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A. ERROR BOUNDS FOR THE TURBULENT OPTICAL

CHANNEL (I)

Subject to some reasonable assumptions, the atmospheric optical channel can be

modeled1 as shown in Fig. XV-1. We suppose that this channel is used to transmit one

of M orthogonal, equal-energy, equi-probable, (complex) waveforms S.(t); j = 1, .. -, M;

and that the receiver is to decide, with minimum error probability, which waveform was

transmitted. It is known 2 that, in the notation of Fig. XV-1,

evaluates the quantities

Lk = ln du p(u) I o (u y i k /N o ) exp -u2Ek/No }
i=l

where p(u) is the lognormal density 3

the appropriate receiver

for k = 1,... ,M

p(u) = (Z 2 2 -1/2 2 2 2exp[-( + nu)/p~u = 2weu ) exp[-(u +1nu) /2u

Yik = dt Yi(t) Sk(t)

Ek Ac Sk(t) dt
k 2

and I ( -) is the modified Bessel function.

to be that one, say n, for which

L > L kn k k= 1,... , M.

k= 1,..., M

k=l, ... , M.

The transmitted waveform is then presumed

(5)
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Fig. XV-1. Diversity representation of the turbulent
optical channel.
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Our objective is to establish the following bound to the error probability P[E]

P[E] < 2 -KE

where

E =max E (p) -

(6a)

(6b)

with

l+p
Eo(p) - ln

Sa
P

dy du p(u) I (Zu y p ) exp -u ap0

where

K = log 2 M

E k
a = -p N

Da
p

- K

(7a)

(7b)

(7 c)

As a first step in the derivation, we note the following statistical properties of the

yik conditioned upon the knowledge that the nth waveform is transmitted. First, all of

the Yik are statistically independent of each other. Second, for k t n, the yik are zero-

mean complex Gaussian random variables with

(yik)Z = 0 (8a)

and

(8b)
lyikl2 = 4EkNo.

Third, conditioned upon a knowledge of zi, yin is a complex Gaussian random variable

with

= 27. (9a)
Jin 1 n

(Yin-Yi 2 = 0

Yin-Yin)

(9b)

and
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Yin-YinJ 2 = 4EkNo . (9c)

The preceding properties imply that, conditioned upon the knowledge of the z. and of

the transmitted message, the Lk are statistically independent of each other. Moreover,

for k * n the Lk are identically distributed. Finally, the distribution for the Lk for k n

and also the distribution of Ln are independent of n. Consequently, the error probabil-

ity conditioned upon the z. is
1

P[er ] = 1 - dx po(xz) L dy pi(y) , (10)

where Po(x z) is the probability density of the random variable of Eq. 1 when the yik
are conditionally Gaussian with the moments of Eq. 9, and Pi(x) is the density of that

variable when the yik are conditionally Gaussian with the moments of Eq. 8.

To upper-bound P[E z], we first note that, for 0 < p < 1,

00 (M-1)
P[EIz] < dx Po(xZ) - L - dy pl(y) (11a)

x

< dx po(xZ) (M-1) dy pl (y) dy. (1l1b)

Or, upon introducing the Chernov bound,

dy pl(y) < exp -[tx-yl(t)] t > 0 (12 a)

with

y (t) = In dy p(y) exp ty] (12b)

we obtain

P[Elz] < MP  dx po(Xlz) exp -[ptx-p- l (t ) ] .  (13)

Averaging Eq. 13 over the random variables z i and defining

yo(s) = ln p (iz) dz dx po(xz) exp sx} (14)

yields

P[E] < M P exp[pyl(t)+y o(-t)]. (15)
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To complete the derivation, we require more explicit expressions for yl (t) and yo(s).

These can be obtained from Eqs. 1, 8, 9, 12, and 14 in conjunction with the properties

of the z..
1

The result is

Y1 (t) = D ln fs0 dy e - y c

y (s) = D ln dy e -

du p(u) I (2uTay7)

du p(u) I o(2u y )o p

exp -u a

exp -u2a .

(16a)

(16b)

We next set t = (l+p)-1 and combine Eqs. 15 and 16 to obtain

P[E] < M P exp(l+p) (-)

or, by virtue of Eqs. 16a and 6c,

P[E] < M P exp -KpE (p).

Finally, we express M as 2 K , change from base e to base 2, and maximize the neg-

ative of the exponent to obtain the upper bound of Eq. 6a.

R. S. Kennedy, E. V. Hoversten
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