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Abstract. In this paper, an efficient method based on Quasi-Newton’s method and
the simplified reproducing kernel method is proposed for solving nonlinear singular
boundary value problems. For the Quasi-Newton’s method the convergence order is
studied. The uniform convergence of the numerical solution as well as its derivatives
are also proved. Numerical examples are given to demonstrate the efficiency and
stability of the proposed method. The numerical results are compared with exact
solutions and the outcomes of other existing numerical methods.
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1 Introduction

We now consider the following nonlinear singular boundary value problem with
Neumann and Robin boundary conditions:{

u′′(x) + α
xu
′(x) = f(x, u(x)), 0 < x ≤ 1, α ≥ 1,

u′(0) = 0, au(1) + bu′(1) = c.
(1.1)
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Here we assume nonlinear function f(x, u) is continuous. ∂f
∂u exists and is

continuous and ∂f
∂u ≥ 0 for any 0 ≤ x ≤ 1.

Singular boundary value problems are frequent in a wide variety of applied
mathematics and engineering practices, such as chemical reactions, gas dynam-
ics, control and optimization theory, areas of biology and astrophysics [3, 13].
Due to the difficulty of singularity, it is usually impossible to obtain the ana-
lytical solution of such equations. Hence, it’s quite necessary to seek accurate
numerical solutions of equation (1.1). Taylor series method is applied and the
error analysis is presented in [2]. The authors [6] apply He’s variational itera-
tion method for solving equation (1.1). In [7], cubic spline method to analyze
equation (1.1) is presented. The authors [1] use B-spline functions to develop
a numerical method for computing approximation to the solution of equation
(1.1). A new approach implementing a modified decomposition method in
combination with the cubic B-spline collocation technique is introduced in [8].
Furthermore, the improved Adomian decomposition based on Green’s function
is discussed [18].The finite difference method and non-polynomial cubic spline
method are given in [16] and [17] respectively. Recently, a novel approach based
on the operational matrix of orthonormal Bernoulli polynomial has been pro-
posed [13]. Numerical solution of equation (1.1) based on improved differential
transform method(IDTM) has also been proposed by the authors in [10]. Fur-
thermore, the similar method based on IDTM works well for the other type of
nonlinear boundary value problems [11]. Although, these numerical methods
are efficient and have many advantages, a lot of computational work or a high
degree of smoothness are needed.

Recently, the theory of reproducing kernel has emerged as a powerful frame-
work in numerical analysis, differential and integral equations, and probability
and statistics [5]. Based on the reproducing kernel theory, the reproducing
kernel method has been used and modified by many authors [4,9,14,15,19]. In
this work, by combining with Newton iteration and modifying the reproduc-
ing kernel method, we will find the numerical solutions of equation (1.1). It’s
a different approach from those previous attempts. Our method can reduce
computation cost and provide highly accurate global approximate solutions.

2 The Quasi-Newton’s method

In this section, we describe the classical Newton method which is a very effective
tool for solving nonlinear problems. Consider a nonlinear equation f(x) = 0,
at the point (x0, f(x0)),we can get a tangent equation

y = f(x0) + f ′(x0)(x− x0).

Furthermore, the equation f(x) = 0 can be approximated by the following
equation

f(x0) + f ′(x0)(x− x0) = 0. (2.1)

Then, a Newton’s iterative formula for solving f(x) = 0 is defined as following:

xk+1 = xk −
f(xk)

f ′(xk)
, k = 0, 1, 2 . . . .
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Now we introduce the Fréchet derivative proposed by paper [12].

Definition 1. Let F : X → Y , where X and Y are Banach spaces. Then a
bounded and linear operator A : X → Y is called a Fréchet derivative of F at
u ∈ X if

lim
h→0

‖F(u+ h)−F(u)−A(h)‖
‖h‖

= 0,

for all h ∈ X denoted by F ′(u).

Lemma 1. If F is a linear operator, there holds F ′(u)=F , for all u ∈ X.

Proof. Since F is a linear operator, we have

lim
h→0

‖F(u+ h)−F(u)−F(h)‖
‖h‖

= lim
h→0

‖F(u) + F(h)−F(u)−F(h)‖
‖h‖

= 0.

Therefore, F ′(u)=F . ut

Especially, we can obtain the following Lemma.

Lemma 2. If F is a constant operator, then F ′(u) is a zero operator for all
u ∈ X.

Based on Fréchet derivative theory, we can get an approximate formula for
equation (1.1) which is similar to formula (2.1).

Consider an operator F : C2[0, 1]→ C[0, 1] as

F(u)
∆
= xu′′ + αu′+xN (u),

where N (u)=− f(x, u(x)). Equation (1.1) can be rewritten as{
F(u) = 0, 0 < x ≤ 1, α ≥ 1,

u′(0) = 0, au(1) + bu′(1) = c.

According the Definition (1) and Lemma (1), we can get the Fréchet derivative
of F at u0:

F ′(u0) : u 7→ xu′′ + αu′+xN ′(u0)u. (2.2)

Moreover the operator equation F(u) = 0 can be approximated by

F(u0) + F ′(u0)(u− u0) = 0. (2.3)

By substituting (2.2) into (2.3), we get the following linear equation

xu′′ + αu′+xN ′(u0)(u− u0)+xN (u0) = 0.

Therefore, we obtain a Quasi-Newton’s iterative process as the following form{
xu′′k+1 + αu′k+1+xN ′(uk)uk+1 = xN ′(uk)uk − xN (uk),

u′k(0) = 0, auk(1) + bu′k(1) = c, k = 0, 1, 2 . . .
(2.4)

Math. Model. Anal., 23(1):33–43, 2018.
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and its general form

F(uk) + F ′(uk)(uk+1 − uk) = 0. (2.5)

It can be seen equation (2.4) and equation (2.5) are linear equations. We
could get the numerical solution. Firstly we choose a simple polynomial func-
tion satisfying the boundary conditions as an initial function u0. Then by
substituting u0 into equation (2.4), we can get a solution u1. And after several
rounds of iteration, a high accuracy numerical result can be obtained. Next,
we analyze the the convergence of our iterative algorithm.

Theorem 1. Let Fréchet derivative F ′ and N be operators mentioned in equa-
tion (2.4)and equation (2.5). Assume that ‖F ′−1‖‖N ′′‖ = γ < 1. Further, the
initial function u0 satisfies that ‖u0 − u‖ < 1, where u is the exact solution
of equation (1.1). Then, iterative formula equation (2.4) or equation (2.5) is

convergence, and the absolute error satisfies |uk − u| ≤ ‖uk − u‖ ≤ γ2
k−1.

Proof. Based on equation (2.5), we have

uk+1 − uk = −[F ′(uk)]−1F(uk).

Supposing u(x) is a solution of F(u) = 0, and Ek(x) = uk(x)− u(x). Then,

Ek+1 = Ek − [F ′(uk)]−1(F(uk)−F(u)).

Thus,
F ′(uk)Ek+1 = F ′(uk)Ek − (F(uk)−F(u)). (2.6)

Note that

F ′(uk)Ek = xE′′k + αE′k + xN ′(uk)Ek, (2.7)

F(uk)−F(u) = xu′′k + αu′k + xN (uk)− (xu′′ + αu′ + xN (u))

= xE′′k + αE′k + x(N (uk)−N (u)) = xE′′k + αE′k + xN ′(ξk)Ek. (2.8)

Substituting (2.7), (2.8) into (2.6), we obtain

F ′(uk)Ek+1 = xE′′k + αE′k + xN ′(uk)Ek − (xE′′k + αE′k + xN ′(ξk)Ek)

= x(N ′(uk)−N ′(ξk))Ek = xN ′′(ηk)(uk − ξk)Ek.

As |uk − ξk| ≤ |uk − u| = |Ek|, we have

‖Ek+1‖ ≤ ‖F ′(uk)−1‖‖N ′′(ηk)‖‖Ek‖2 < γ‖Ek‖2.

Furthermore, we discuss the convergence order based on the mathematical
induction. Firstly,

‖E0‖ = ‖u0 − u‖ < 1 = γ2
0−1.

Let
‖Ek‖ = ‖uk − u‖ = γ2

k−1,

Hence,

‖Ek+1‖ < γ‖Ek‖2 = γ(γ2
k−1)2 = γ2

k+1−1.

Thus, the proof is completed. ut
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3 The simplified reproducing kernel method

In this section, we focus on solving the linear equation by simplified reproducing
kernel method. For convenience, we discuss the simplified equation of equation
(2.4) as follows {

xu′′(x) + αu′(x)+xa2(x)u = h(x),

u′(0) = 0, au(1) + bu′(1) = c,
(3.1)

where a2(x) = N ′(uk), h(x) = x(N ′(uk)uk −N (uk)).
Now, we introduce the reproducing kernel method for equation (3.1). From

[4], it follows that W 3
2 [0, 1] ,W 1

2 [0, 1] are reproducing kernel spaces with repro-
ducing kernel functions Rt(x) and rt(x) respectively. Considering an operator
L : W 3

2 [0, 1]→W 1
2 [0, 1],

Lu = xu′′(x) + αu′(x)+xa2(x)u(x),

equation (3.1) can be written as{
Lu = h(x),

u′(0) = 0, au(1) + bu′(1) = c.
(3.2)

Lemma 3. Let L∗ be a conjugate operator of L, then (L∗rt)(x) = (LRx)(t).

Taking a dense set {xi}∞i=1 on [0, 1], we get a function system {ψi(x)}∞i=1 in
W 3

2 , where ψi(x) = L∗rx(xi).

Theorem 2. {ψi(x)}ni=1 is linear independent.

For the proof, one may refer to [4].
Let

ϕ1(x) =
∂Rt(x)

∂t

∣∣∣t=0, ϕ2(x) = aR1(x) + b
∂Rt(x)

∂t

∣∣∣t=1,

Sn+2 = span
{
{ψi}n1 ∪ ϕ1 ∪ ϕ2

}
, S =

∞
∪
i=1

Si+2.

Then Sn+2 ⊂ S ⊂W 3
2 .

Theorem 3. Let u be the exact solution of the operator equation (3.2). Then
Pu is also the solution of (3.2), where P is the orthogonal project operator
from W 3

2 to S .

Let Pn+2 is the orthogonal project operator from W 3
2 to Sn+2.

Theorem 4. Pn+2u is the solution of the following linear equation system{
〈v, ψi〉 = h(xi), i = 1, 2, . . . n,

〈v, ϕ1〉 = 0, 〈v, ϕ2〉 = c.
(3.3)
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Proof.

〈Pn+2u(·), ψi(·)〉 = 〈u(·),Pn+2ψi(·)〉 = 〈u(·), ψi(·)〉 = 〈u(·),L∗rxi
(·)〉

= 〈Lu(·), rxi
(·)〉 = 〈h(·), rxi

(·)〉 = h(xi),

〈Pn+2u(·), ϕ1(·)〉 = 〈u(·),Pn+2ϕ1(·)〉 = 〈u(·), ϕ1(·)〉 =
〈
u(·), ∂Rx(·)

∂x
|x=0

〉
=

∂

∂x
〈u(·), Rx(·)〉 |x=0 =

∂

∂x
u(x) |x=0 = u′(0) = 0,

〈Pn+2u(·), ϕ2(·)〉 = 〈u(·),Pn+2ϕ2(·)〉 = 〈u(·), ϕ2(·)〉

=
〈
u(·), aR1(·) + b

∂Rx(·)
∂x

∣∣∣x=1

〉
= au(1) + b

∂

∂x
〈u(·), Rx(·)〉

∣∣∣x=1

= au(1) + b
∂

∂x
u(x)

∣∣∣x=1 = au(1) + bu′(1) = c.

ut

Denote un = Pn+2u. It can be shown that un is an approximate solution
of u. Furthermore, we can prove the uniform convergence.

Theorem 5. u
(i)
n (x) uniformly converge to u(i)(x) on [0, 1], i = 0, 1, 2.

Proof.

|u(i)n (x)− u(i)(x)| = |〈un(·)− u(·), Rx(·)〉(i)|

=
∣∣∣〈un(·)− u(·), ∂

i

∂xi
Rx(·)

〉∣∣∣ ≤ ‖un − u‖∥∥∥∂iRx
∂xi

∥∥∥.
Note that ‖∂

iRx

∂xi ‖ is bounded on [0, 1], thus

|u(i)n (x)− u(i)(x)| ≤M‖un − u‖ → 0.

The proof is completed. ut

Hence, un is a good approximate solution of (3.2). Since un ∈ Sn+2, we get

un =

n∑
i=1

αiψi+β1ϕ1+β2ϕ2. (3.4)

As un is the solution of equation (3.3), we have

n∑
j=1

αj 〈ψj , ψi〉+ β1 〈ϕ1, ψi〉+ β2 〈ϕ2, ψi〉 = h(xi), i = 1, 2, . . . n,

n∑
j=1

αj 〈ψj , ϕ1〉+ β1 〈ϕ1, ϕ1〉+ β2 〈ϕ2, ϕ1〉 = 0,

n∑
j=1

αj 〈ψj , ϕ2〉+ β1 〈ϕ1, ϕ2〉+ β2 〈ϕ2, ϕ2〉 = c.

(3.5)

The coefficients of formula (3.4) are the solution of linear equation system (3.5),
hence we get the approximate solution un of equation (3.1).
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4 Numerical examples

In this section, numerical examples are tested to demonstrate the efficiency and
stability of our method. All examples are computed by Mathematica 7.0.

Example 1. Consider the nonlinear differential equation [1, 18]:{
u′′(x) + 1

xu
′(x) = −eu(x), 0 < x < 1,

u′(0) = 0, u(1) = 0.

The exact solution is u(x) = 2 ln
(

4−2
√
2

(3−2
√
2)x2+1

)
. In our method, we need

to take a group of parameters, such as initial function u0(x),the number of
iterations k, and the number of dense points n. Let u0(x) = x4. The absolute
error function is E = |uk,n(x)− u(x)|, 0 < x ≤ 1, where uk,n(x) is the approx-
imate solution. Table 1 compares the results for this example by the proposed
method and the methods in [1, 18].

Table 1. Maximum absolute error for Example 1

k n E n E in [18] n E in [1]

3 n=4 5.67E-05 12 4.01E-04 20 3.16E-05
3 n=6 3.14E-06 16 2.54E-05 40 7.87E-06
3 n=8 6.35E-07 20 2.10E-06 60 3.50E-06

Figure 1 shows comparison of exact and approximate solution for k = 3,
n = 8 and also plots the absolute errors for k = 3, n = 4, 6, 8. We can see that
the presented method converges rapidly to the exact solution by iterating only
three times.
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Figure 1. Comparison of exact solution u(x) and approximate solution u3,8(x) (left side)
and E (right side) for Example 1(k = 3).

Example 2. Consider the nonlinear singular boundary value problem describing
the equilibrium of the isothermal gas sphere [3, 10,18]{

u′′(x) + 2
xu
′(x) = −u5(x), 0 < x < 1,

u′(0) = 0, u(1) =
√

3/4.

Math. Model. Anal., 23(1):33–43, 2018.
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The exact solution is u(x) =
√

3/(3 + x2). Let u0(x) = x2. Table 2 shows the
comparisons of the presented method and the method used in [3,10,18]. After
three iterations, the maximal absolute error can reach 10−7 at n=10. We have
higher accuracy compared to the other mentioned methods.

Figure 2 gives comparison of u(x) and u4,10(x) and also shows the absolute
errors for k = 3, n = 4, 6, 10. It indicates that the curves of the exact solution
and the approximate solution are overlap. The approximate solution is get-
ting more and more accurate as the number of dense points n increases. Our
approach has good convergence and precision for numerical calculation.

Table 2. Maximum absolute error for Example 2

k n E n E in [18] n E in [3] n E in [10]

4 n = 4 3.25E-05 12 1.40E-03 16 3.64E-04 12 1.68E-04
4 n = 6 6.74E-06 16 2.47E-04 32 2.49E-05 16 1.65E-05
4 n = 10 7.30E-07 20 4.86E-05 64 1.60E-06 20 1.66E-06

Figure 2 gives comparison of u(x) and u4,10(x) and also shows the absolute
errors for k = 3, n = 4, 6, 10. It indicates that the curves of the exact solution
and the approximate solution are overlap. The approximate solution is get-
ting more and more accurate as the number of dense points n increases. Our
approach has good convergence and precision for numerical calculation.
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Figure 2. Comparison of exact solution u(x) and approximate solution u4,10(x) (left
side) and E (right side) for Example 2(k = 4).

Example 3. Consider the nonlinear singular boundary value problem studying
the distribution of heat sources in the human head [7, 10,13,16].{

u′′(x) + 2
xu
′(x) = −e−u(x), 0 < x ≤ 1,

u′(0) = 0, u(1) + u′(1) = 0.
(4.1)

Let u0(x) = x3. Since the exact solution of equation (4.1) is not known,we
calculate function values of approximate solution in ten points which are pre-
sented in [7,10,13,16]. The numerical results for k = 3, n = 10 are listed in Ta-
ble 3. The proposed method is in good agreement to other methods [7,10,13,16].
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Table 3. Numerical results for Example 3

x Method in [16] Method in [7] Method in [13] Method in [10] Present Method

0 0.3675169710 0.3675179806 0.3675152742 0.3675167997 0.3675166189
0.1 0.3663623697 0.3663634922 0.3663623292 0.3663623137 0.3663622527
0.2 0.3628941066 0.3628952219 0.3628940661 0.3628940507 0.3628940189
0.3 0.3570975862 0.3570986892 0.3570975457 0.3570975301 0.3570975087
0.4 0.3489484612 0.3489495463 0.3489484206 0.3489484049 0.3489483815
0.5 0.3384121893 0.3384132503 0.3384121487 0.3384121330 0.3384121172
0.6 0.3254435631 0.3254445926 0.3254435224 0.3254435063 0.3254434945
0.7 0.3099860810 0.3099870706 0.3099860402 0.3099860240 0.3099860196
0.8 0.2919711440 0.2919720836 0.2919711030 0.2919710864 0.2919711009
0.9 0.2713170512 0.2713179290 0.2713170101 0.2713169936 0.2713170010
1.0 0.2479277646 0.2479285660 0.2479277233 0.2479277073 0.2479277424

Example 4. Consider the nonlinear singular boundary value problem arising in
the study of steady-state oxygen diffusion in a spherical cell [1, 10,13,17].{

u′′(x) + α
xu
′(x) = δu(x)

u(x)+µ , δ > 0, µ > 0,

u′(0) = 0, 5u(1) + 5u′(1) = 5,
(4.2)

where δ and µ are often taken as 0.76129 and 0.03119, respectively. And we
take the value of α as 2. This equation does not have exact solution. Instead,
we discuss the absolute residual error function which is a measure of how well
the approximation satisfies the equation (4.2) as

R =

∣∣∣∣u′′k,n +
α

x
u′k,n −

δuk,n
uk,n + µ

∣∣∣∣ , 0 < x ≤ 1.

Taking u0(x) = x3, a good approximation is obtained for k = 4, n = 10. The
numerical results of different methods are listed in Table 4.

Table 4. Numerical results for Example 4

x Method in [17] Method in [1] Method in [13] Method in [10] Present Method

0 0.8284833089 0.8284832730 0.8284832819 0.8284832870 0.8284833754
0.1 0.8297060779 0.8297060752 0.8297060924 0.8297060890 0.8297061155
0.2 0.8333747471 0.8333747169 0.8333747336 0.8333747303 0.8333747353
0.3 0.8394899001 0.8394898981 0.8394899140 0.8394899106 0.8394899068
0.4 0.8480527729 0.8480527704 0.8480527850 0.8480527816 0.8480527759
0.5 0.8590649189 0.8590649140 0.8590649272 0.8590649239 0.8590649167
0.6 0.8725283096 0.8725283084 0.8725283200 0.8725283166 0.8725283100
0.7 0.8884452969 0.8884452959 0.8884453056 0.8884453023 0.8884452975
0.8 0.9068185417 0.9068185403 0.9068185481 0.9068185448 0.9068185422
0.9 0.9276509838 0.9276509825 0.9276509884 0.9276509853 0.9276509849
1.0 0.9509457969 0.9509457946 0.9509457985 0.9509457960 0.9509457969

Table 5 describes the comparison of absolute residual error between pre-
sented method and IDTM [10]. The implementation of our approach in good
line with existing methods [1, 10,13,17] has a fast convergence speed and high
accuracy.

Math. Model. Anal., 23(1):33–43, 2018.
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Table 5. Maximum absolute residual error for Example 4

k n R n R in [10]

4 n = 4 4.25E-05 4 4.84E-04
4 n = 6 6.14E-06 6 6.78E-05
4 n = 8 1.38E-06 8 9.45E-06
4 n = 10 8.39E-07 10 1.31E-06

5 Conclusions

To summarize, in this paper, we propose a new approach for solving nonlin-
ear singular boundary value problem. First, we reduce the nonlinear problem
to a linear problem based on the Quasi-Newton’s method. And second, the
simplified reproducing kernel method which has less computation than before
is presented to solve the linear problem. The approximate solution can be
obtained after iterative computation. Our method is tested by four examples
arising in applied science. The numerical results show that our method has
higher accuracy, less calculation and high efficiency. It is worthy to note that
the approach detailed here can be readily adapted to the case of nonlinear inte-
gral and integro-differential equation with various boundary value conditions.
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