
XIII. PLASMAS AND CONTROLLED NUCLEAR FUSION

A. Active Plasma Systems

Academic and Research Staff

Prof. L. D. Smullin Prof. R. J. Briggs
Prof. A. Bers Prof. R. R. Parker

Graduate Students

R. R. Bartsch D. S. Guttman J. A. Mangano
S-L. Chou F. Herba J. A. Rome
G. W. Goddard B. R. Kusse H. M. Schneider

R. K. Linford

1. SYSTEM D: SPECTROSCOPIC MEASUREMENT OF THE

ION TEMPERATURE

Introduction

The velocity distribution function of the ions in a plasma may be determined from

the Doppler broadening of spectral lines radiated by the ions. In particular, if other

broadening mechanisms are neglected, the shape of a spectral line radiated from ions

in local thermodynamic equilibrium is given by the familiar Gaussian

mi c  m.c - X
ID() - exp 2kT( o (1)

2TrkTX o

where X equals the radiated wavelength of the unbroadened line, and T is the ion tem-

perature. The factor multiplying the exponential serves only to normalize the integral

of the curve over wavelength to unity. The full width of the line at half-intensity char-

acterizes the temperature of the radiating species. For a single spectral line this

width, given by

1/2
2kT In 2

D = 2 2 Xo'

may be measured and the temperature computed. In practice, however, this simple

procedure is complicated by three effects: the fine structure of a spectral "line"; the

Zeeman effect, and other broadening mechanisms.

This work was supported by the National Science Foundation (Grant GK-2581).
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Theory

The series of spectral lines that were used in the temperature measurements

described here are centered at 4685.75 A and result from electronic transitions in the

singly ionized helium atom. The fine structure of this series of lines has been studied

extensively by Sommerfeld and Unsold,1 who computed the relative intensities of each

line in the series. The intensities and wavelengths of the five most intense lines in the

series are given in Table XIII-1. The remaining fine-structure lines in this series

have intensities less than 5 on the intensity scale established in Table XIII-1 and were

neglected. If the Doppler effect were the only broadening mechanism present, the resul-

tant shape of the He II 4685.75 series of lines could be determined by centering Gaussian

curves of the form given by Eq. 1 at the wavelengths and with the amplitudes prescribed

by Table XIII-1. A superposition of these curves would then give the resultant relative

amplitude for each wavelength.

Table XIII-1. Wavelengths and intensities of the five
most intense lines in the series.

Relative Intensity (as calculated
X (A) by Sommerfeld and Unsold)

4685. 378 19. 5

4685. 408 10. 3

4685. 569 5. 1

4685. 705 100. 0

4685. 805 92. 3

The Zeeman effect results in the splitting of each of the fine-structure lines, because

of an applied magnetic field. In accounting for this effect, we have considered only the

normal Zeeman splitting. This classical theory2 predicts that each fine-structure line

will be split into three lines (classical triplet): one line (rr line) remains at the original

wavelength, while the two other lines (a- lines) are displaced in wavelength equally above

and below the central line by an amount that is proportional to the magnetic field. When

viewed across the magnetic field, the relative amplitude of the w line is twice that of

the a- lines if the states are equally excited. Since its electric field is polarized along

the magnetic field, the Tr line is invisible when the plasma is viewed along the magnetic

field. The field of the a- lines is circularly polarized in a plane perpendicular to the

magnetic field, and thus the a- lines are always visible. Therefore the 5 original fine-

structure lines are split into 15 lines when the plasma is viewed transversely (to the
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magnetic field) and into 10 lines when the plasma is viewed longitudinally.

A consideration of line-broadening mechanisms other than thermal Doppler broad-

ening is essential for laboratory plasmas. Of these mechanisms the Stark effect and

nonthermal Doppler broadening are usually most important. Stark broadening, the dom-

inant subclass of pressure broadening in our plasma, is an electric field effect and has

been studied extensively by Griem and his co-workers.3 The magnitude of this effect

for the He II 4685.75 series can be determined from an extrapolation of the atomic Stark

coefficients, C(ne, Te), computed by Griem. 3 Using this coefficient, which is a weak

function of the electron density and temperature, in Eq. 2 gives us the full width at half-

intensity of a Stark-broadened line.

n - 2/3

w = e  (2)

s C(n , Tel

Assuming a plasma density of 5 X 1012 electrons/cm 3 and an electron temperature of

10 eV, we find that ws = 0.03 A. At densities typical of our discharge, then, Stark

broadening is much smaller than the expected Doppler broadening, and thus is neglected

in our computations of the ion temperature. We must point out that Griem's calculation

of C(ne, T e ) does not include the effects of turbulent microelectric fields, which are
ee 4

thought to be associated with the beam-plasma discharge. These effects could con-

ceivably increase the half-width computed from Eq. 2 measurably. The absence of the

characteristic Lorentzian broadening in the far wings of our experimental curves indi-

cates, however, that this anomalous Stark effect is small. Therefore these effects have

been neglected.

Nonthermal Doppler broadening of the spectral lines is caused by macroscopic ion

drifts in the plasma. When a plasma column is viewed transversely through its center,

only the radial drift component Doppler-broadens the emitted spectral lines. Radial

drifts, however, are retarded by the confining nature of the magnetic field and thus are

negligible. When the plasma is viewed longitudinally, only axial drifts contribute to the

nonthermal Doppler broadening. Ion drifts caused by potential gradients in the plasma

can be significant, 5 and may lead to large nonthermal Doppler broadening. These drifts

are, at present, under study, but, in this report, were not included in the determination

of the parallel ion temperature.

In summary, the effects included in the calculation of a theoretical line shape for

the HellI 4658.75 series are (i) thermal Doppler broadening, (ii) fine structure, and (iii)

normal Zeeman splitting. All other broadening mechanisms were assumed to be negli-

gible for the reason stated. The experimental validity of this assumption will be

appreciated later.

A computer was used to superpose Gaussian curves of the proper relative amplitudes
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centered at wavelengths dictated by fine-structure and Zeeman-splitting effects. The

width of each Gaussian is given by

w = +w 1/2

where wI is the full half-width of a single unbroadened spectral line as viewed through

the experimental apparatus. Since the instrument function is nearly Gaussian, the

square of the half-widths may be added as shown. Figure XIII-1 shows examples of the

resulting computer curves at several ion temperatures for the He II 4685. 75 series

viewed transversely. Here we have used a magnetic field of 1500 G and an instrument

width, w I , of 0. 12 A. Figure XIII-2 shows the weak dependence of these curves on

magnetic field at a constant ion temperature of 2 eV, and an instrument width of 0.12 A.

The magnetic fields used in our experiments vary from 500 G to 10 kG. Hence in these

experiments the Zeeman effect is small but not negligible at the higher magnetic fields.

Experiment

The experimental apparatus used to measure the HeII 4685.75 line shape is shown

in Fig. XIII-3. Light from the plasma was condensed with a lens (f=9.6cm) focussed on

BEAM TRIGGER

CONDENSED EBERT 05- m INTEGRATOR BOXCAR

OIH SCA N ING -MP E I INTEGRATOR RECORDER
FROM SPECTROMETER 1P21 PAR 160

PLASMA G = 200

Fig. XIII-3. Experimental apparatus.

the entrance slit of a 0.5-m Ebert scanning spectrometer (Jarrell-Ash Company

Model 82-000). The straight, variable entrance and exit slits of the spectrometer were

14 . wide and 2 mm high. (The instrument half width with these slit dimensions was

found to be .12 A, using the HgI 5460.74 line from a Geissler tube as a calibration source.

The self-broadening of this line is known to be negligible compared with the measured

instrument broadening.) The light passed through the spectrometer to a magnetically

shielded photomultiplier tube (RCA 1P21). The resulting PM tube signal was integrated

for 100 psec and amplified. Since the beam-plasma discharge was created for 660 psec

once every 2 sec, it was necessary to average over many plasma pulses. Consequently,

the spectrometer was scanned very slowly (25 A/min) with a geared-down, 1 rpm syn-

chronous motor. The pulsed output of the amplifier was sampled for 20 psec at a fixed

time interval after the start of the beam pulse by a boxcar integrator (PAR Model CW-1).

QPR No. 90



Tl i - 1.8 eV

CONTINUOUS
GAS FEED

O EXPERIMENTAL CURVE
- THEORETICAL CURVE

V k  11 kV

I k  11 A

P = 5.3 x 10
- 4 

Torr

B =1500 G MIDPLANE

MIRROR RATIO = 3

TIME AFTER BEAM PULSE
r = 500 psec

0 1 - r I I I I I I
4684.70 4685.00 4685.30 4685.60 4685.90 4686.20 4685.50

X [A]

Fig. XIII-5.

Typical line shape: continuous gas
feed looking longitudinally.

Fig. XIII-4.

Typical line shape: continuous
gas feed looking transversely.

O EXPERIMENTAL CURVE
- THEORETICAL CURVE

V k = kV

P = 5.3 x 10
- 4 

Torr

B = 1500 G MIDPLANE

MIRROR RATIO = 3

TIME AFTER BEAM PULSE
r -500 psec

T - 1.7eV
Ili

CONTINUOUS
GAS FEED

4685.00 4685.30 4685.60

X [A]

4685.90 4686.20 4686.50

Tl i = 5.4 eV

PULSED GAS FEED

O EXPERIMENTAL CURVE
- THEORETICAL CURVE

Vk = 8.5 kV

I k =10A

o peak 
= 

3 x 10
-5 

Torr

B = 500 G MID-PLANE

TIME AFTER BEAM PULSE
a - 500 psec

Fig. XIII-6.

Typical line shape: pulsed
gas feed looking transversely.

QPR No. 90

4684.70 4685.00 4685.30 4685.60 4685.90 4686.20 4686.50

x [AJ



(XIII. PLASMAS AND CONTROLLED NUCLEAR FUSION)

These samples were then averaged by the boxcar and the resulting average of many

pulses was continuously recorded on a chart recorder. The resulting curve represents

the line shape for a given 100 isec during the beam pulse, averaged over many beam

pulses.

Preliminary Results

Computer-generated He II 4685.75 line shapes were fitted to the experimental curve

to determine the ion temperature. The magnetic field, the instrument broadening, and

a given ion temperature serve to determine the shape of the computer curves. Since

the magnetic field and instrument broadening were known, the ion temperature was the

only parameter varied in the best-fit procedure, except for an amplitude factor. Results

of the best-fit procedure are shown for 3 experimental curves in Fig. XIII-4, XIII-5 and

XIII-6. The solid line in these figures is the computer-generated curve, while the

circles indicate the shape of the experimental curve. These figures show typical curves

for continuous gas feed looking transversely (Fig. XIII-4), continuous gas feed looking

longitudinally (Fig. XIII-5), and pulsed gas feed looking transversely (Fig. XIII-6). The

ion temperature reported for the pulsed gas feed measurement may not be typical of

optimum pulsed gas operation. The beam collector position for our measurement was

wholly outside the magnetic bottle region. The most intense discharge has been reported

when this collector is placed partially within the bottle region. 6

At the present time, the position of the pulsed gas feed precludes our looking longi-

tudinally in this gas feed mode. The curves show typical ion temperatures, together

with the beam-plasma operating conditions under which the experimental curves were

made. The accuracy of the ion temperature measurements reported here is estimated

to be ±0.2 eV.

J. A. Mangano, L. D. Smullin
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2. HEXAPOLE EXPERIMENT

Since our last report we have performed spectrum measurements of the signal

detected by an electrostatic probe inserted into the plasma. The probe was placed

approximately 4 cm away from the axis

of the system at the edge of the plasma
Bo= 160GAUSS Bo= 170 GAUSS column. The probe was terminated in

50 2 and the resultant signal was ana-
220kHz

115 kHz lyzed by first mixing it with a local oscil-
I5 kHz lator of frequency 1. 6 MHz and then

220kHz
320 kHz

/ 460kHz passing the output into a Tektronix IL10

L spectrum analyzer, used as a tunable
0 200 400 0 200 400

receiver. The receiver frequency was
Bo

= 
180GAUSS Bo 190GAUSS

23S kHz swept slowly, and the output was aver-
23OkHz

aged by means of a PAR boxcar integra-
225kHz

30kHz tor and recorded on a chart recorder.
kHz 115k360kHz Results of runs taken at different

400kHz magnetic fields and constant pressure

and beam conditions are shown in
0 200 400 0 200 400

FREQUENCY (kHz) Fig. XIII-7. In each case, the large

spike occurring at zero frequency is due
Fig. XIII-7. Spectrum measurements of

probe signal as a function of to unbalance in the mixer and is effec-
the mirror field B .o tively a zero-frequency marker. The

other spikes are due to unstable plasma

modes whose structure is clearly dependent on the magnetic field. We tentatively

identify these modes as the rotating flutes investigated in detail by Hartenbaum

I - , -:- - -

3 kA/cm

BEAM TURNED ON

Fig. XIII- 8.

Upper trace: Hexapole current. Lower
trace: P robe signal. Horizontal axis:
50 [isec/cm.

Fig. XIII-9.

Probe signals with (upper) and without
(lower) hexapole field. Upper trace
shows a delay of 250 'sec in the beam
pulse with respect to the hexapole.
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in a similar experiment.

As we discussed previously, the pulsed hexapole system is now operational. A major

difficulty has been encountered in its use, however. We have found that, regardless of

the time at which the beam is fired relative to the start of the hexapole-current pulse,

a discharge does not take place until the hexapole current has decayed to an extremely

small value. This effect is illustrated in Fig. XIII-8, which shows the hexapole-current

pulse and the signal detected by the probe. The beam was fired at the time indicated,

and it is seen that the plasma does not form until the hexapole current has decayed to a

small value.

We have attributed this effect to the electric field associated with the decaying mag-

netic field of the hexapole. To test this hypothesis, we passed a constant current of

200 A through the hexapole. This current is considerably less than that in the hexapole

at the beginning of the current pulse, but much greater than the residual current in the

hexapole when a discharge could occur. Under these conditions, the discharge forms

regularly at the beginning of the beam pulse, just as in the case with no current in the

hexapole.

In spite of the difficulties with the pulsed field noted above, a remarkable effect has

been observed; when the beam was fired very late with respect to the current pulse, the

residual current in the hexapole, which amounted to approximately 20 A, was often suf-

ficient to at least partially stabilize the resultant plasma. This effect is illustrated in

Fig. XIII-9, where the probe signal with and without the hexapole current is shown. Thus,

we have demonstrated that under certain conditions, only very weak hexapole fields are

required to provide stabilization.

Having observed this effect, we have begun investigation of the stabilizing effects of

the hexapole when excited by direct current. While the maximum DC current available

(200 A) is much less than that obtainable from the pulsed system, it is still sufficient to

stabilize the plasma under a wide range of conditions. This is illustrated in Figs. XIII-10

and XIII-11, which show the probe signal with hexapole current as a parameter, for two

values of the midplane magnetic field. In both cases, the plasma decay time is seen to

increase and the average probe signal has decreased, thereby suggesting a decrease in

the size of the column. A more detailed, parametric study of these effects is under way.

F. Herba, R. R. Parker
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3. INTERACTIONS OF A SPIRALING ELECTRON BEAM

WITH A PLASMA

The spiraling electron beam-plasma experiment has been described in previous

reports., 2 A hollow, cylindrical electron beam is formed and injected through a

sharp magnetic cusp. The cusp magnetic field causes the beam to rotate about its axis.

The spiraling beam then flows through a background gas in an interaction region enclosed

by a screen conducting cylinder as shown in Fig. XIII-12. A uniform axial magnetic

field exists in this interaction region.

This report discusses some of the recent experimental observations of the insta-

bility which results when the spiraling beam interacts with the plasma it produces.

Some of the properties of this instability have been discussed previously. 2' 3 The data

presented in this report were taken when various modes of the instability were present.

Density Measurements

Plasma density measurements have been made using a Langmuir probe. The plasma

densities were low and ranged between 108 and 109 per cubic centimeter. Even with a

spherical probe, 0. 475 cm in diameter, the Debye length was larger than the probe

dimension, and consequently conventional ion saturation currents could not be seen.

A computer study of Langmuir probes whose dimensions are comparable to and

smaller than a Debye length has been made by J. G. Laframboise. 4 Using curve-fitting

techniques and the results given by Laframboise, we were able to analyze our probe

curves for plasma density.

The Langmuir probe used in making the density measurements is shown in

Figs. XIII-12 and XIII-13. The collecting surface was a 0.475 cm K-Monel ball

mounted on an L-shaped rod, the rod being insulated from the plasma particles. By

sliding the rod, the probe could be moved axially along the system. By rotating the rod

to different -positions (see Fig. XIII-13) the collecting sphere could be moved from a

position on the system axis to one outside the shell of the beam, thereby yielding density

information as a function of radius. In making the radial profile measurements, the

sphere was rotated through the beam. To a large extent, the density of the plasma is a

function of the probe electron current at a given voltage, the higher the current the

higher the density. Therefore when the sphere was in such a position that the beam

electrons could strike it, secondary electrons could leave the probe surface; this

could very well have caused a reduction of the total probe electron current. No attempt

has been made to compensate for these secondary electrons in the analysis of the probe

curve. Consequently, the values of plasma density for positions in the area of the beam

are probably low.
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As mentioned, profiles were taken during various modes of the instability. Very

little axial variation of the density was observed. Within 1-2 cm of the ends of the

interaction region the density dropped rapidly. In the remaining region the density

appeared constant within approximately 1570. Radially, however, two general types of

profiles were observed and are shown in Figs. XIII-14 and XIII-15. The experimental

conditions are given in the upper right-hand corners of the figures. B is the axialo
magnetic field in the interaction region; Po, the background gas pressure in mm Hg as

measured by an R. L. E. ionization gauge; 1o, the total DC beam current, and VII and

V , the beam energy along and across the magnetic field. The main difference between

these two profiles is that the density in Fig. XIII-14 is relatively uniform in the region

between the beam and the axis, while it drops slightly over the same region in

Fig. XIII-15. The plasma electron temperature was obtained in the conventional manner

from the exponential region of the Langmuir probe curves. The plasma electron tem-

perature for the conditions of Fig. XIII-14 was approximately 11 V, while the tempera-

ture for the conditions of Fig. XIII-15 was approximately 5 V. Therefore, the plasma

which existed under the conditions of Fig. XIII-14 could diffuse more easily across the

magnetic field.

These two density profiles are typical of the experimental results. Either the den-

sity was relatively uniform in the central region, or it dropped slightly on the axis.

Between the beam and the screen the density dropped rapidly. The probe allowed

measurements within approximately 1 cm of the screen.

Measurements of the RF Oscillations

During the beam-plasma instability which has been observed in the experiment,

narrow-band RF oscillations have been seen. 2 ' 3 These oscillations occur in a range

of frequencies between 30 MHz and 150 MHz. To study these oscillations, the ball at

the end of the sliding Langmuir probe was replaced by an antenna approximately 0. 5 cm

long. The antenna was oriented axially and the signal fed to a detector by a shielded cable

through an L-shaped glass rod as shown in Fig. XIII-16. With this probe measurements

of the RF signal could be made as a function of axial and radial position. Rotating this

probe in 4 also allowed investigation of the signal as a function of 0, the angle taking

as its axis the system axis (see Fig. XIII-16). The fixed RF probe shown in Fig. XIII-12

was used as a reference probe for the following measurements.

a. Quenching

While the experiment was running continuously the RF oscillations observed during

the interaction were amplitude-modulated. An example of this amplitude modulation,
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Fig. XIII-19. Wavelength analyzer.
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or quenching, is shown in Fig. XIII-17. The experimental conditions are shown. The

upper trace is a picture of the spectrum analyzer. The lower one is a picture of the

signal as observed on a Tektronix 585 oscilloscope. It can be seen that the modulation

could very well account for the spread in frequency observed on the spectrum analyzer.

The per cent and frequency of the modulation varied with experimental conditions.

b. Radial RF Profile

By rotating the sliding RF probe, radial profile data were taken. As the movable

probe was adjusted to different radial positions, the signal on the fixed RF probe was

monitored. The amplitude from the movable probe was divided by the amplitude on the

fixed probe. This relative amplitude as a function of radial position is shown in

Fig. XIII-18. Typically the field was maximum in the region of the beam and dropped

off as the probe was moved away.

c. Wavelength Measurements

The measurement of spatial wavelengths requires comparison of signals taken from

two different positions. When the signal under observation is an unstable oscillation of

a system it is crucial that the measuring device not couple the signal from one position

to the other. Various methods were attempted, and we finally used a technique similar

to the one described by Bousquet and his co-workers. 5

Signals from the two RF probes in our experiment were fed into amplifiers and then

to the two input ports of a balanced mixer (see Fig. XIII-19). The two input ports were

isolated by approximately 25 db. These signals were of the same frequency but of dif-

ferent time phase q (see Fig. XIII-19). The DC output of the mixer was then recorded

on a strip chart recorder, the displacement of the recorder being proportional to the

cosine of the phase difference between the two input signals. The strip chart was used

to average the DC signal for approximately 3 sec for each position of the movable

probe. The anrplitudes of the signals at the outputs of the amplifiers were monitored.

The DC output of the mixer was divided by their product. This normalized DC signal

will be referred to as the relative mixer output. As the position of the movable probe

was adjusted any variation in the relative mixer output was due only to the change in 4.

Standing-wave or convective variations of the signals would be removed by this normal-

ization procedure. By using a line stretcher to reproduce the phase shift caused by

moving the sliding probe, the direction of propagation was also determined.

Figure XIII-20 shows a typical result as the sliding probe was moved along the

direction of the axis of the system. The position z = 0 is at the collector. The antenna

was positioned about half way between the system axis and the beam. It can be seen
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from Fig. XIII-20 that the phase variation is not exactly uniform with z. One can,

however, associate y with kz and obtain an axial wavelength of approximately 25 cm.

Checking the direction of propagation showed that it was in the direction of beam flow.

Other observations have shown axial wavelengths as short as 10 cm.

With the sliding probe at a fixed position along the axis, rotating it through 360' in

i sampled the wave through 1800 in 0. The results of such measurements are shown

in Figs. XIII-21 and XIII-22. In these cases if 4b is associated with mO, Fig. XIII-21

is predominantly an m = 1 mode, while Fig. XIII-22 appears to be predominantly an

m = 2 mode. In both of these cases evidence of lower amplitude, higher order modes

can be seen. After checking the direction of propagation it was again observed that the

waves were propagating azimuthally in the direction of beam rotation.

From these measurements it has been possible to find a correlation between the

wavelength and the frequency of the RF oscillations. The frequency is apparently the

Doppler-shifted frequency given by m ce + kv , where ce is the electron-cyclotron
ce zce

frequency, and vz is the beam velocity along the magnetic field.

Current Work

At present, we are in the process of extending a theoretical analysis based on a

rigid-beam assumption. Various ways of modeling the plasma and geometry are being

investigated.

B. R. Kusse
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4. OSCILLATIONS IN AN INHOMOGENEOUS COLD PLASMA

General Results for Asymptotic Response

The response of a one-dimensional, cold inhomogeneous plasma to an initial dis-

placement perturbation 6 is 1

E(x, t) = n (x) cos [W (X)t], (1)
E0 P

o

where E is the electric field, e the charge on an electron, and n (x) the unperturbed

electron number density. The quantity cp (x) is the local plasma frequency.

In this report we present some general results on the asymptotic time dependence

of the voltage across the plasma, which is given by

V(t) = - e n (x) cos [w (x)t] dx. (2)
E o o

As t becomes large, the integral in equation (2) may be evaluated approximately by the

method of stationary phase. This method is based on the fact that the major contribu-

tion to the integral as t - m comes from the points where the "phase" [w p(x)t] is

stationary,2 that is, the points where one or more derivatives of [w p(x)t] vanish.

Under the assumption that the point x = x0 is such a stationary point, p (x) may be

expanded about this point as follows:

S(x) W (x ) + (x 1 (x )(x-x)n+ (3)
p p o) (n+ 1). p 0xo 0

In Eq. 3 the first n derivatives of c are assumed to vanish at x = x . The superscript
p o

(n+1) on w in (3) signifies the (n+l)th derivative of o (x). Using (2) and (3), we find as
p p

t -00

-2e6no(xo)rTT

V(t) cos Wp(Xo)t±i+ n odd (4)

(n+n1) E (l) n+ (x ) tn+1

(n+1)! p 0

1

V(t) 1 cos 2n+) cos [w(x)t] n even (5)

(n+1) E[ 1 W n+ 1 (x ) tn+l

o(n+1) p 0
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In Eq. 4, the plus sign is used if won + (X) > 0, and the minus sign if wn+ 1 (x ) < . Ap o p 0 11
general result that can be seen from (4) and (5) is that the voltage decays as (1/t)n + l

where n is the number of derivatives of w (x) that vanish at the stationary point x = x .
P on

To check these general results, consider the density no(x) - 2 For this distri-

bution, Op (x) has one stationary point at x = 0. Only the first derivative vanishes, so

n = 1. Also, we find that w (0) = - pc. Using Eq. 4, and the fact that 1(1/2) = N-, the

asymptotic voltage is

e6n
V(t) c C cos t- (6)Z It pc4

o pc

which agrees with Eq. 19 of our previous report, l where the asymptotic form of the

voltage had been obtained from the explicit solution for V(t).

Finally, we can use (4) to obtain the asymptotic response for the class of dis-

tributions

n
no(x) 2 k  k= 1, 2,...,

1+x

which was also discussed in our previous report. 1 For arbitrary k, it can be shown that

(2k-1) derivatives of c p(x) vanish at x = 0, and that the first nonvanishing derivative is

negative. Hence, Eq. 4 gives for the voltage as t -* 0

1 cos C 4-k(7)

t1 /2k

Overtaking Times for a Special Class of Densities

We have shown previously 3 that in an inhomogeneous plasma where the plasma

frequency is w (x), an overtaking will occur after an initial displacement perturbation

in a time that is

1
t 1 (1)o 6w'

P

at a point in the plasma defined by

Lil(X) = 0. (2)

In Eqs. 1 and 2, the primes indicate derivatives with respect to x, and 6 is the dis-

placement amplitude.
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For the density distributions

n
n (x) k k = 1, 2, (3)

1+x

the overtaking occurs at a point given by

S k-11/2k
Xo = k+ 1 ' (4)

and the time of overtaking is

1
2k -  33/2

1 1 2k-1, / 3k 3/2
L) t ) I (5)pc o 5 k \ k+l k+(5)

We note that as k - o, the density given by (3) approaches that of a uniform plasma,

with density nc distributed between x = -1 and x = +1. In this limit the plasma has sharp

boundaries and (4) predicts that the overtaking occurs at these boundaries (x = ±l).

Equation 5 predicts that the time of overtaking approaches zero in the limit (k- oo) of a

sharply bounded plasma.

H. M. Schneider, A. Bers
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5. STABILITY OF ELECTRON BEAMS WITH VELOCITY SHEAR

In high-perveance electron beams, the axial velocity of the electrons generally varies

with radius, because of the substantial space-charge potential depression. Many years

ago, it was speculated that this multistream configuration might result in growing waves

by a two-stream mechanism, 1 but later analyses of infinite beams with spatially inde-

pendent velocity distributions f 0 (v) were invoked as proof of stability in all cases for

which f (v) is single-peaked. In all available treatments of the actual sheared flow very
3,4special velocity profiles have been assumed.

In this report, we shall derive two necessary conditions for instability for electron

beams focused by infinite magnetic fields. Our approach parallels the general methods

used in the stability analysis of parallel flows of inviscid fluids,5 and indeed it was pri-

marily the analogy with sheared hydrodynamic flows that stimulated our re-evaluation

of the electron beam stability.

We consider a slab beam, infinite in the x and z directions, in which the electrons

move only in the z direction with a velocity v0z(y). We assume a dependence of

exp[j(wt-kz)], where k is real, and, for unstable modes, = + JcWi with w. < 0. The

differential equation for the small-signal potential, C, is

2 - k2 - [ y = 0, (1)

ay [w-kv0 z

where w (y) is the usual plasma frequency, 0 Using Eq. 1 without making any

assumptions about v0z(y) or w (y), we can derive two necessary conditions for insta-

bility (o. < 0).

THEOREM 1. A necessary condition for instability is

Co

(V oz) < r (v)ma x  (2)

Proof: Multiply Eq. 1 by c and integrate over all y from -o to +oo. Assume = 0

at ±. Then

2 2 12

- dy + k2 12 dy = k2 dy. (3)
00 y -00 00 [co-kv0z(y)] 2

The imaginary part of Eq. 3 yields

S2 (y) r (y)

k 2 v0 (y) 42 dy = 0. (4)

Oz k
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For wi f 0, this can only be true if Eq. 2 is satisfied, where (v 0 z)min and (v z)max are

the maximum and minimum velocities of the beam.

THEOREM 2. A necessary condition for instability is that somewhere over the cross

section of the electron beam,

d 2  1 p2 (vz)24 ay

[( -u)f] + f k (v -u) + v" + = 0. (6)dy 0z Oz-u  Oz v 0z- u

Multiply by f and integrate by parts over the beam (from y = yl to y = y2). Again

we assume that p - 0 as y - ±oo, or that there are conducting walls (at zero potential)

at some finite values of y. Then, the imaginary part of the resulting equation (for

o. f 0) yields
1

W21

Sinc 2y f 12 ( 1v 2 dy < 0. (7)

/o1 ,z-u

Since all of the remaining terms are positive definite, Eq. 7 is only satisfied if Eq. 5

is true over at least a portion of the beam.

R. J. Briggs, J. A. Rome
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C. Active Plasma Effects in Solids
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1. MICROWAVE INSTABILITIES IN n-InSb SUBJECTED TO DC

ELECTRIC AND MAGNETIC FIELDS

We are continuing the investigation of the emission of microwave radiation from

n-type InSb when a sample is subjected simultaneously to parallel DC electric and mag-
netic fields. It has been observed I that certain thresholds in DC electric and magnetic
fields must be exceeded in order to obtain any microwave emission. This emission con-
sists of discrete spikes superposed on a background continuum. This report illustrates
the frequency dependence of the threshold curve. Microwave emission occurs upward
and to the right of the threshold curve shown in Fig. XIII-23.

The threshold characteristics for the microwave emission have been studied from
30 MHz up to 3 GHz, and are illustrated in Fig. XIII-23. The open circles represent
the threshold for the onset of the spiky emission, while the open triangles repre-
sent the threshold for the onset of the continuum radiation. We observed that in
the low B-field regime the radiation consisted primarily of noise spikes, while in
the high B-field regime the radiation consisted of a very few spikes superposed on
a strong background continuum. The onset for this continuum radiation was very
abrupt, whereas the onset for the discrete noise spikes was very gradual.

In this work threshold was arbitrarily defined as that amount of microwave
emission which is just discernible above receiver noise. In the high B-field regime,
since the onset for the radiation was very abrupt, any frequency dependence of the
receiver noise would not greatly affect the threshold value of electric field. Whereas
in the high E-field regime, since the onset for the radiation (noise spikes) was
very gradual, any frequency dependence in the receiver noise will markedly affect
the threshold value of magnetic field. Since it was not possible to properly match
the impedance of the sample to the receiver at 30 MHz the thresholds for both elec-
tric and magnetic field were higher, as seen in Fig. XIII-23. To eliminate this

This work was supported by the National Science Foundation (Grant GK-2581).
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problem, we are repeating these threshold measurements, using a calibrated noise

standard and defining threshold at some equivalent noise temperature T .

These measurements were made on a sample (S1-141), 1 mm X 1 mm X 11. 2 mm,
5 2 -1 -1 14 -3

which had a mobility .= 5 .9 X 10 cm V sec , and a density n = 2. 6 X 10 cm . The

contacts were made by first electroplating In to the crystal ends and then soldering Au

wire with In solder to the plated surfaces. Using this technique for attaching the con-

tacts to our crystals, we found, contrary to the results of our previous work, that the

measured conductivity of the crystal agreed, within experimental error, with the manu-

facturer's published value.

E. V. George
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2. COLLISION-INDUCED INSTABILITY FOR HELICON WAVES

It is well known1 - 3 that collisions between the free particles of a gaseous plasma

can induce instabilities (i. e. , growth) in certain types of transverse electromagnetic

and longitudinal plasma waves. In maser language, the conditions for growth2 are

(a) that the population of particle energies be inverted, and (b) that the "weighted" life-

time of the upper state exceed that of the lower state. Requirement (a) is synonymous

with the statement that in some range of free-particle energies,

af(v)

a > 0, (1)

where f(v) is the distribution function for particle speeds. Condition (b) imposes certain

properties on the energy dependence of the collision frequency for momentum transfer,

v(v). In essence it asks that in the regime of particle speeds where Eq. 1 is satis-

fied, v(v) vary with v at a rate that is faster than that prescribed by a certain minimum

rate. Whether this variation of v(v) with v should be a decreasing or increasing func-

tion of v (av/av > 0) to obtain an instability, depends on the type of wave and frequency

being considered.

In this report we examine the characteristics of the aforementioned instability for

the special case of helicon (whistler) wave propagation in a solid. We assume a har-

monic wave of the form exp(jt -jk. r), where c is the frequency, and k the propaga-

tion vector. We then solve the appropriate dispersion relation for real k and complex

S(wo= r+jwi) and examine the unstable regime wo < 0. We are particularly interested

in the properties of the wave at the stability boundary (wi = 0) that separates the region

QPR No. 90 111



(XIII. PLASMAS AND CONTROLLED NUCLEAR FUSION)

of growing waves from the region of damped waves. We shall find that this stability

boundary exhibits (fortuitously or otherwise) several of the properties observed experi-

mentally,4, 5 when a sample of Indium Antimonide is subjected simultaneously to parallel

DC electric and magnetic fields.

Wave Propagation Along the Magnetic Field

The dispersion relation has the form

22 2k c = K. (2)

2 2 *
Here, K(w, w , oc, f) is the dielectric coefficient with w2 = Ne /m as the plasma fre-

p c p o
quency, wc = eB/m is the electron cyclotron frequency, and m is the effective mass

of the charged particles (taken to be isotropic). We assume throughout that there is only

one mobile species, the electrons. Solving the linearized Boltzmann equation for waves

propagating along the magnetic field direction, one then finds 6

2

p 0 1 1f 4 T 3
K lattice +~ v dv, (3)

0 (WW Wc) - j(v)

where, for simplicity, we have assumed that the electron velocity distribution function

is isotropic (only a function of speed v). The plus and minus signs in Eq. 3 refer to the

left- and right-hand circularly polarized waves, respectively. The low-frequency and

high-density limits,

2
WP

p
c ww> lattic e  (4

c

characterize helicon wave propagation. It so turns out that both the left- and right-hand

polarized waves can propagate in the presence of velocity-dependent collisions and that

both waves can exhibit a collision-induced instability. For the purpose of this report,
however, we shall consider the right-hand polarized wave only. Thus

2
p 0 1 af 4Tr 3

K -v v dv. (5)
S + jv(v) vc

To solve Eq. 5 we must choose a specific form for the distribution function. To keep

the solution tractable we assume a delta function of the form,

f =4 2 6(v-vo); fd 3 v = 1, (6)
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where, for the lack of a better name, we shall call vo the electron "drift" velocity. We

now substitute Eq. 6 in Eq. 5 and solve the resulting dispersion relation (2) for real k

and complex w = r + jWi. Assuming that «wi << ,r' a condition that is certainly well

satisfied at and near the instability boundary w = 0, we obtain for the real and imaginary

parts of w,

2 2k c

Or

2
cp

2 2
c + v (v )c 0

2

2 V 2' ov(v + V (v (Vo)
3 C~ O Vz(

2) W 2 V(v )
k c 2 " 2
(k r -c( r w+N 2 (~rI~r/ c o

2 2-v 0 V c v 0o)

+ (v 0 ) +V (v
c

where

dv(v)
V = dv VV (9)

It follows from Eq. 8 that the instability sets in when

o C2 + v (vo)o v' c o
3 2 2 (10)

SV(V c  V

The equality sign refers to the boundary i. = 0 where the system is just marginally stable.
1

GROWING WAVES

w<0

STABILITY BOUNDARY
DAMPED o i O
WAVES
w>0

-- ---

Fig. XIII-24.

Instability characteristics of helicon waves
propagating along the direction of the static
magnetic field.

0 I 2 3 4 5

W/ V ( V)

Substitution of Eq. 10 (with the equality sign) in Eq. 7 yields the following dispersion

relation for waves at the stability boundary:
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2

k2c 2  ac p
- 2 2 (at = 0). (11)

r 2 2
r a - v (v )c 0

The minus sign appearing in this equation is important. We see that as wc approaches

v(v ) the wavelength tends to zero. We also see that propagating waves can exist only
02 2

when w > v (v ). Thus it follows from Eq. 10 that the helicon wave instability requires
c 0

v' < 0, namely the collision frequency must decrease with increasing electron speed v o
Regions of stability and instability are illustrated in Fig. XIII-24. It is noteworthy that

the stability boundary is only a function of the strength of the magnetic field and of the

collision frequency; it is independent of the frequency of the wave or the plasma density

32

>28 (< 2 )
0 2 4 h:4 Fig. XIII-25.

REGION OF INSTABILITY Stability boundary for helicons propagating2 R a<O along the magnetic field in an unbounded
Z e - medium (a=0) and for guided helicons (a0)
H, traveling through a sample of effective

2 transverse dimension given by mT/ki, m=
z 08 - ,O-h

SSTBLTY 0 1, 2, 3 ... . The exponent h in v c: v is
04 BOUNDARES set equal to 4.

0 2 3 4 5 6 7 8 9 10

MAGNETIC FIELD IN UNITS OF Wc/ 
o

(provided, of course, that inequalities (4) are obeyed). We shall see that for waves in a

plasma of finite dimensions, however, the stability boundary becomes a function of both

w and O .

In order to see the detailed behavior of the stability boundary with varying magnetic

field and electron "drift" vo, we must choose a specific dependence of v(v) on v. We

assume a power law of the form

v(v) = v( ) h .  (12)

Here v and V are constants, and h is a positive number that must be greater than 3

for instability, as is readily seen by substituting Eq. 12 in Eq. 10. A plot of the elec-

tron "drift" as a function of magnetic field, showing the demarcation between stability

and instability, is given in Fig. XIII-25 (by the curve marked a (kc/w p)2 (o/r) = 0.

Wave Propagation at an Angle to the Magnetic Field (Guided Waves)

The dispersion relation for helicons propagating at an angle to the magnetic field
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is complicated, particularly when the solution must be obtained from the Boltzmann equa-

tion, as is the case when v is a function of particle speed. When v is a constant (and

nonlocal effects are neglected) an approximate solution7 based on the MHD transport

equations shows that wherever c appears in the dispersion equation it should be replaced

by wc cos 0, where 0 is the angle between the propagation constant k and the direction

of the magnetic field B. Such a replacement is valid as long as w << w cos 0.

We assume (with little justification) that what has been shown to be valid in the MHD

calculations is likewise valid in the kinetic approach. This has the merit of simplicity,

and when v is a constant, we recover the customarily used dispersion relation for heli-

cons. Thus in Eqs. 4, 5, 7, 8, 10, and 11 we make the replacement

W w cos 0
c C

k

c k (13)

w1 2

where k il and kl are the components of k resolved along and perpendicular to the mag-

netic field, respectively. In Fig. XIII-25 we show a plot of the stability boundary wi = 0

for three values of kl (the case kL = 0, a = 0 has been discussed already). By holding

k constant and allowing k 11to take on any value consistent with Eqs. 10, 11, and 13, we

are in fact considering the model of a guided helicon wave traveling in a sample of finite

transverse dimensions W such that klW = mr (m = 1, 2,...). Observe that when kl 0

the stability boundary does depend (albeit not very strongly) on the particular choice of

A and .

Standing Waves (Cavity Modes)

In an infinite unbounded medium, the collision-induced instability discussed above is

convective 8 which corresponds to spatial amplification over a range of real frequencies.

This is the situation discussed above. Suppose, however, that we have a sample of

material of finite length L (as well as width W as previously described), and that the

growing waves are reflected at the ends. If the reflection coefficient at the boundary is

large enough, the reflected wave provides an internal feedback and the system can behave

as an oscillator; this, in effect, is like an absolute instability, and corresponds to growth

in time at every point in space. Thus very large amplitude signals could build up from

noise at certain discrete frequencies at which standing waves are set up. We consider

this situation below.

Let L be the length of the sample in the direction of the DC magnetic field
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(and k l), and let W and T be its width and thickness perpendicular to the magnetic field,

respectively. Then for cavity resonances to occur, we have

k 'If k =rm k =n
SL' x W y

and (14)

cos 0 =

,2 
2 +n2 

1/2

where f, m, and n are positive integers. Using Eq. 14 in conjunction with relations (10),

(11) and (13), we can compute the mode structure of growing standing oscillations along

the stability boundary wo = 0. This structure is shown in Figs. XIII-26 and XIII-27 by

heavy dots. Figure XIII-26 illustrates the case of very large transverse dimensions

W = T -oo, whereas Fig. XIII-27 shows the situation for a sample whose width W is

small compared with its length L (in going from Fig. XIII-26 to Fig. XIII-27 we took

L/W = 10).

Discussion

The collision-induced instability for helicons described above has a number of

characteristics that qualitatively resemble the microwave and radio-frequency emission

of noise observed4, 5 when a sample of Indium Antimonide is subjected simultaneously

to parallel DC electric (E) and magnetic fields (B). The similarities are the following.

(i) Plots of experimentally derived threshold curves of E against B for onset of noise

are similar to our calculated stability boundaries of "drift" velocity vo vs B.

(ii) The observed emission5 comprises discrete narrow-bandwidth spikes and broad-

band "continuum" radiation. The observed spikes trace out a threshold curve of E vs

B similar to our stability boundary for standing waves (Figs. XIII-26 and XIII-27).

(iii) The measured 5 threshold curves are very insensitive to the frequency of

observation of the radiation from 30 MHz to 3000 MHz. The theoretical threshold curves

are likewise insensitive.

(iv) Measurements show 5 very few spikes at large magnetic fields and many at low

magnetic fields. The distribution of resonances shown in Figs. XIII-26 and XIII-27 are

qualitatively similar to those observed.

A detailed comparison between theory and experiment has yet to be made. To

make such a comparison meaningful, several improvements in the theory are neces-

sary. The functions f(v) and v(v) given by Eqs. 6 and 12 will have to be replaced

by quantities that are more closely related to the physical conditions of the experi-

ment. Furthermore, since it appears that helicons propagating at a fairly large
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angle to the mangetic field play an important role, the approximations c - w cos 0

and w << w cos 0 will have to be replaced by a more exact solution of the dispersion

relation.

G. Bekefi
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8. An absolute instability sets in when the following conditions can be satisfied simul-

taneously: D(w,k) = 0, 8D(w, k)/ak = 0, where the first relation represents the dis-
persion relation for the wave in question. For the helicon instability discussed here
these conditions are satisfied only at w = 0, k = 0, with the result that this absolute
instability at zero real frequency (wr) has also zero growth rate (wi = 0). Hence it

appears that this singular point in the frequency domain need not concern us further.

3. ACOUSTIC WAVE PROPAGATION AND AMPLIFICATION IN InSb

We are continuing our studies of acoustic wave amplification at microwave fre-

quencies, using high-mobility acoustically active materials in applied electric and mag-

neticfields. In this report we describe the acoustic wave propagation characteristics in

InSb, and its relevant elastic parameters that enter into the gain formulation given pre-

viously. , 2

The acoustic modes of any elastic solid are solutions of the following equations.

a2 aT.au. ij
1

2 ax (1)
at a

Fau k  au
T.= k = C. + (2)ii kjSkj= ijki 2 x k 8x

th
where p is the mass density, u. is the "i" component of acoustic material displace-

1

ment, Tij is the stress, Ski is the strain, Cijkj is the elastic tensor, and xk is a

coordinate direction. In contracted subscript notation, Hooke's law is written
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T. = C..S..
S 1r for a cubic crystal structure such as InSb is

In this notation, the elastic tensor for a cubic crystal structure such as InSb is

C 1 1  C12 C12

C 1 2 C1 1 C 1 2

C
1 2

0

C
1 2

0

C
1 1

0

0 0 0

0 0 0

0 0 0

C
4 4

0 0

0 0 0 0 C44 0

0 0 0 0 0 C 4 4

For InSb the elastic constants that enter into Eq. 4 are

C 1 1 = 6. 66 X 1010 nt/m 2

C 1 2 = 3. 35 X 1010 nt/m 2  (5)

C 4 4 = 3. 14 X 101 0 nt/m 2

If we assume wave solutions of the form exp(jwt - jq. r), we shall find that for any

one direction of q there will exist 3 orthogonal waves (modes) with 3 corresponding

wave velocities that are independent of frequency. In isotropic material one of the modes

is always longitudinal, that is, a compression wave with material motion parallel to the

direction of propagation (see Fig. XIII-28a). The two remaining modes are shear waves

or transverse waves having material motion perpendicular to the direction of propaga-

tion (see Fig. XIII-28b).

900

a.
LONGITUDINAL

b.
TRANSVERSE

Fig. XIII-28. Longitudinal and transverse waves in isotropic materials.
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Since InSb is anisotropic, pure transverse and pure longitudinal waves exist only if

the direction of propagation is along one of the high symmetry axes. For an arbitrary

direction of propagation, however, there always exists one mode that has its material

motion nearly parallel to the direction of propagation and thus is referred to as the

longitudinal mode. The two remaining modes are called transverse waves, since their

material displacement is nearly perpendicular to the direction of propagation. These

two modes are distinguished by their velocities and are referred to as fast or slow

transverse waves.

X 3 Y3[ool]

[001]
[,] [oo

[110]
[010] (b) Fig. XIII-29. Directions of wave propagation con-

X2 x3 sidered here.
[ioo] [110

(0) 2/ x2

xI

(c)

Because of the symmetry of InSb, we need only consider 1/48 of all the possible

directions of wave propagation. Figure XIII-29a shows one octant of space divided into

6 equivalent regions. In this figure, spatial directions are indicated by points on the

surface of a sphere. The direction is given by the radius vector to that point. The two

arcs shown in Fig. XIII-29b indicate the directions for which the equations were solved.

Note that the are from [111] to [001] is equivalent to the arc from [111] to [100]. This

choice of directions gives the solution for the entire boundary of one of the symmetrical

regions. Figure XIII-30 shows the propagation velocities for all three modes for these

directions of propagation. The abscissa of Fig. XIII-30 is labeled in terms of the

angles 0 and c as defined in Fig. XIII-29c.

Since the crystal structure of InSb lacks a center of symmetry, it exhibits piezo-

electricity. The piezoelectric polarization 4 caused by a strain S. is given by

P. = e..S (6)
1 1] J

The piezoelectric tensor for InSb is

S 0 0 e 14 0 0

e=0 0 0 0 el 4 0 (7)

0 0 0 0 0 e(
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Fig. XIII-32.

Longitudinal effective piezoelec-
tric constant as a function of the
direction of q.
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The measured value of el4 = 0. 06 coul./m 2 . 6

An acoustic wave has a strain associated with it whose magnitude is given by the

product of I and Iq. The spatial direction of the polarization induced by this strain

has no simple relation to the direction of propagation (see Fig. XIII-31). The longitudinal

component of P (the component parallel to -) is the only part of interest here and thus

one defines a longitudinal effective piezoelectric coefficient e as follows.

- e l Iq (8)
qjl

Figure XIII-32 shows e p/e14 for all three modes for the same directions of propagation

used in Fig. XIII-30.

The longitudinal effective piezoelectric constant is of interest because this component

couples the acoustic wave to free electrons in a manner that can lead to acoustic ampli-

fication if the free electrons have the proper DC drift velocity.1 Previously, the growth

rate has been given1 as

2
e w0  b 6

Vs PEL 2 2
6 +b _ + '

where b and 6 are factors depending on the direction and magnitude of the applied elec-

tric and magnetic fields, V s is the sound velocity, EL is the lattice dielectric constant,

0 2
= , a- is the DC conductivity, c =V/D, and D is the diffusion constant. This

L 1, 2
equation has a maximum with respect to w and also with respect to b and 5. Using

these results, we find that the elastic properties of the material enter differently into

the maximum gain expression for different frequency regimes:

2
e

p<
3' max

v
s

2
e

P (10)
2 mW=max
s

2
e

p

V max

where wmax = (WooD1/2) . Figures XIII-33, XIII-34, and XIII-35 show the relative gain
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parameters of Eq. 10 as a function of the angle of propagation. We note that the gain

is largest for the piezoelectrically active shear wave propagating in the [110] direction.

C. S. Hartmann, A. Bers
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4. SLOW HELICON PROPAGATION IN PERIODIC SEMICONDUCTOR

STRUCTURES

Introduction

In its simplest form, the helicon 1 is essentially a circularly polarized TEM wave

propagating along a static magnetic field in a semiconductor or metal. The phase veloc-

ity of the wave is reduced far below the usual free-space value because the free carriers

in the material produce an effective dielectric constant much greater than unity. A heli-

con may suffer only slight attenuation as it propagates through a material, even when

the wave frequency w is small compared with the collision frequency v, provided the

static magnetic field is sufficiently strong that the cyclotron frequency we c of the free

ccarriers satisfies the condition - >> 1. The simple helicon may propagate in materialsv
having a single species of free carriers, either electrons or holes, as well as in mate-

rials in which both free electrons and holes are present. The circular polarization of

the wave is of the same sense as the gyrations of the majority carriers about the static

magnetic field.

It is well known 2 that the phase velocity of an electromagnetic wave propagating

through a structure that is spatially periodic in the direction of propagation may be much

smaller than the phase velocity of a similar wave in an unbounded medium. This con-

cept may be extended to helicon waves propagating through spatially periodic semicon-

ductor structures. The "slow" helicon waves supported by such structures could form

the basis for carrier-wave interactions in semiconductors at microwave frequencies.
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In principle, carrier drift velocities much smaller than those that are necessary in an

unbounded structure could provide useful gain in a periodic structure. It was with these

ideas in mind that the analysis described here was undertaken.

Analysis of Helicon Propagation in a Simple Periodic Structure

Figure XIII-36 shows a simple periodic structure in which slow helicon propagation

can be analyzed. The structure is composed of semiconductor slabs in which a single

free-carrier species, nominally taken to be electrons, is present. Slabs having free-

carrier concentration n 1 and thickness aL alternate with slabs of concentration n 2 and

thickness (1-a)L, where 0 < a < 1, to give a spatial period of length L. Free carriers

in the slabs may be undrifted, or a z-directed electric field may be applied to give them

a finite drift velocity. A static magnetic field is applied in the z direction, perpendicular

to the interfaces between the slabs. The structure is assumed to be unbounded in the

x and y directions.

As the first step in the analysis of the structure, propagation of helicon waves in an

unbounded spatially uniform n-type semiconductor will be considered. The resulting

"infinite medium" solutions are then combined with appropriate boundary conditions to

yield solutions in the periodic structure. Maxwell's equations, together with a simple

transport model for the electrons, form the basis for the linearized solution. 3

CONTINUE e-
TO - co

-- CONTINUE
TO co

Z,B o

SPATIAL PERIOD = L

Fig. XIII-36. Semiconductor structure supporting slow helicon waves.
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Assuming nondrifting electrons, one can write

_H
- 1VXE 1 = o at (1)

8E
VXH E 1 (2)1 L at +  (2)

av
1  e

at [E +VX B o ] - VV (3)
m

J1 = noevl" (4)

In these equations, the subscript o denotes a steady-state or DC parameter, while the

subscript 1 denotes a small-signal variable. The parameters used in these equations

are identified below.

EI first-order electric field

H1 first-order magnetic field

J1 first-order current density

o permeability of free space

EL lattice permittivity (assumed isotropic)

1 first-order electron velocity

e electron charge

m effective electron mass (assumed isotropic)

v phenomenological collision frequency

n density of conduction electrons
o

B static magnetic field.

One then assumes wave solutions in which all first-order quantities vary as

exp[j(wt - q r)]. After the wave vector q is taken along the z-axis, and the solution is

specialized to the case of a right-circularly polarized TEM wave (Ely = -E1x' q 1
q'H 1 = 0), Eqs. 1-4 yield the dispersion relation:

2 w 2 F+ p
q = -2 W1 (5)

c j {(j(+v)-j5c
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where c = is the phase velocity of light through the lattice, o n e /m EL
q oEL

is the square of the electron plasma frequency, and wec = -eB /m* is the electron-

cyclotron frequency.

c c
In treating helicons it is usual to make the additional assumptions -- >> , >> 1

2

p
and- >> 1. Equation 5 may then be written in the approximate form

c

q 2 2 - j v (6)

For simplicity in the analysis that follows, losses will be neglected so that one may write

q 2 2 (7)

Note that diffusion effects have been neglected throughout the analysis. This is justified

for the particular case treated here because there is no fluctuation in electron density

associated with the propagation of the helicon wave.

There are limitations on the transport theory used here beyond the obvious ones

imposed by the approximations made to obtain Eq. 7. Effects depending on the detailed

nature of the electron velocity distribution are ignored. In particular, Landau damping

becomes important when qvT ~ v, where vT is the electron thermal velocity. Also,

cyclotron damping is expected to be important when woc - qvT <o<c + qvT. For the pur-

poses of the analysis presented here, the validity of the transport theory is ensured by

the conditions qvT << v and A < oc - qv T

The field solution in the periodic structure of Fig. XIII-36 can now be considered.

By Floquet's theorem,2 the general form of the solution for a particular field component

must be F(z) exp[j(ot-Poz)], where F(z) is a periodic function having the same spatial

period as the structure that is being analyzed.

F(z) = F(z-nL) for any integer n. (8)

The function F(z) may be written in a Fourier series of period L,

F(z) = > A exp[-j /T)z , (9)

n

so that the solution for one field component, for example Elx, may be written

QPR No. 90 127



(XIII. PLASMAS AND CONTROLLED NUCLEAR FUSION)

. 2nurrj(cot- ~zV -j- -z -JnZ
Eix= e 0  A n e L t  A n e n (10)

n n

2nTrwhere Pn = o L  The individual terms or '"space harmonics" of Eq. 10 represent

physically real components of the actual field solution. Clearly, a knowledge of po
implies a knowledge of the propagation constants of all space harmonics of the periodic

structure.

A solution of the form required by Floquet's theorem can be built up from the

"infinite medium" helicon solutions appropriate to the two semiconductor media com-

posing the periodic structure. From Eq. 7 there are two permitted plane-wave solutions

in each medium. If one requires the tangential electric and magnetic fields to be con-

tinuous at the interfaces between media and further imposes the periodicity condition (8),
then a determinantal equation in Po is obtained. The form is

(q+q2) 2 cos [(aql+(l-a)q)L] - (ql-qZ)2 cos [(aql-(1-a)q2)L ]cos (~P L) = qq(11)0 
4qq 2

Here,

2 1/2
qi c2 o o.

1

is the propagation constant for helicons in the ith medium. Equation 11 constitutes the
dispersion relation from which all of the space harmonics of the periodic structure can
be determined.

General Features of Helicon Propagation in the Periodic Structure

Figure XIII-37 shows a normalized plot of the dispersion relation Eq. 11 for the

2 /n 2case a = 0. 5 and -= = 1. 7. (It has been assumed that the only difference

between the two media, I and II, in the periodic structure is in their electron concen-

trations.) The qualitative features of the dispersion relation remain similar for a wide

range of the parameters a and q2 /ql, so this figure serves well as the basis for a gen-
eral description. The abscissa gives values of P oL, representing the wave vector for

the system. The ordinate is marked in units of (qlL)2 = p/c2c L2 and thus is
a frequency scale.

Only real values of Po are shown in Fig. XIII-37. Gaps in P3o(o) correspond to stop

bands in which o, for the lossless model used here, becomes imaginary. Within a stop
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band, the structure supports only evanescent waves. Transitions from a stop band to

a passband occur when cos (P0L) = ±1. Physically, these transitions correspond to the

(q L)
2 w  

c =05

q2a 7=

LANDAU
40AMPING L MIT

20

10

10 I 0  2

2L 99 CYCLOTRCN
D 0b Da MPING _IMT

c 1 N, IM Fig. XIII-37. Normalized dispersion relation for
-o, the periodic structure.

50

40

30

6 4 2 0 2 4 6 8 0 2 4 6 L8

v
T  V

T

simultaneous establishment of a pole or zero of the wave impedance, E x/H , in the plane
x y L

z = aL/2 and a pole or zero of the wave impedance in the plane z = (1+a) 2.

Occasionally, a particular choice of the parameters a and q 2 /q 1 leads to a degenerate

situation in which two adjacent passbands merge. In general, it is found that the width

of the stop bands relative to the passbands increases as the difference in electron den-

sity from medium I to medium II increases. This is reasonable, since stronger reflec-

tions occur at an interface between markedly different media.

From Fig. XIII-37 it is clear that w(Po) is a periodic function of po Both forward

( > 0, > 0 and backward > 0, a-o < waves occur in the system, because
(o to \o o /

of the continuous periodic variation of w( o). Also, if one notes that w cancels out of

the factors (ql+q 2 /4qlq and (ql-q 2 2 /4qlq 2 in Eq. 11, it is apparent that po( ) is a

aq 1 + (1-a)q
periodic function f whenever is a rational number.

aql - (1-a)q
2

It is interesting to compare the propagation constants of the helicon waves in media I

and II with Po as given by the dispersion relation (11). The "infinite medium" solu-

tions are indicated by dashed lines in Fig. XIII-37. One finds empirically for - < <3

that Fo in the first passband lies close to a weighted average of q 1 and q 2. The approxi-

mate relation
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Po = aql + (1-a)q 2  (12)

holds reasonably well. Similarly, this approximate relation gives values close to po
2in th s- 2 r

in the second passband for -- < P < and-T < P < L-, and values close to P inL o L L o L o
3n" < 2"n 2"n 311"the third passband for - < P < 2L and 2 < Po < L  The intersections of theL L L o L

approximation for po with the lines PoL = rr, 2Tr, 3Tr ... give reasonably good values for

the locations of the stop-band centers. The approximation becomes progressively worse

as a and q2 /q 1 deviate from the values 0. 5 and 1. 0, respectively. The form of the

weighted average suggests that each wave vector qi contributes to Po in proportion to

that fraction of the spatial period over which it is effective. An inspection of Eq. 11

shows, in fact, that Eq. 12 becomes exact as q1 - q 2 . The relation

2 2
Po Zaq1+ (1-a)q 2 ,

suggested by an expansion of Eq. 11 for small arguments of the cosine terms, is much

less useful than Eq. 12, since it is valid only over a restricted region near the origin.

The limits imposed on the solution by Landau and cyclotron damping are also indi-

cated in Fig. XIII-37. Solutions for w and po positive are correctly given by the trans-

port theory, as long as they lie well within the boundaries shown. It is also true, of

course, that the solution fails unless the predicted wavelengths are long compared with

the lattice constant of the semiconductor crystal used. This proves to be a less impor-

tant restriction in practice than those imposed by Landau and cyclotron damping.

Specialization of Results to the Case of n-InSb at 77 0 K

Previous work4 suggests that helicon propagation through the periodic structure of

Fig. XIII-36 will be stable in the presence of carrier drift, provided a single free-

carrier species is present. A detailed investigation of the structure with drifting car-

riers should be made to settle this question. It seems quite possible, however, that

the slow helicon waves supported by a periodic semiconductor structure may interact

with an adjacent drift current to produce useful gain. To get some idea of the actual

parameters involved in this interaction, values representing n-InSb at 77 0 K will be used.

Figure XIII-38 shows a prototype system in which an interaction with slow helicon

waves might be achieved. Microwave coupling circuits, not specified in detail, serve

to transfer electromagnetic waves to and from the periodic structure where the helicons

propagate. A separate semiconductor slab in which electrons drift under the influence

of a DC electric field is placed beside the periodic structure. From simple mode-

coupling ideas one might expect that space-charge waves on the drifting electron stream

would interact with the fringing fields from the slow helicon waves. With sufficiently

strong coupling and low system losses, growth of the helicon waves could occur. The
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EDGE VIEW
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A number of comments concerning this interaction should be made. First, the peri-
, 

6

IELECTRIC CONDUCTING SHEET (SHIELD)Fig. XIII-38. Prototype structure for obtaining intxperatience with slow helicon waves.
indicates thatnergy of the phaselectron stream would provideng the enmagnetic field isnecessary to increased as the transverse

A dimensionsumber of the strucmments concerning this interaction should be made. Firsth of the periodic structure should be

odicat leastructure must contain a large number ofseveral spatial periods to avoid excessive increases in helicon phas more than 10 veloity.

Finally, the details of the coupling from the helicon waves to the space-charge waves

of the drifting electrons have not been considered. The problem is complicated because

the fields in the periodic structure of finite width can be represented only by infinite

series. For the purposes of the approximate discussion given here, the slow helicons

will be represented by the dispersion relation (11), while the space-charge waves of the

drifting electrons will be represented by the single line w = qv o .

From coupling-of-modes theory one would expect interactions between the slow heli.

cons and the space-charge waves near points where w = qv 0 intersects 0(p ) as given by

Eq. 11. Consider Fig. XIII-37 which shows a typical plot of Eq. 11. In this plot, the

line w = qv appears as a line of slope voL( wi/c 2 0c). Using the parameters from
-9~0 =

Table XIII-2, this slope is roughly (7 X 10 -9)v 0 L, where a minimum magnetic field of

3 kG was assumed to ensure wc/V >> 1 as required for low-loss helicon propagation.

Since practical limitatioon the size of the periodic structure limit L to less than

I cm, and maximum drift velocities are likely to be of order 107 cm/sec, it it is obvious

that the line representing r = qv 0 has extremely small slope. For practical purposes
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Table XIII-2. Parameters for n-InSb at 77 K.

Electron Density

Mobility

Collision Frequency

Lattice Dielectric Constant

Electron Effective Mass

Plasma Frequency

Cyclotron Frequency

Electron Thermal
Velocity at 77 K

Phase Velocity of Light

n= 10 1 4 cm-3 (Region I)

4 = 6 X 105 cm2/V-sec

v = 1. 95 X 1011 -1v = 1.95 X 10 sec

= 16 E

m = 0.013 m

c

v T =

12 -1= 1. 15 X 10 sec

1. 17 X 1012 sec-1 per kG

5. 2 X 107 cm/sec

c = (EL o)-1/2 = 7. 5 X 109 cm/sec

LANDAU

DAMPING LIMIT

c CYCLOTRON

DAMPING LIMIT
SLOW HELICON WAVES,
FIRST PASS BAND-

0 27r Z
c  oc

L vT VT

Fig. XIII-39. Simplified picture of slow
helicon- space -charge -wave
interaction.

the plot can be represented as shown in Fig. XIII-39. Only the lowest passband is of

interest, and in this band the line w = qvo lies so low that the helicon waves appear in

Fig. XIII-39 as nearly vertical double lines at the locations Po = 0, 2 - 4
o L L

From Fig. XIII-39, the first interaction appears at a frequency fo v /L, which
is just the reciprocal of the electron transit time past one spatial period. Other inter-

actions occur near the frequencies nfo, n = 1, 2, 3..., but these are more likely to lie

outside the limits on the solution set by Landau and cyclotron damping. It is interesting

to determine requirements for interactions in the range 1 GHz to 10 GHz. Under the

assumption of a drift velocity v of 2 X 107 cm/sec for the electron stream, which

implies an electric field of 33. 3 V/cm in the drift region, L must be 2 X 10 - 3 cm to
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produce an interaction at 10 GHz. The corresponding value of P o = 2Tr/L = 3. 14 X

10+3 cm-1, is uncomfortably close to the Landau damping limit v/vT = 3. 75 X 103. But,

in InSb for temperatures below 77°K, v increases slightly while vT decreases, so

Landau damping could be avoided by using lower operating temperatures. The cyclotron

damping limit crosses Po = 2w/L at w = 3. 3 X 1012, under the assumption of a magnetic

field of 3 kG, so cyclotron damping should not be a problem. In any case, it could be

avoided by a sufficient increase in static magnetic field. For operation at 1 GHz with
-2

the same drift velocity, a spatial period, 2 X 10-2 cm long, is required. Then, Po =
2r 2 -1
-g-= 3. 14 X 10 cm , which is well within the Landau-damping limit at 77°K. As at
L
10 GHz, cyclotron damping is not a problem.

These preliminary results indicate that an interaction between slow helicon waves

and an adjacent drift current is possible at microwave frequencies. Conditions appear

somewhat more favorable at 1 GHz than at 10 GHz for structures made of high-purity

n-InSb. Several problems remain to be considered, however, before construction of a

prototype device could be planned. First, the effects of simple collisional losses on

helicon propagation in the periodic structure must be examined. This can be done by

retaining the term v/w c in Eq. 6 when the dispersion relation for the structure is found.

Next, the actual fields in the finite periodic structure and drift region of Fig. XIII-38,

and the coupling between the two, should be studied. This may prove to be a difficult

problem. One might suspect, however, that shorter spatial periods would lead to

weaker fringing fields and consequently weaker interaction in the structure. This sus-

picion, if correct, would strengthen the earlier conclusion that lower frequencies are

favored for obtaining useful interactions. Finally, fabrication of the periodic semicon-

ductor structure itself may be difficult. Individual slabs, 10- 3 cm thick, would be

impossibly fragile, and an increase to 10-2 cm would not be a great help. It might be

possible, through appropriate control of crystal growth, to form the periodic structure

in a single piece of material. This technique would produce a mechanically rugged

structure, but might impose an impossible accuracy requirement on the crystal-growing

process. These problems merit further study.

R. N. Wallace, A. Bers
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