8433
Run-2 0.334 0.861 0.256 0.644 1.142 < 0.02 -0.0798 0.8835 0.8510
Run-3 -0.146 1.161 0.697 0.258 0.535 < 0.02 -0.0790 0.7547 0.5845

In real situation, the actual stress field developed in the fin slightly differs
from the theoretical values due to measurement error. Thus, it is important
to consider the estimation of unknown parameters in the presence of measure-
ment errors in the stress field. Table 3 presents the estimated values of the
unknown parameters for three different runs, obtained inversely from a pre-
specified stress field with ±15% random measurement error in this case too,
different combinations are observed in different runs. All three runs in gen-
eral and run 3 in particular revel that diverse combinations of five inversely-
estimated parameters yield a given stress distribution, but result in different
temperature distributions. Consequently, they result in different values of the
fin efficiency. Corresponding temperature of the fin’s tip and the thermal effi-
ciency are also presented in the table. It is observed that the DE saturates at
higher values of the objective function in the presence of measurement error.

Using the inverse parameters of Table 3, the stress fields are reconstructed
and compared with the reference stress field in Figure 9. In this case, the
reconstructed stress fields differ slightly from the reference stress field.
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Figure 8. Simultaneous estimation of various non-dimensional inverse thermal
parameters of an annular fin subjected to thermal loading: (a) Fitness value of DE

simulation without measurement error, (b) thermal conductivity parameter (β), (c) thermo
geometric parameter (N), (d) heat generation number (G), (e) heat generation parameter

(EG), and (f) coefficient of thermal expansion (χ).

Conclusions

In this study, various unknown thermal parameters of an annular fin with
variable thermal conductivity and internal heat generation have been inversely
estimated, assuming that the thermal load in the fin will not cause excess stress
field. The HPM has been successfully applied to obtain the temperature field in
an annular fin with variable thermal conductivity and internal heat generation.
The forward solution for the stress field is obtained directly from the classical
theory of elasticity coupled with HPM based analytical solution of heat transfer.
The study suggests that the variable thermal conductivity parameter influences
the heat transfer as well as the thermal stresses. However, the internal heat
generation phenomenon does not affect the radial stress. The effect of heat
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Figure 9. Comparison between the direct (exact) and reconstructed (inverse) (a) radial
stress fields, and (b) tangential stress fields. The inverse data obtained considering 15%

random measurement error in direct data.

generation on the tangential stresses is minimum near to the base of the fin
and increases nonlinearly towards the fin’s tip. Differential evolution has been
employed for the inverse solution of stress field. The predicted/reconstructed
stress fields obtained from estimating all the thermal parameters using DE agree
well with the exact stress fields. Very small difference in the reconstructed stress
field is found when inverse solutions are obtained considering measurement
error in the forward stress field.
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