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Abstract. The numerical evaluations of the four-center two-electron Coulomb inte-
grals are among the most time-consuming computations involved in molecular elec-
tronic structure calculations. In the present paper we extend the double exponential
(DE) transform method, previously developed for the numerical evaluation of three-
center one-electron molecular integrals [J. Lovrod, H. Safouhi, Molecular Physics (2019)
DOI:10.1030/0026867.2019.1619854], to four-center two-electron integrals. The
fast convergence properties analyzed in the numerical section illustrate the advantages
of the new approach.

1 Introduction

The double exponential (DE) transformation method for the numerical evaluation of three-center one-
electron molecular integrals [1] is extended in the present paper for the evaluation of the notoriously
difficult four-center molecular integrals.

The analytical expression of a four-center molecular integral, which can be derived via the Fourier
transform method, contains a semi-infinite integral J(s, t), the integrand of which is slowly decay-
ing and involves the spherical Bessel function jλ(vx). In particular, when λ and/or v are large, the
oscillations of the integrand can become huge, thus complicating the accurate approximation of the
integral by any of the existing numerical programming platforms. By applying the S transformation
[2] followed by the DE transformation [1], we obtain a bi-infinite integral, which can be approximated
by a trapezoidal rule. Relatively few collocation points were required in order to obtain accurate ap-
proximations.

2 General definitions and properties

The spherical Bessel function jλ(x) of order λ ∈ N0, [3, 4], is given by

jλ(x) = (−1)λxλ
(

d
xdx

)λ
j0(x) = (−1)λxλ

(
d

xdx

)λ ( sin x
x

)
. (1)
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The reduced Bessel function k̂n+ 1
2
(z) with half-integral order [5, 6] is given by

k̂n+ 1
2
(z) =

√
2
π

zn+ 1
2 Kn+ 1

2
(z) = zn e−z

n∑
j=0

(n + j)!
j! (n − j)!

1
(2 z) j , (2)

where n ∈ N, and where Kn+ 1
2
(z) is the modified Bessel function of the second kind [7].

The B functions [6, 8] are defined by

Bm
n,l(ζ,

#—r ) =
(ζr)l

2n+l(n + l)!
k̂n− 1

2
(ζr)Ym

l (θ #—r , ϕ #—r ), (3)

where n, l, m are the quantum numbers, Ym
l (θ, ϕ) denotes the surface spherical harmonic, which is

defined using the Condon-Shortley phase convention [9] and Pm
l (x) is the associated Legendre poly-

nomial of the lth degree and mth order.
The Fourier transform B̄m

n,l(ζ,
#—p ) of Bm

n,l(ζ,
#—r ) (3) is given by [10]:

B̄m
n,l =

√
2
π
ζ2n+l−1 (−i

∣∣∣p
∣∣∣)l

(ζ2 +
∣∣∣p
∣∣∣2)n+l+1

Ym
l (θ #—p , ϕ #—p ). (4)

The four center two-electron Coulomb integrals are given by:

Jn2l2m2,n4l4m4
n1l1m1,n3l3m3

=

∫
#—
R ,

#—
R ′

[
Bm1

n1,l1

(
ζ1,

#—
R − #   —

OA
)]∗ [

Bm3
n3,l3

(
ζ3,

#—
R ′ − #   —

OC
)]∗ 1∣∣∣∣ #—R − #—

R ′
∣∣∣∣

× Bm2
n2,l2

(
ζ2,

#—
R − #   —

OB
)

Bm4
n4,l4

(
ζ4,

#—
R ′ − #   —

OD
)

d
#—
R d

#—
R ′, (5)

where n, l and m are the quantum numbers, A, B, C and D are arbitrary points in the Euclidean space,
and O stands for the origin of the fixed coordinate system.

In the case where A = C, we obtain the expression of three-center exchange integrals. Two-center
exchange integrals correspond to the case where A = C and B = D.

By performing the translations of vectors
#   —
OA and

#   —
OD, we can write the four center two-electron

Coulomb integrals as follows:

Jn2l2m2
n1l1m1,n3l3m3

(ζ1, ζ2, ζ3, ζ4,
#—
R 21,

#—
R 31,

#—
R 34) =

∫ [
Bm1

n1,l1
(ζ1, #—r )

]∗ [
Bm3

n3,l3
(ζ3,

#—

r′ − #—
R 34)
]∗

× 1∣∣∣∣ #—r − #—r ′ − #—
R 31

∣∣∣∣
Bm2

n2,l2
(ζ2, #—r − #—

R 21)Bm4
n4,l4

(ζ4, #—r ′) d #—r d #—r ′. (6)

where #—r =
#—
R − #   —

OA, #—r ′ =
#—
R ′ − #   —

OD,
#—
R 12 =

#  —
BA,

#—
R 31 =

#  —
AC and

#—
R 34 =

#   —
DC.

3 Four-center two-electron Coulomb integrals

The analytical expression of the four-center two-electron Coulomb integrals in terms of B functions
can be derived via the Fourier transform method [11, 12]. The problematic semi-infinite oscillatory
integral involved in the obtained analytical expression is given by:

J(s, t) =
∫ ∞

0
xnx

k̂ν12

[
R21γ12(s, x)

]
[
γ12(s, x)

]nγ12

k̂ν34

[
R34γ34(t, x)

]
[
γ34(t, x)

]nγ34
jλ(vx) dx, (7)
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0
xnx

k̂ν12

[
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]
[
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[
R34γ34(t, x)

]
[
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where s, t ∈ [0, 1], nγ12 , nγ34 , nx, λ are positive integers, ν12 and ν34 are half integers and where:

[
γi j(α, x)

]2
= (1 − α)ζ2

i + αζ
2
j + α(1 − α)x2 and v = ‖(1 − s)

#—
R 21 + (1 − t)

#—
R 43 −

#—
R 41‖. (8)

The evaluation ofJ(s, t) is extremely difficult due to the spherical Bessel function jλ(vx), particularly
when λ and v are large. The rapid oscillations of the integrand of J(s, t) (7) can be observed in
Figure 1.

3.1 Application of the S transformation

The S transformation [2], converts the integrals involving spherical Bessel functions into sine integrals
by first repeatedly differentiating with respect to x followed by dividing by x. Using this transforma-
tion, J(s, t) Eq. (7) becomes

J(s, t) =
1
vλ+1

∫ ∞
0


(

d
xdx

)λ xnx+λ+1 k̂ν12

[
R21γ12(s, x)

]
[
γ12(s, x)

]nγ12

k̂ν34

[
R34γ34(t, x)

]
[
γ34(t, x)

]nγ34


 sin(vx) dx. (9)

Now by letting

g(s, t, x) ≡ g(x) =
(

d
xdx

)λ xnx+λ+1 k̂ν12

[
R21γ12(s, x)

]
[
γ12(s, x)

]nγ12

k̂ν34

[
R34γ34(t, x)

]
[
γ34(t, x)

]nγ34

 , (10)

the integral in (9) can be rewritten as:

J(s, t) =
1
vλ+1

∫ ∞
0
g(x) sin(vx) dx. (11)

Since g(x) in Eq. (10) is a slowly decaying analytic function on (0,∞) and v is constant, the
semi-infinite integral after the S transformation (11) is a suitable candidate for a DE transformation.

4 DE transformation

The DE transformations (see Ooura and Mori [13, 14] for details) provide an efficient way to approx-
imate integrals of the form:

I =
∫ ∞

0
f0(x) dx =

∫ ∞
0
g0(x) sin(vx) dx, (12)

where g0(x) is a slowly decaying analytic function on (0, +∞), and v is a constant. Let φ(τ) be such
that φ(τ) ∼ τ as τ → ∞ and φ(τ) ∼ 0 as τ → −∞, and let M be some large positive constant. The
variable transformation x = Mφ(τ) results in:

I = M
∫ ∞
−∞

f0(Mφ(τ))φ′(τ) dτ. (13)

The trapezoidal formula with a constant mesh size h:

I = Mh
∞∑

n=−∞
f0
(
Mφ (nh)

)
φ′ (nh) ≈ Mh

N+∑
n=N−

f0
(
Mφ (nh)

)
φ′ (nh) . (14)
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In our application, this summation is not symmetric. For future reference, we define:

S φn = Mh · f0
(
Mφ (nh)

)
φ′ (nh) =⇒ I ≈

N+∑
n=N−

S φn . (15)

as well as

IφN+ =
N+∑
n=0

S φn and IφN− =
−1∑

n=N−

S φn . (16)

Two possible DE transformation functions are [13, 14]:

φ1(τ) =
τ

1 − exp(−K sinh τ)
and φ2(τ) =

τ

1 − exp(−2x − α(1 − e−τ) − β(eτ − 1))
, (17)

where K = 6, α = β/
√

1 + M log(1 + M)/4π, and β = 1/4.

4.1 Application to the spherical Bessel integral

Since g(x) (10) is slowly decaying and analytic on (0,∞), the integral in (11) is of the same form as
the integral in (12). It follows that J(s, t) (11) can be approximated using the DE transformation.
Applying the transformation x = Mφ(τ) to (11) results in:

J(s, t) ≈ Mh
vλ+1

N+∑
n=N−

g

Mφ
(
nh +

θ

M

) φ′
(
nh +

θ

M

)
= JM(s, t), (18)

where g is defined in (10).

5 Numerical discussion

The approximation (18) was implemented in Python with the symbolic computation package SymPy,
and calculations were completed using IEEE 754 double precision. To ensure that our integrator
produced correct approximations, we compared our results with the output of a MATLAB built-in nu-
merical integration function that uses global adaptive quadrature. In our implementation, we truncated
the summation at N+ > 0 when

∣∣∣∣S φN+/I
φ
N+

∣∣∣∣ < 10−15 and at N− < 0 when
∣∣∣∣S φN−/I

φ
N−

∣∣∣∣ < 10−15.
As can be seen in Figure 1 and Figure 2, the S transformation converts the spherical Bessel inte-

grals into a simpler sine integral, but the integrand has slow convergence (Figure 2). The convergence
is greatly improved by applying a DE variable transformation x = Mφ(τ) (Figure 3). Because the
transformation induces rapid convergence to zero, sinc quadrature (trapezoidal rule) renders highly
efficient approximation, and very few collocation points are required to obtain accurate results when
using either transformation φ1(τ) or φ2(τ) (17). Usually, less collocation points are needed when using
the transformation φ2(τ) to approximate J(s, t) to a given degree of accuracy (Figure 4).

According to [13, 14], the relative error of the summation JM(s, t) (18) converges at a rate of
approximately:

εM ≈ exp
(
− c

h

)
, (19)

where c is a constant.
For our calculations, we set M = 65 for the transformation φ1(τ) and M = 25 for the transfor-

mation φ2(τ). These values were selected because they proved to be large enough to reach a high
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Figure 1. Integrand of J(s, t) (7) prior to any transformations
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Figure 2. The integrand of J(s, t) after the S transformation (9)
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Figure 3. The integrand of J(s, t) after the S and DE transformation φ1(τ) where s = 0.999, t = 0.001,
ν12 = ν34 = 7/2, nγ12 = nγ34 = 4, λ = nx = 2, ζ1 = ζ2 = ζ3 = ζ4 = 1.5, R12 = 2.5, R34 = 5.0. See row 4 of Table 1.
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Table 1. Values of J(s, t) obtained using the approximation (18) with transformations φ1(τ) and φ2(τ) (17),
where s = 0.999, ν34 = ν12, nγ34 = nγ12 , λ = nx, R12 = 2.5 and R34 = 5.0.

t ν12 nγ12 nx ζ1 ζ2 ζ3 ζ4 J(s, t) nφ1 nφ2 εφ1 εφ2

0.001 5/2 1 1 1.0 1.7 2.0 1.0 1.6376372546(−4) 151 96 8.28(−16) 8.28(−16)
0.001 5/2 3 1 1.0 1.2 1.2 1.0 3.5091942611(−4) 151 96 7.72(−16) 7.72(−16)
0.001 5/2 5 1 1.0 1.3 1.3 1.0 1.4108470503(−4) 151 96 5.76(−16) 7.68(−16)
0.001 7/2 4 2 1.5 1.5 1.5 1.5 2.0127191515(−5) 151 96 6.73(−16) 6.73(−16)
0.001 11/2 3 2 1.4 5.0 5.0 1.4 2.2954848344(−4) 151 96 8.27(−16) 8.27(−16)
0.001 11/2 9 3 8.0 1.7 3.5 1.5 2.2792788118(−4) 138 96 2.38(−16) 4.76(−16)
0.001 11/2 11 3 8.0 1.4 8.0 1.6 1.1451530646(−4) 137 96 1.18(−16) 3.55(−16)
0.001 13/2 5 4 2.0 5.0 2.5 1.7 1.1071757567(−5) 138 96 6.12(−16) 7.65(−16)
0.001 13/2 9 4 1.6 2.5 2.5 1.6 7.6994406050(−5) 138 96 1.76(−16) 5.28(−16)
0.001 17/2 11 4 2.7 2.0 9.0 2.7 1.3044343836(−3) 138 96 3.32(−16) 4.99(−16)
0.001 15/2 7 5 2.0 5.0 2.5 1.7 1.8101490653(−5) 124 93 3.74(−16) 5.62(−16)
0.001 17/2 7 4 2.0 6.0 3.0 2.0 2.4901494859(−4) 138 96 6.53(−16) 6.53(−16)
0.999 5/2 5 0 1.5 1.0 1.0 1.5 1.8791678120(−2) 152 96 1.85(−16) 9.23(−16)
0.999 13/2 3 2 1.9 6.5 1.9 6.5 1.5932421430(−4) 152 96 1.70(−16) 8.51(−16)
0.999 9/2 7 2 2.0 1.5 1.5 2.0 1.1638988180(−4) 151 96 6.99(−16) 6.99(−16)
0.999 9/2 6 3 6.0 1.4 1.4 5.0 1.2143687628(−4) 138 96 4.46(−16) 6.70(−16)
0.999 9/2 7 3 2.0 1.4 1.4 5.0 6.5370962436(−5) 138 96 4.15(−16) 6.22(−16)
• Numbers in parentheses represent powers of 10.
• nφ1 and nφ2 represent the total number of collocation points used for the summation in (18).
• The values for M used in the summation (18) are M = 65 for φ1(τ) and M = 25 for φ2(τ).
• εφ1 and εφ2 are the approximate relative errors as in (20) using transformation φ1 and φ2, respectively.

• Summation is truncated at N+ > 0 when
∣∣∣∣S φN+/I

φ
N+

∣∣∣∣ < 10−15 and at N− < 0 when
∣∣∣∣S φN−/I

φ
N−

∣∣∣∣ < 10−15.

accuracy, while still small enough to keep the calculation times low. The need for a higher value M
for the transformation φ1(τ) in comparison with the lower value M for the transformation φ2(τ) is a
feature similar to the results reported in [1] for the three-center molecular integrals.

We calculate the relative approximate error of the approximation by:

εφ =

∣∣∣∣∣∣∣∣
S φN+
IφN+

∣∣∣∣∣∣∣∣
(20)

where S φN+ and IφN+ are defined in (15) and (16), respectively.
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0.001 5/2 3 1 1.0 1.2 1.2 1.0 3.5091942611(−4) 151 96 7.72(−16) 7.72(−16)
0.001 5/2 5 1 1.0 1.3 1.3 1.0 1.4108470503(−4) 151 96 5.76(−16) 7.68(−16)
0.001 7/2 4 2 1.5 1.5 1.5 1.5 2.0127191515(−5) 151 96 6.73(−16) 6.73(−16)
0.001 11/2 3 2 1.4 5.0 5.0 1.4 2.2954848344(−4) 151 96 8.27(−16) 8.27(−16)
0.001 11/2 9 3 8.0 1.7 3.5 1.5 2.2792788118(−4) 138 96 2.38(−16) 4.76(−16)
0.001 11/2 11 3 8.0 1.4 8.0 1.6 1.1451530646(−4) 137 96 1.18(−16) 3.55(−16)
0.001 13/2 5 4 2.0 5.0 2.5 1.7 1.1071757567(−5) 138 96 6.12(−16) 7.65(−16)
0.001 13/2 9 4 1.6 2.5 2.5 1.6 7.6994406050(−5) 138 96 1.76(−16) 5.28(−16)
0.001 17/2 11 4 2.7 2.0 9.0 2.7 1.3044343836(−3) 138 96 3.32(−16) 4.99(−16)
0.001 15/2 7 5 2.0 5.0 2.5 1.7 1.8101490653(−5) 124 93 3.74(−16) 5.62(−16)
0.001 17/2 7 4 2.0 6.0 3.0 2.0 2.4901494859(−4) 138 96 6.53(−16) 6.53(−16)
0.999 5/2 5 0 1.5 1.0 1.0 1.5 1.8791678120(−2) 152 96 1.85(−16) 9.23(−16)
0.999 13/2 3 2 1.9 6.5 1.9 6.5 1.5932421430(−4) 152 96 1.70(−16) 8.51(−16)
0.999 9/2 7 2 2.0 1.5 1.5 2.0 1.1638988180(−4) 151 96 6.99(−16) 6.99(−16)
0.999 9/2 6 3 6.0 1.4 1.4 5.0 1.2143687628(−4) 138 96 4.46(−16) 6.70(−16)
0.999 9/2 7 3 2.0 1.4 1.4 5.0 6.5370962436(−5) 138 96 4.15(−16) 6.22(−16)
• Numbers in parentheses represent powers of 10.
• nφ1 and nφ2 represent the total number of collocation points used for the summation in (18).
• The values for M used in the summation (18) are M = 65 for φ1(τ) and M = 25 for φ2(τ).
• εφ1 and εφ2 are the approximate relative errors as in (20) using transformation φ1 and φ2, respectively.

• Summation is truncated at N+ > 0 when
∣∣∣∣S φN+/I

φ
N+

∣∣∣∣ < 10−15 and at N− < 0 when
∣∣∣∣S φN−/I

φ
N−

∣∣∣∣ < 10−15.

accuracy, while still small enough to keep the calculation times low. The need for a higher value M
for the transformation φ1(τ) in comparison with the lower value M for the transformation φ2(τ) is a
feature similar to the results reported in [1] for the three-center molecular integrals.

We calculate the relative approximate error of the approximation by:

εφ =

∣∣∣∣∣∣∣∣
S φN+
IφN+

∣∣∣∣∣∣∣∣
(20)

where S φN+ and IφN+ are defined in (15) and (16), respectively.
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Figure 4. The number of collocation points n needed to complete the approximation J(s, t) depending on the
natural logarithm of the relative error ε with the variable assignments from the first row of Table 1.

6 Conclusion

The computation of the multicenter two-electron Coulomb integrals involves the highest degree of
difficulty in the molecular electronic structure calculations. The present paper proposed an efficient
solution for the computation of the four-center two-electron Coulomb integrals expressed in terms of
B functions. To this aim, the starting expression of such an integral is successively transformed by a
procedure involving the following steps: (i) simplification using translations; (ii) use of the Fourier
transform method yielding an expression in terms of a highly oscillatory semi-infinite integral, the
integrand of which involves a spherical Bessel function; (iii) use of the S transform of Safouhi [2]
which simplifies the problem by transforming the spherical Bessel integral into a semi-infinite sine
integral with slowly decaying oscillatory integrand; (iv) use of the DE transformation of Ooura and
Mori [13, 14] which results in a bi-infinite integral with fast decaying integrand at both infinities; (v)
Sinc quadrature approximating the integral by a bi-infinite sum which can be truncated on both sides.
As demonstrated in the numerical section, relatively few collocation points are needed to approximate
such integrals to high accuracy.
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