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Abstract 

 
Absorbing materials are very often used in RF applications. Their electromagnetic 
characteristics (relative permittivity εr, loss tangent tan δ and conductivity σ) are needed 
in order to obtain a high-quality design of the absorbing pieces in the frequency range of 
interest. Unfortunately, suppliers often do not provide these quantities. A simple 
technique to determine them, based on the RF measurement of the disturbance created by 
the insertion of a piece of absorber in a waveguide, is presented in this note. Results for 
samples of two different materials, silicon carbide and aluminum nitride are presented. 
While the former has a negligible conductivity at the working frequencies, the 
conductivity of the latter has to be taken into account in order to obtain a meaningful 
estimation of εr and tan δ. The equations of Kramers & Kronig have been applied to the 
data as a cross check, confirming the results. 
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1. INTRODUCTION 
 
Silicon carbide (SiC) has been commonly used in the CLIC prototypes, e.g., in damping 
loads for the accelerating structures [1], or also in absorbing parts in the CLIC WCM [2]. 
Aluminum nitride (AlN) has been considered as a candidate for the absorbers used in 
PETS [8]. The relative permittivity εr and loss tangent tanδ in different frequency ranges 
of the material are needed to design the pieces. However, very few data exist in the 
literature, especially at CLIC frequencies. 
 
The task of estimating these quantities was already addressed in [3] for a discrete number 
of frequency points. In this note, a modification to that setup is proposed, estimating the 
electromagnetic characteristics of the materials in continuous frequency ranges.  
 
The method will be illustrated for measurements of SiC pieces at the frequency range 
from 29 to 33GHz and afterwards extended to other frequency ranges, and also to 
aluminum nitride samples.  
 
The Kramers and Kronig equations have been applied to the results. The estimated 
electromagnetic characteristics accomplish the inter dependence that the equations 
establish, supporting the validity of the method. 
 
2. DESCRIPTION OF THE METHOD 
 
According to Maxwell equations, the relation between the rotational of the magnetic field 
H
r

and the electric field  is as follows: E
r
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with ω  the RF frequency, σ  the conductivity of the material where the field propagates 
and ε  its permittivity. For dielectrics, ε  is assumed to be complex ''' εεε j+= . Grouping 
it with σ  we define the complex permittivity cε  
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rc jj
ωε
σδεε −−=                                           (2.2) 

 
where rε is the real part of the permittivity, that is, 'εε =r , and δtan  is the ratio between 
its imaginary and real parts, '''tan εεδ = . 
 
The value of the conductivity σ can be considered at constant from DC to about 100 GHz 
thus in our frequency range. For the studied SiC samples, σ has been measured by two 
different methods. The first one is the so-called 4 point method [7], the second one 
consists of establishing a fixed current across the entire length of the sample, and then 
measuring the potential difference between two points at known distance over the sample 
length.  
 



The SiC conductivity has been found to be negligible thus )tan1( δεε jrc −= . As it will 
be described in section 6, the conductivity of aluminum nitride is not negligible, affecting 
the measurements and therefore has to be taken into account for the estimation of the 
permittivity.  
 
With an electromagnetic simulation software, in our case HFSS, a set-up as shown in fig. 
1 is studied. That same set-up is mechanically built and measured with a Network 
Analyzer. In HFSS, different εr and tanδ are assumed for the SiC piece, obtaining a 
different transmission coefficient S21 for each option. The real and imaginary parts of the 
measured S21 are compared with those obtained by HFSS, choosing the combination of 
εr, tanδ and σ that minimizes the difference.  
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Figure 1: Experimental setup for the 29-33GHz frequency range. The waveguide is a standard WR34, the 
dimensions are in millimeters. 
 
2.1 Precise positioning of the SiC. Tolerances 
 
In order to assure that any change in the transmission coefficient is due to a change in εr 
and tanδ, the uncertainty in the geometry of the setting has to be minimized.  
 
The position of the SiC into the waveguide has to be known precisely. For that, the piece 
of waveguide is cut in two parts, and a slot of known depth and the same width as the SiC 
piece is machined in one of them (see fig. 2). Thus, both the longitudinal and transverse 
positions of the SiC piece are fixed. Since small displacements may still occur, 
simulations including position tolerances of the SiC piece of up to 1mm have shown that 
the S21 parameter is insensitive to them. 
 
 
 
 
 
 
 
 



 
 

 
 
Figure 2: HFSS geometry for the 29-33GHz setup. 
 
Moreover, measuring the S21 coefficient of the empty waveguide, the effect of the 
waveguide dimension tolerances can be neutralized, by correcting the waveguide length 
in the HFSS model so that its electrical length fits the one measured with the Network 
Analyzer.  
 
2.2. Sensitivity of the measurement 
 
In principle, the dimensions of the SiC piece can be freely chosen. However, if 
approximate values of εr and tanδ are known, the geometry of the piece can be optimized 
such that the S21 coefficient is as sensitive as possible to permittivity changes. 
 
A set of simulations sweeping the values of εr and tanδ in ranges considered meaningful 
(20<εr<40, 0.2< tanδ<0.4) have been performed for several SiC geometries. The results 
for two of those candidates are shown in fig. 3, but many more have been considered. 
The sensitivity of the S21 parameter to changes on the electromagnetic characteristics of 
the material is much higher for the bigger piece, that is, for the option shown on the right. 
On the other hand, the amplitudes of the curves are smaller (0.2 vs. 0.5 approx.). Thus, 
the relative effect of the noise and tolerances will be higher in that case. In general, the 
more sensitive S21 is to changes in the permittivity, the smaller its amplitude, and a 
compromise is necessary. The dimensions 35x3x2mm were finally chosen. 
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Figure 3: The picture on the left shows the real and imaginary parts of the S21 parameter for a piece of SiC 
of dimensions 30x3x1mm. Each color corresponding to a different εr (20,30,40) and tanδ (0.2,0.3,0.4) 
combination, while the picture on the right corresponds to a piece of 35x3x2mm. 
 
3. PERIMITTIVITY OF SIC IN THE 22-32GHZ FREQUENCY RANGE 
 
The transmission coefficient measured with a Network Analyzer, for the geometry shown 
in fig. 1, is represented in fig. 4. As described in the previous section, the relative 
permittivity and loss tangent of the SiC piece are chosen such that the S21 parameters 
produced by HFSS fit the measured ones. For the 22-32 GHz frequency range and for this 
setting, the chosen εr and tanδ as a function of frequency are shown in fig. 5.  
 

 
Figure 4: Real and imaginary parts of the transmission coefficient, S21. The curves in red are the Network 
analyzer measurements, while the blue curves correspond to the HFSS fit. 



 
Figure 5: εr and tanδ that produce the Network Analyzer to HFFS S21 fit shown in fig 4.  
 
4. EXTENSION OF THE METHOD TO OTHER FREQUENCY RANGES 
 
The frequency ranges where to estimate the SiC permittivity are determined by the needs 
of the CLIC prototypes. The WCM design [3] needs measurements in the 3GHz region, 
at X-band and also around 20GHz. The damping of high order modes for the CLIC 
accelerating structures demands a band that reaches as high as possible in frequency. The 
limit for the maximum frequency has actually been set by the Network Analyzer 
characteristics. 
 
4.1 Dimensions of the different settings 
 
The flatness of εr and tanδ in frequency for the WR34 setting makes it reasonable to 
assume that they will not change abruptly (by orders of magnitude) in the neighboring 
frequency regions. Hence, instead of just scaling the previous setting to other waveguide 
standards, a sensitivity study (see sec. 2.2) has been performed for each of them. In table 
1 the dimensions of the SiC pieces for the different settings are listed.  
 

Frequency 
range (GHz) 

Waveguide 
Standard 

SiC length(mm) SiC width(mm) SiC height(mm)

36-46 WR22 15 3 1 
30-37 WR28 15 3 1 
7-13 WR90 48.4 9.6 3 
2.6-4 WR284 210 16 10.5 

 
Table 1: Silicon carbide piece dimensions for the different settings, corresponding to different frequency 
ranges.  
 



4.2 Results 
 
The electromagnetic characteristics of the SiC in the X-band frequency range are shown 
in fig. 6. One can observe that both εr and tanδ are very flat in this frequency range, 
presenting just a few presumably wrong points that correspond to the zero crossings of 
the real and imaginary parts of the transmission coefficient, and these can be filtered out 
(fig. 7).  

 
Figure 6: εr and tanδ of the SiC piece as a function of frequency in the range 7 to 13GHz.  
 

 
Figure 7: Real and imaginary parts of the transmission coefficient S21 in the X-band frequency range, for 
SiC samples. The curves in red are the Network analyzer measurements, while the blue curves correspond 
to the HFSS fit. 
 



The experimental permittivity of SiC in the range 22-46GHz is shown in fig. 8. For that, 
three different measurement setups have been used, with standard WR34, WR28 and 
WR22 waveguides. 
 

 
 
Figure 8: εr and tanδ as a function of frequency in the range 22 to 46GHz. The black curve corresponds to 
the WR34 setting, the red curve to the WR28 setting and the blue curve to the WR22 setting. 
 
 
5. APPLICATION OF THE METHOD TO ALUMINUM NITRIDE 
 
Aluminum nitride has been studied in the X-band frequency range, using the WR90 set-
up described in 4.1. Unlike SiC, AlN has a non negligible conductivity when compared 
with tanδ in eq.2.2. Therefore its value, 100S/m for our samples, has been introduced in 
HFSS. The best fit between the S21 parameter measured with the Network Analyzer and 
the simulated one is found for εr =30 and tanδ=0.3 in the whole frequency range. The fit 
between the curves is shown in fig. 9. 
 



 
 
Figure 9: Real and imaginary parts of the transmission coefficient S21, in the X-band frequency range, for 
AlN samples. The curves in red are the Network analyzer measurements, while the blue curves correspond 
to the HFSS fit. 
 
The same kind of AlN was investigated in [4], estimating its εr and tanδ using a 
completely different method, and obtaining exactly the same values.  
 
6. CROSS CHECK WITH THE KRAMERS & KRONIG EQUATIONS. 
 
The Kramers & Kronig equations [5] express an inter relation between the real 'ε  and the 
imaginary part ''ε  of the permittivity, as a function of frequency: 
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where P means the Cauchy principal value of the integral. Hence, from )(' ωε  it is 
possible to derive )('' ωε and vice versa. In order to do so it is necessary to know these 
quantities in the whole frequency range, but we only have this information in finite 
ranges. However, using the fact that )('' ωε  is an odd function, equation 6.1 can be 
written as  
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According to [4], it is possible to apply this equation even when )('' ωε is only 
approximately known, as it is our case. The flatness of εr and tanδ in the known 
frequency ranges makes reasonable to extrapolate these same values to neighboring 
regions. Furthermore, )('' ωε  decays at very high frequency, when the electrons cannot 
follow the changes in the field polarization [6]. The estimation of this frequency for our 
materials is beyond the purpose of this study.  
 
The equations have been applied in the 20 to 45GHz frequency range for the SiC pieces. 
The absolute value of )(' ωε  that the equation predicts is dependent on the assumptions 
described in the paragraph above. However, the undulations that )(' ωε  has in that region 
are predicted by the equations, as can be observed in fig. 10. 
 

 
Figure 10: The blue curves show the values of ε’ and ε’’ estimated by HFSS. They have been extracted 
from the data plotted in fig. 8, sampling the curves at every integer gigahertz and applying afterwards a 
polynomial interpolation. ε’ equals εr, while ε’’ is the multiplication of εr and tanδ. The ε’ predicted by the 
Kramers and Kronig equation (6.3) from ε’’ is plotted in thick magenta, superimposed to the measured one. 
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