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1. A THREE-STATE AMPLIFICATION SYSTEM

This study has been completed by P. E. Perkins. In May 1968, he submitted the

results to the Department of Electrical Engineering, M. I. T., as a thesis in partial ful-

fillment of the requirements for the degrees of Electrical Engineer and Master of

Science.

A. G. Bose

2. AN EXPERIMENTAL INVESTIGATION OF SPECTRAL FLUCTUATIONS

IN NONSTATIONARY ACOUSTICAL NOISE

This study has been completed by W. A. Taylor. In May 1968, he submitted the

results to the Department of Electrical Engineering, M. I. T. , as a thesis in partial

fulfillment of the requirements for the degree of Master of Science.
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3. NOISE DUE TO TIME-VARYING CURRENT EXCITATION OF

CARBON RESISTORS

This study has been completed by S. D. Personick. In May 1968, he submitted the

results to the Department of Electrical Engineering, M. I. T., as a thesis in partial

fulfillment of the requirements for the degree of Master of Science.
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4. AN INVESTIGATION OF JITTER IN A SILICON-CONTROLLED RECTIFIER

This study has been completed by J. P. Morgenstein. In May 1968, he submitted

the results to the Department of Electrical Engineering, M. I. T., as a thesis in partial

fulfillment of the requirements for the degree of Bachelor of Science.

D. E. Nelsen

B. SMALL-SIGNAL METHOD FOR DETERMINING JITTER IN

REGENERATIVE SWITCHING CIRCUITS

1. Introduction

When a ramp is applied to the input of a regenerative switching circuit, the circuit

will switch approximately when the ramp crosses a threshold level that is characteristic

of the switch. If this experiment is repeated many times, the switching instants will be

found to be randomly distributed about some mean value. We have found a small-signal

method for relating the switching-time randomness, or jitter, to noise generated within

the components of the circuit or present at the input. This method should be widely

applicable to different types of regenerative switches. When applied to the tunnel diode

switch, which has been investigated previously by this writer, l ' 2 not only are the

results obtained consistent with the previous results, but new insight into the jitter

mechanism is gained.

For the tunnel diode switch we could previously only relate the jitter statistics to

either very wideband or very low frequency noise; with the new approach, the jitter

statistics (variance and mean) can be simply expressed in terms of noise having an

arbitrary power spectrum, provided that the noise is small enough.

In the previous analysis of jitter in the tunnel diode, we first obtained the dynamic

equilibrium equation for the circuit which was valid during and immediately before the

switching transient. This equation, which we call the "switching equation," is a

nonlinear differential equation relating the tunnel diode voltage to the input ramp slope,

circuit parameters, and noise in the circuit. This equation was then solved for the

mean, variance, and distribution of the jitter by using Monte Carlo methods with a

digital computer. The solution was obtained for white noise.

The new method of analysis obtains a solution of the switching equation by using

small-signal perturbation techniques. The result, although limited to noise of low

amplitude, is valid for noise having an arbitrary spectrum and yields much more insight

into the mechanism of coupling between noise and jitter.

2. Switching Equation for the Tunnel Diode Switch

We shall apply the small-signal technique to the switching equation describing the

tunnel diode switch. The method should, however, be usable with switching equations
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for other types of regenerative switches.

The derivation of the switching equation for the tunnel diode is described in detail

in other reports by this writer. 1 ' 2 Briefly, the equation is obtained by writing the

equilibrium equation for a tunnel diode model that is valid near the peak of the diode' s

i-v characteristic. The nonlinear shape of the i-v curve at its peak is preserved by

approximating it with a parabola. The small-signal noise sources that are valid in the

vicinity of the peak are included in the model. The switching equation is

dv' 2
C dt- - kv' = at' + n'(t'), (1)

where C is the diode's junction capacitance in the peak region, k is one-half the magni-

tude of the second derivative of the i-v curve (evaluated at the peak), a is the slope of

the input ramp, and n'(t') is noise present when operating near the peak of the i-v

curve. This noise was predominantly shot noise. By substituting

V k2 1/3 ka 1/3 k 1/3

in Eq. 1, the switching equation in dimensionless form,

dv 2
at- v = t + n(t), (3)

results. The dimensionless power spectrum nn(w) of the noise n(t) is expressible in

terms of its dimensional counterpart nn(W') as

nn(w) = ( n 1 /  (4)

In this report, variables will be primed if they are dimensional, otherwise they will be

unp rim ed.

3. Small-Signal Solution of the Switching Equation

With the noise n(t) set to zero, the solution of the switching equation (3) is shown in

Fig. XVI-1. The initial condition used, v = - to for to < 0, places the operating

point on the i-v relation at time t << 0.

Soon after the input ramp, t, crosses through zero at t = 0, the voltage goes to

infinity at time Tso. (If the actual S-shaped tunnel diode characteristic were used

instead of the parabola, v(t) would have saturated out at some higher level slightly

before time T .)so
If noise were present, the entire waveform v(t) would fluctuate randomly; the

switching time Ts (Tso denotes the switching time with the noise n(t) = 0), would be aS 50
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Fig. XVI-1. Solution of the dimensionless switching equation (3) with n(t)= 0.

Initial condition was v = - t for t << 0. The switching

time T is shown.so

random variable and depend upon the entire past history of the noise before switching
occurs. One would expect noise fluctuations at times long before the switching time T
to have a negligible effect on the final switching time. Furthermore, perturbations very
close to the final switching time T would have a small effect on T . This can be seen

s s
by writing Eq. 3 in the form

dv 2dt - v + t + n(t). (5)

When v becomes large, v2 > t + n(t), and (5) asymptotically becomes

dv 2
dt v, (6)

which is independent of the noise.

If the noise is small enough, it is reasonable to assume that the change in the
switching time, T s- T so' because of the noise, will depend "linearly" on the noise
that occurred before time Tso. More specifically, we would expect thatso

T T
(Ts -Ts) s so h (T ) n(T) dT,

-- 00
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where h l (T) is a weighting function, and n(t) is the noise signal that appeared in the

switching equation (3). This means that the perturbation of the switching time is a linear

superposition of the "past" of the noise before Tso'
If n(t) = u (t-t l ) is substituted in Eq. 7, then (Ts-T so) = h (tl). This means that

h 1 (t 1 ) is the change in Ts - Tso resulting from a unit impulse occurring at time tl.

Thus the integral of Eq. 7 is equivalent to the superposition integral of linear system

theory.

The form of Eq. 7 suggests that T - T might be expressed more accurately as as so
Volterra series defined over n(t) for t < T so. Then T - T soWOUld be

1T oT T T
Ts -T = so = so hl (T) n(T) dT + Tso T h(T T2 ) n(T1 ) n(T2 ) dT 1dT 2-oo -o 201'-o h

+ ... + ... hn(T .. T n) n(T 1 ) ... n(Tn) dT . .dT n +'
- 00 ~ - DO

(8)

where the kernel hn(T1' ... Tn) is an n-dimensional weighting function.

Since perturbations long before Tso and immediately before Tso have negligible

effect on the switching time, hn(T... n ) - 0 as any of T 1, T2 ... n - , or any of

T, T. . Tn -T so. We can simplify limits on the integrals of Eq. 8 by defining

hn(T1 .. Tn)= 0 for any of T,T 2,...T n > Tso, and replace the T limits by +o to obtain
S n soso

0 O

T -oo "T o ... h (T1 ,... T ) n(T ) ... nn(Tn) dT ... dTn. (9)
-co

n=

We shall find it comforting that only the first two terms of this very formidable series

are needed to accurately describe the mean and variance of Ts over a wide range of

operation of the tunnel diode switch.

4. Properties of the Kernels, hn (T . T n)

Some properties of the kernels of the integrals in Eq. 9 can be easily derived.

First, h i (t) < 0 for all t. If in the switching equation (3) n(t) is a small positive pertur-

bation occurring at time tl, such as Euo(t-t 1) where E is small, the switching time will

always occur earlier. This means that h (t) < 0.

Another property is obtained by letting n(t) be the constant, y. Then Eq. 9 becomes

T - T = n ... h (T... T n)d dT (10)

n= 1
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Substituting n(t) = y in the switching equation (3), we obtain

dv 2
dt--v = t+ y. (11)

Observe that this simply causes switching to occur y "seconds" earlier, or

Ts = Tso - Y. (12)

By equating coefficients of yn in Eqs. 10 and 12, we obtain

Sh1 (T) dT = - (13)

and

S... h(T1' ... T n) dT. .. dT = 0 for n > 1. (14)
00 -00

If n'(t') = y- were substituted in the dimensional switching equation (1), the dimen-

sional result corresponding to (13) would be

1
(T') d - (15)

where a is the slope of the input ramp.

5. Mean and Variance of T for White Noise
s

The mean T and variance T z of T when n(t) is white noise will now be obtained.s T s
This case is important because the predominant noise source in the tunnel diode model

is shot noise (which can be modeled as white noise over the diode's bandwidth. )
2The mean T and variance aT of T can be obtained by taking the appropriate sta-

tistical averages of Eq. 9. If n(t) is white with autocorrelation nn(T) = Nou (T), Ts
and aT become, keeping only the lowest terms containing No ,

T = T + N hZ(T, T) dT (16)

and

2 2
T N h1 (T) dT. (17)

QPR No. 90 162



(XVI. STATISTICAL COMMUNICATION THEORY)

If we make the additional assumption that the noise is Gaussian, then all of the

higher order terms (which involve statistics of order higher than two) can be evaluated.
2

Of interest is inclusion of the second term in the expansion of T T, which is

T = N 0 h 1 ( T ) dT + 2N o h2z(T, T) dT. (18)
T 1 o

If hZ(t, t) (h2 (t1 , t2 ) evaluated along the diagonal TI=TZ=t) can be evaluated, then the size

of the second term can be evaluated as a check on the accuracy of Eq. 17.

We might comment here that the dimensionless spectral height, No , is related to the

dimensional height N' by

N= k )N'. (19)

Even if the actual noise in the circuit, N', is constant, the effective noise, No , can be

increased by decreasing C or a, or by increasing k. Therefore we would expect the

small- signal expressions (16) and (17) for the jitter to break down if the input slope, a,

is made too small.

6. Computation of h I (t) and hz(t, t)

Since the results of Eqs. 16 and 17 are similar in form to those obtained in our pre-

vious analysis 1 ' 2 of the switching equation, we calculated with a digital computer h1 t),

h2 (t, t), and the integrals in Eqs. 16-18 involving these functions. With these computed

quantities, we could compare the statistics of Eqs. 16 and 17 with those previously

obtained by other methods, thereby checking the validity of this method.

The functions can be determined by substituting in Eq. 9, n(t) = u 0 (t-tl). Then (9)

becomes

Ts(E tl) =Tso + Ehl(tl) + E hZt 1 ,tl) + ... . (20)

The kernels h1 (t1 ) and hZ(t l, t 1 ) are readily obtained as

[dT(E,' t 1

1 1 E=

and

1 Fd2Ts(E
h2 (t t1 ) 2 2

dE E= 0 (21)
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Fig. XVI- 2.

-3 -2 -1

Graph of (dimensionless) h i (t). Points

were calculated on a digital computer.

h2 (t,t)

Fig. XVI-3. Graph of (dimensionless) h2 (t, t), the

hz(TI, T 2 ), evaluated along the line T 1

second- order kernel,

=2 =t.

To perform the computation, we first determined v(t) and T (shown in Fig. XVI-1)
-- so

for the case n(t) = 0, with the initial condition v = - t, t << 0. Then, to find

Ts(E, tl), we again solved the noiseless equation, this time using as the initial condition,

t = tl and Vo = v(tl) + E. Then hl(tl) and h2(tl , t) were straightforwardly obtained by

calculating the first and second derivatives of Ts (E, tl) in Eq. 20. Graphs of hi(t) and

h 2 (t, t) are shown in Figs. XVI-2 and XVI-3. Integrals of h (t), h2(t), h 2 (t, t) and h 2 (t, t)

were computed and found to be

00oo 0_0h l (t) dt = -1. 000

S00
_ h2 (t, t) dt = -0.279

-o

2
hl(t) dt = 0. 417

;oo h(t, t) dt = 0. 074
-00
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Substituting these in Eqs. 16 and 18, we obtain

(23)T = 2. 33 - 0. Z79 N
s

and

S = 0.417 N + 0. 148 N2 .

To o
(24)

The corresponding solutions previously obtained by using direct Monte Carlo methods

can be approximated algebraically by

(25)T = 2. 33 - 0. 30 N
s

and

2T = 0. 42 N
T o0

for 0 < N < 2.
o

Results involving the first-order h I (t) agree remarkably well with the results of previ-

ous analyses: the first term of Eq. 24 agrees with Eq. 26 within the accuracy of (26),

and f_ h(t) dt = -1 to four significant figures. Equation 23 involving h (t. t) is not as

accurate - probably on account of round-off error in the computation of the second deriv-

ative of Ts(E;tl), most of which could have been avoided by using double-precision

accuracy in the computation (we used single-precision). The amount of computer time

used for the small-signal method was much less than that used with the Monte Carlo

method.

2
7. Statistics Ts and a-T for Noise with Arbitrary Power Spectrum

(or Autocorrelation)

If n(t) is a zero-mean stationary random process having an arbitrary autocorrela-

tion function nn(T), we can write, in terms of the lowest order nonzero terms,

T =T +
s so 0 ' h (T 1 T nn (T 1 -T 2 ) dT 1 dT 200 -00

and

T = 0 hh(T) nn(T) dT,
whe00

where

h00

(27)

(28)

h 1 (t) h1 (t+T) dt.

QPR No. 90

(26)

165



(XVI. STATISTICAL COMMUNICATION THEORY)

Expressed in the frequency domain, Eqs. 27 and 28 would be

T =  H(o nn 2Tw (29)

and

T =T + H -2 () dw (30)s so 2 nn 2

where

H1 (o) = h(t) eJt dt

and

H2( 1 , W2 ) 02= h 2 (T 1 , T 2 ) exp(j 1 1 +j 2T 2 ) dTldT2 .

8. Physical Interpretation of These Results

To gain maximum insight into the results just obtained, they should be transformed
back to the dimensional domain, so that the parameter dependences will become evident.
By using the transformations in Eq. 2, h l (t) becomes

h'(t')= C 1/3 h t ( ka (31)

The function h'(t') (primed variables are dimensional) can be visualized as an indicator
of the sensitivity of the switch to noise. The larger h' is at time t 1 , the larger the
effect of a perturbation at time t 1.

An increase in C has the effect of making h' wider in time and smaller in amplitude,
keeping the area under h' constant, equal to 1/a. Since h' becomes wider in time and
smaller in amplitude, a longer sample of the noise will be averaged, thereby resulting
in a smaller amount of jitter. Thus there is a trade-off between the switching speed
and jitter in a tunnel diode switch, since switching speed varies inversely with C.

An increase in slope a causes h' to become narrower in time and smaller in ampli-
tude. Thus, as one would intuitively expect, the amount of jitter decreases with
increasing slope.

The dimensional form of Eqs. 28 is
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- = 1/ 3  oo c / n (7T') dT', (32)

where the dimensional cih(T') is expressed in terms of the dimensionless hh(T) as

= a hh T "

The dimensional form of Eq. 29 is

,2 H t( C ) dw (33)
T a ka nn

where the dimensional H'(w') is expressed in terms of the dimensionless H(w) as

H'I(w')= H \ I /

When the bandwidth of the noise is much narrower than that of the switch [Lnn(w') is

much narrower than H' (w') 2], then

cr = (34)
T a

This form also results when a - oo, since the width of H'(w) 2 increases with a.

When the noise bandwidth is much wider than that of the switch, then

Ak 1 / 6 (nn(0))1/2

r' = (35)
T a 5/6 C1/3

where A = fjo h2(t) dt = 0.417. This form also occurs for a fixed noise spectrum

when a is decreased, since IH'(w')I becomes narrow and a is decreased. Equation

35 describes only the lowest order term of the Volterra series; higher order terms

become more significant as a is decreased. Therefore (35) will not continue to be

valid if the noise is too large, or if a is decreased too much.

The results (34) and (35) were obtained in the previous analysis1,2 of the tunnel

diode switching equation. Equation 35 describes the experimentally observed tunnel

diode jitter over a wide operating range.

For a typical 1-mA tunnel diode with C = 5 pF, k = 1/7 A/V 2 , and a = 1 A/sec,
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one dimensionless unit of time would correspond to 56 nsec wide, h' (t') would be approx-
imately 150 nsec wide, and the width of H'(w') (an effective "bandwidth" of the switch)
would be approximately 13 mHz. If a were 100 A/sec, then h (t 1) would be approxi-

mately 30 nsec wide, and the "bandwidth" would be approximately 60 mHz.

9. Conclusions

We have presented a small-signal method for determining jitter in regenerative
switching circuits. When applied to the tunnel diode switch, the method quite dramati-
cally provided new insight into the mechanism whereby noise fluctuations cause jitter.
Although, in practice, this method is only applicable when the noise is "small enough,"

the fact that the method works over a wide operating range for the tunnel diode switch

indicates that the noise in that switch is indeed "small enough" over that range.

It appears that this method for determining jitter in switches is a very powerful

technique; application of the technique to other regenerative switching circuits may

yield valuable circuit design techniques for minimizing jitter in those circuits.

D. E. Nelsen
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