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Abstract

At the time of writing, the final preparation toward LHC startup is ongoing. All the magnets of the
machine have been installed and are currently being cooled.Most sub-detectors of the four experi-
ments situated at the LHC ring, are installed in their final positions and are being integrated into their
respective data aquisition systems.

This thesis concerns itself with the ATLAS experiment, focussing on a sub-detector named the Transi-
tion Radiation Tracker (TRT). Some attention is given to thehardware testing of the detector modules,
but the main focus lies on the simulation of the detector and the comparison of the simulation with
test-beam data, as well as with data collected during the commisioning phase using cosmic muons.

There is little doubt that LHC will bring insight with respect to the understanding of the universe on
the fundamental level. In particular, it is anticipated that light will be shed on the origin of mass which
according to our current understanding proceeds via the Higgs mechanism. Either the corresponding
particle; the Higgs boson is discovered by the LHC experiments, or its existence will be strongly
disfavoured. In either case, a key measurement to understand the origin of mass, is theW boson, since
it is intimitely linked to the Higgs mechanism. By precise measuring theW boson mass, the allowed
mass range for the Higgs boson can be constrained, both within the Standard Model and in its various
extensions. Thus, regardless of the results of the Higgs search, a precise determination of theW mass
is of paramount importance, and in this thesis methods are presented aiming at measurering theW
mass to the highest possible precision with the ATLAS experiment.

The thesis is structured as follows. In Part I the electroweak sector of the Standard Model is reviewed
and various extensions are discussed. Emphasis is put on theW mass and its relations to other observ-
ables. After a short introduction to the ATLAS experiment, the prospects for aW mass measurement
are reviewed in Part II. In Part III the simulation of the Transition Radiation Tracker is discussed and
results are compared to test-beam measurements. Comparison of simulation to measurements pro-
ceeds in Part IV, in which a number of somewhat practical problems faced during the commissioning
period are discussed.
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Johanne Kirstine Klinkby

(1911 – 2007)



Contents

I Introduction 1

1 The Standard Model bosons 2

1.1 Historic review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 2

1.2 Elements of the electroweak theory . . . . . . . . . . . . . . . . . .. . . . . . . . . 3

1.3 Introducing masses: Spontaneous symmetry breaking . . .. . . . . . . . . . . . . . 4

2 Theoretical and experimental status 7

2.1 Problems of the Standard Model . . . . . . . . . . . . . . . . . . . . . .. . . . . . 9

2.2 Super symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 9

2.3 Extra Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 13

2.4 Future prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 14

3 The ATLAS experiment at the LHC 15

3.1 The Large Hadron Collider . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 15

3.2 The ATLAS experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 16

3.2.1 The Inner Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 17

3.2.2 Calorimeters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

3.2.3 The Muon System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.4 The magnet system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22

3.2.5 Triggering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22

II W mass analysis 25

4 Introduction to the W mass analysis 26

5 W mass measurement 28

5.1 W Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28



II CONTENTS

5.2 W reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3 Outline and strategy of the analysis . . . . . . . . . . . . . . . . .. . . . . . . . . . 30

5.3.1 Simulation and data sets . . . . . . . . . . . . . . . . . . . . . . . . .. . . 30

5.3.2 Event selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 31

5.3.3 Input toW mass fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3.4 Fitting theW mass with templates . . . . . . . . . . . . . . . . . . . . . . . 33

5.3.5 Required inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 34

5.4 Fitting theWmass with templates - electron channel . . . . . . . . . . . . . . . . . 35

5.4.1 Modeling templates forWmass fit . . . . . . . . . . . . . . . . . . . . . . . 35

5.4.2 Fits toMW using templates: Validation of the method - electron channel . . . 36

5.4.3 Sensitivity ofMfit
W to the template components . . . . . . . . . . . . . . . . . 38

5.4.4 Comparison ofWandZ events . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.5 Fitting theWmass with templates - muon channel . . . . . . . . . . . . . . . . . . . 41

5.5.1 W decays in the muon channel . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.5.2 Fitting the transverseW mass . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.5.3 Fitting the transverseW mass using theZ events for calibration . . . . . . . . 46

5.6 Statistical uncertainty as a function of fitting range . .. . . . . . . . . . . . . . . . 48

6 Calibration using Z events 49

6.1 Lepton scale and resolution . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 49

6.2 Lepton performance determinationin situ . . . . . . . . . . . . . . . . . . . . . . . 50

6.2.1 Average scale and resolution . . . . . . . . . . . . . . . . . . . . .. . . . . 50

6.2.2 Differential calibration . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 51

6.3 Recoil scale and resolution . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 53

6.4 Refined estimates: Neutrinofication . . . . . . . . . . . . . . . . .. . . . . . . . . 56

6.4.1 Neutrinofication performance . . . . . . . . . . . . . . . . . . . .. . . . . 57

6.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.5 Summary of experimental uncertainties atL = 10 fb−1 . . . . . . . . . . . . . . . . 60

7 Theoretical uncertainties 62

7.1 W boson width:δMW(ΓW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.2 QED final state radiation:δMW(QED) . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.3 W distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.3.1 Rapidity distribution:δMW(yW) . . . . . . . . . . . . . . . . . . . . . . . . 65

7.3.2 Transverse momentum distribution:δMW(pW
T ) . . . . . . . . . . . . . . . . 69



CONTENTS III

8 Environmental uncertainties 71

8.1 Backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 71

8.2 Pileup and underlying event . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 74

8.3 Beam crossing angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 74

8.4 Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 76

8.4.1 Absolute scale vs. PDFs . . . . . . . . . . . . . . . . . . . . . . . . . .. . 76

8.4.2 Absolute scale vs. QED corrections . . . . . . . . . . . . . . . .. . . . . . 77

8.5 Impact on theW mass measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8.6 Conclusions and perspectives . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 79

III Simulation of the Transition Radiation Tracker 83

9 Simulation and detector description 85

9.1 Detector description . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 86

9.1.1 As built detector geometry . . . . . . . . . . . . . . . . . . . . . . .. . . . 89

10 TRT digitization 94

10.1 TRT thresholds and digitization scheme . . . . . . . . . . . . .. . . . . . . . . . . 94

10.2 General digitization outline . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 95

10.3 The physics of electron drift - A simplified model . . . . . .. . . . . . . . . . . . . 95

10.4 Determining the initial number of electrons in a cluster . . . . . . . . . . . . . . . . 100

10.5 Recapture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 100

10.6 Gain amplification and drift time spread . . . . . . . . . . . . .. . . . . . . . . . . 102

10.7 Signal shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 104

11 Comparison with data 106

11.1 The 2004 Combined Test Beam . . . . . . . . . . . . . . . . . . . . . . . .. . . . 106

11.2 r− t relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

11.3 Efficiency and Time over Threshold comparison between data and MC . . . . . . . . 108

11.3.1 Data selection and analysis cuts . . . . . . . . . . . . . . . . .. . . . . . . 108

11.3.2 Efficiency in data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 110

11.3.3 Features of a simple efficiency parametrization . . . .. . . . . . . . . . . . 112

11.4 Efficiency and time-over-threshold distributions in MC . . . . . . . . . . . . . . . . 116

11.5 Comparison between simple physics model andr− t relationship . . . . . . . . . . . 118

11.6 Resolution in data and MC . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 120



IV CONTENTS

12 Transition radiation 122

12.1 Theory of transition radiation . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 122

12.2 Simulating transition radiation . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 124

12.2.1 Step 1: Tuning thedE/dxtail . . . . . . . . . . . . . . . . . . . . . . . . . . 125

12.2.2 Step 2: The transition radiation onset . . . . . . . . . . . .. . . . . . . . . 126

12.2.3 Step 3: The saturation level . . . . . . . . . . . . . . . . . . . . .. . . . . 127

12.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 127

13 Late conversions 129

13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 129

13.2 Theory of photon conversions . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 130

13.3 Motivations for studieng late conversions . . . . . . . . . .. . . . . . . . . . . . . 131

13.4 Late conversions and the TRT Conversion Finder . . . . . . .. . . . . . . . . . . . 133

13.4.1 Coordinate transformations . . . . . . . . . . . . . . . . . . . .. . . . . . . 134

13.4.2 Lagrange multipliers . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 135

13.4.3 Implementation and preselection . . . . . . . . . . . . . . . .. . . . . . . . 136

13.4.4 Results and preliminary optimization . . . . . . . . . . . .. . . . . . . . . 136

13.4.5 Full ATLAS events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 138

13.5 Applications of the TRT Conversion Finder . . . . . . . . . . .. . . . . . . . . . . 138

13.5.1 Material mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 138

13.5.2 Higgs search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139

13.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 139

IV Towards data taking 141

14 Acceptance testing of barrel modules 143

14.1 TRT Barrel acceptance tests . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 143

14.2 High voltage tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 144

15 TRT Conditions and Calibration tools 146

15.1 TRT Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 146

15.2 TRT Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 149

16 A study of TRT noise in 2004 stand-alone Test Beam data 151

16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 151



CONTENTS V

16.2 2004 Test Beam data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 151

16.2.1 Initial selection of noise hits . . . . . . . . . . . . . . . . . .. . . . . . . . 152

16.2.2 Removal of hits in abnormal straws . . . . . . . . . . . . . . . .. . . . . . 154

16.2.3 Noise digit features . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 156

16.3 Channel to channel correlations in noise levels . . . . . .. . . . . . . . . . . . . . . 159

16.3.1 Module to module variations . . . . . . . . . . . . . . . . . . . . .. . . . . 160

16.3.2 The HV pad level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161

16.3.3 The straw level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 161

16.3.4 Noise induced channel to channel crosstalk . . . . . . . .. . . . . . . . . . 163

16.3.5 Dead channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164

16.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 165

17 TRT noise in cosmic events from the ATLAS pit 166

18 Inner Detector Commissioning 170

18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 171

18.2 SR-1 Cosmics: Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 171

18.3 SR-1 cosmics: Simulation . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 173

18.4 Pit Cosmic: Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 173

18.5 Pit cosmics: Simulation . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 175

18.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 176

19 Summery and outlook 177

Acknowledgments 179

Konklusion på dansk 180

Bibliography 181

Appendix 192

A W mass analysis 192

A.1 Validation of the template method :η andpl
T bins . . . . . . . . . . . . . . . . . . . 192

A.2 Validation of the template method: Fits of smearing distributions . . . . . . . . . . . 192

A.3 /ET resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

B TRT Digitization 198



VI CONTENTS

B.1 Garfield distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 198

B.2 Comparison of TRT digitization to Combined Test Beam results . . . . . . . . . . . 198



List of Figures

1.3.1 Higgs potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 5

1.3.2 Contributions to∆r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.0.1 Electroweak fits toMH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.0.2 Pulls of electroweak observables . . . . . . . . . . . . . . . . .. . . . . . . . . . . 8

2.2.1MW versus the SUSY breaking mass,m1/2, in various CMSSM scenarios . . . . . . . 11

2.2.2 Electroweak fits within Standard Model, MSSM and CMSSM. . . . . . . . . . . . 12

2.2.3 Evolution of the coupling constants . . . . . . . . . . . . . . .. . . . . . . . . . . 12

3.2.1 Overview of the ATLAS detector . . . . . . . . . . . . . . . . . . . .. . . . . . . . 16

3.2.2 The structure of the Inner Detector . . . . . . . . . . . . . . . .. . . . . . . . . . . 18

3.2.3 The structure of the Inner Detector barrel . . . . . . . . . .. . . . . . . . . . . . . 18

3.2.4 Layout of the TRT barrel modules and support structure. . . . . . . . . . . . . . . . 19

3.2.5 Overview of the calorimeter systems . . . . . . . . . . . . . . .. . . . . . . . . . . 20

3.2.6 Overview of the Muon System . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 21

3.2.7 Overview of the ATLAS triggering scheme . . . . . . . . . . . .. . . . . . . . . . 23

4.0.1 Expected production cross-sections at the LHC . . . . . .. . . . . . . . . . . . . . 27

5.1.1 Diagrams forW+ production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1.2 Reconstructed transverse momentum of jets,W andZ bosons . . . . . . . . . . . . . 29

5.2.1 Transverse view of aW→ ℓν and aZ→ ℓℓ event . . . . . . . . . . . . . . . . . . . 30

5.3.1η distribution of reconstructed muons and electrons fromW events andZ events . . . 32

5.3.2 Distributions sensitive toMW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3.3 Distributions ofpl
TandMW

T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.4.1 Outline of the template fitting procedure. . . . . . . . . . .. . . . . . . . . . . . . . 36

5.4.2 Example of detector response functions . . . . . . . . . . . .. . . . . . . . . . . . 37

5.4.3η dependence ofα , σ andn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



VIII LIST OF FIGURES

5.4.4 Templates and pseudo-data . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 38

5.4.5χ2 vs.α = MW/Mtrue
W , for the comparisons . . . . . . . . . . . . . . . . . . . . . . 39

5.4.6 Electron reconstruction efficiency as a function ofpT . . . . . . . . . . . . . . . . . 39

5.4.7 Response function and pseudo-data, compared to templates . . . . . . . . . . . . . . 40

5.4.8 Ratio of the fitted values ofα , σ andn, betweenW andZ events . . . . . . . . . . . 41

5.4.9 Templates obtained forα = MW/Mtrue
W = 1 . . . . . . . . . . . . . . . . . . . . . . 41

5.5.1 Distributions of transverse momentum ratios . . . . . . .. . . . . . . . . . . . . . . 42

5.5.2 Comparison of fit parameters betweenW andZ events for muons . . . . . . . . . . . 43

5.5.3 Reconstructedpl
T distributions and correspondingχ2 distribution . . . . . . . . . . . 44

5.5.4 Muon efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 45

5.5.5 Distribution of/ET residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.5.6 ReconstructedMW
T distribution and correspondingχ2 distribution . . . . . . . . . . 46

5.5.7 Distribution of/ET residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.5.8 ReconstructedMW
T and correspondingχ2 . . . . . . . . . . . . . . . . . . . . . . . 47

6.1.1 Bias onMW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2.1 Fully simulated data compared to template . . . . . . . . . .. . . . . . . . . . . . . 51

6.2.2 Illustration of the lepton detector response calibration . . . . . . . . . . . . . . . . . 52

6.2.3η versuspT for muons ofW andZ . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2.4 Lepton scale constants for electrons and muons . . . . . .. . . . . . . . . . . . . . 54

6.3.1 Electron removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 55

6.3.2 Statistical sensitivity . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 55

6.3.3 Bias onMW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.4.1 Electron cluster removal . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 57

6.4.2 Electron cluster removal continued . . . . . . . . . . . . . . .. . . . . . . . . . . . 57

6.4.3 Coordinate system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 58

6.4.4 Resolution of~/ET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.4.5 /ET be f ore−/ET a f ter+ pT(truth) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.4.6 Relation between the uncertainties of the/ET scale and resolution . . . . . . . . . . . 60

6.5.1 pl
T -spectrum from fully simulated events and templates . . . . . .. . . . . . . . . . 61

7.2.1 Fraction of measured lepton energy relative to the energy in absence of FSR . . . . . 63

7.2.2 Development ofRFSR=< Econe/EnoFSR> for variousPHOTOS settings . . . . . . . . 64

7.2.3 Difference betweenW andZ events for variousPHOTOS settings . . . . . . . . . . . 65

7.3.1 Bias onMW obtained when varying the proton PDFs within their uncertainties. . . . 66



LIST OF FIGURES IX

7.3.2 Correlation between theW andZ rapidity distributions . . . . . . . . . . . . . . . . 67

7.3.3 Extreme predictions for theZ rapidity distribution . . . . . . . . . . . . . . . . . . . 67

7.3.4 Rapidity distribution forW production at the LHC . . . . . . . . . . . . . . . . . . . 68

7.3.5 Di-lepton invariant mass spectrum . . . . . . . . . . . . . . . .. . . . . . . . . . . 70

8.1.1 Signal and background in thepl
T distributions . . . . . . . . . . . . . . . . . . . . . 72

8.1.2 Distribution of invariant mass between lepton and a second isolated object . . . . . . 73

8.3.1 Difference in the transverseW momentum resulting from the boost . . . . . . . . . . 75

8.3.2 The EventBoost algorithm . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 75

8.4.1 Bias onMZ obtained when varying the proton PDFs within their uncertainties . . . . 76

8.4.2 Energy fraction deposited by electrons in reconstructed electromagnetic clusters . . . 78

9.1.1 Overall architecture of the Inner Detector GeoModel .. . . . . . . . . . . . . . . . 87

9.1.2 Example from the CSC misaligned production . . . . . . . . .. . . . . . . . . . . . 88

9.1.3 Clash between a cooling tube and a straw in a TRT barrel module . . . . . . . . . . . 88

9.1.4 Radiation lengths, before and after an update of the TRT Barrel Outer Support . . . . 89

9.1.5 TRT barrel material in terms of radiation lengths . . . .. . . . . . . . . . . . . . . 90

9.1.6 Overview of volumes describing the TRT end-cap in the TRT GeoModel . . . . . . . 90

9.1.7 The TRT barrel and services . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 91

9.1.8 Updates in the TRT and Services . . . . . . . . . . . . . . . . . . . .. . . . . . . . 93

10.3.1 Snapshot of electron drift from Garfield simulation .. . . . . . . . . . . . . . . . . 96

10.3.2 Simplified electron drift under influence of a magnetic . . . . . . . . . . . . . . . . 97

10.3.3 Drift time as a function of drift distance . . . . . . . . . .. . . . . . . . . . . . . . 99

10.3.4 Drift time as a function of magnetic field . . . . . . . . . . .. . . . . . . . . . . . 99

10.5.1 Effect on time-over-threshold of the recapture probability . . . . . . . . . . . . . . 101

10.5.2 Electrons survival probability . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 102

10.6.1 Distributions of gain . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 102

10.6.2 Exponential fits to gain . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 103

10.6.3 Parametrization of rate parameters . . . . . . . . . . . . . .. . . . . . . . . . . . . 103

10.6.4 Comparison between previous and present gain modeling . . . . . . . . . . . . . . 104

10.7.1 Signal from a cascade in a straw and signal shaping functions . . . . . . . . . . . . 105

11.1.1 Basic setup of the 2004 Combined Test Beam . . . . . . . . . .. . . . . . . . . . . 106

11.2.1 V-plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 108

11.3.1 Coordinate system for the track fitting . . . . . . . . . . . .. . . . . . . . . . . . . 109



X LIST OF FIGURES

11.3.2 Distribution ofχ2 probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

11.3.3 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 111

11.3.4Number of TRT hits on 100 GeV pion tracks . . . . . . . . . . . .. . . . . . . . . 111

11.3.5 Occupancy map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 112

11.3.6 Efficiency and time-over-threshold distributions .. . . . . . . . . . . . . . . . . . 112

11.3.7 Notation used in equation 11.3.7 . . . . . . . . . . . . . . . . .. . . . . . . . . . . 113

11.3.8 Number of electron clusters produced in a wire . . . . . .. . . . . . . . . . . . . . 114

11.3.9 Integrated efficiency for the 2 GeV pion run of figure 11.3.6 . . . . . . . . . . . . . 115

11.3.10Efficiency as a function ofr for electrons . . . . . . . . . . . . . . . . . . . . . . 115

11.3.11Ratios between efficiency as a function ofr . . . . . . . . . . . . . . . . . . . . . 116

11.4.1 Efficiency for various LT settings . . . . . . . . . . . . . . . .. . . . . . . . . . . 117

11.4.2 Time-over-threshold for various LT settings . . . . . .. . . . . . . . . . . . . . . . 117

11.5.1 Event showing a typical number and distribution of surviving electrons . . . . . . . 118

11.5.2 Relation betweenr andr ′. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

11.5.3 Fits tor in bins oft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

11.5.4 Distribution of mean and errors for toy MC and defaultr− t relations . . . . . . . . 120

11.6.1r in bins for the full digitization model . . . . . . . . . . . . . . . . . .. . . . . . 120

11.6.2 Track residuals and time-over-threshold . . . . . . . . .. . . . . . . . . . . . . . . 121

12.1.1 HT probabilities and Photon absorption plots . . . . . .. . . . . . . . . . . . . . . 123

12.1.2 The radiated TR spectrum from a polyethylene surface. . . . . . . . . . . . . . . . 124

12.2.1 HT probabilities for different particles . . . . . . . . .. . . . . . . . . . . . . . . . 125

12.2.2 MC HT probabilities as a function ofγ-factor . . . . . . . . . . . . . . . . . . . . . 125

12.2.3 MCdE/dxcurve after tuning the low energy tail to data . . . . . . . . . . . . .. . 126

12.2.4 Fudge function scaling the number of photons in MC . . .. . . . . . . . . . . . . . 127

12.2.5 Modified MC and data . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 128

13.1.1 PhotonpT spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

13.2.1 Leading-order Feynman diagrams for photon conversions . . . . . . . . . . . . . . 131

13.3.1 Radial distribution of conversions at CDF . . . . . . . . .. . . . . . . . . . . . . . 132

13.3.2 Conversion radius of photons from a single-photonEγ
T = 5 GeV . . . . . . . . . . . 133

13.4.1 Radial residuals for Kalman and Chi2 fitters . . . . . . . .. . . . . . . . . . . . . 134

13.4.2 Performance with respect toψ andpe
T . . . . . . . . . . . . . . . . . . . . . . . . 137

13.4.3rconv resolution after 1 and 10 iteration(s) . . . . . . . . . . . . . . . . . .. . . . . 137

13.4.4rconv resolution for aEγ
T = 2 GeV run and aEγ

T = 10 GeV run . . . . . . . . . . . . 137



LIST OF FIGURES XI

13.4.5 Reconstructed and true conversions as a function ofrconv for tt̄ events . . . . . . . . 138

13.5.1 Fit to therconv resolution using a Landau function . . . . . . . . . . . . . . . . . . 139

14.1.1 Wire tension and gain map . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 144

14.2.1 High voltage tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 145

15.1.1 Occupancy and dead straws . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 146

15.1.2 Example of usage TRT StrawStatusSummaryTool . . . . . .. . . . . . . . . . . . 148

15.1.3 Data-word used in the TRT StrawStatusSummaryTool . .. . . . . . . . . . . . . . 148

15.2.1t0 distributions for straws belonging to two different chips .. . . . . . . . . . . . . 149

16.2.1 Basic setup of the 2004 TRT standalone test-beam . . . .. . . . . . . . . . . . . . 152

16.2.2 Beam compositions for the three investigated runs . .. . . . . . . . . . . . . . . . 153

16.2.3 Illustration of the cut used to disregard digits . . . .. . . . . . . . . . . . . . . . . 153

16.2.4 Distribution of number of hits that are classified as being “on track” . . . . . . . . . 154

16.2.5 Average high threshold fractions straw by straw . . . .. . . . . . . . . . . . . . . 155

16.2.6 Average number of low threshold bits that are set for each straw . . . . . . . . . . . 156

16.2.7 Observed noise levels versus straw number . . . . . . . . .. . . . . . . . . . . . . 156

16.2.8 Observed mean low threshold bit occupancy . . . . . . . . .. . . . . . . . . . . . 157

16.2.9 Number of low threshold bits set in the selected noisedigits . . . . . . . . . . . . . 158

16.2.10Number of LT bit “islands” . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 158

16.3.1 Straws illuminated by the beam . . . . . . . . . . . . . . . . . . .. . . . . . . . . 160

16.3.2 Mean straw noise level within each pad . . . . . . . . . . . . .. . . . . . . . . . . 162

16.3.3 Means and root-mean-squares of 100 randomized strawto pad mappings . . . . . . 162

16.3.4 Noise level in straws normalized to the average levelin the pad . . . . . . . . . . . 163

16.3.5 Number of noise hits in a given pad in a given event . . . .. . . . . . . . . . . . . 164

16.3.6 End view of the straws in the test-beam setup . . . . . . . .. . . . . . . . . . . . . 165

17.0.1 Time-over-threshold distributions for various selection of hits . . . . . . . . . . . . 168

18.0.1 Cosmic muon simulations . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 170

18.2.1 Setup for cosmics data taking at the surface . . . . . . . .. . . . . . . . . . . . . . 171

18.2.2 Hit efficiencies of the SCT and TRT . . . . . . . . . . . . . . . . .. . . . . . . . . 172

18.2.3 Noise levels of the Pixel and SCT . . . . . . . . . . . . . . . . . .. . . . . . . . . 172

18.2.4 Track residuals of the SCT and TRT before and after alignment . . . . . . . . . . . 173

18.3.1 Setup for surface cosmics . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 173



XII LIST OF FIGURES

18.4.1 Event from cosmics and setup for M6 run . . . . . . . . . . . . .. . . . . . . . . . 174

18.4.2 Track residuals and noise levels of the TRT . . . . . . . . .. . . . . . . . . . . . . 174

18.5.1 Setup for simulating cosmics . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 175

18.5.2 Atlantis event view of a reconstructed cosmic event .. . . . . . . . . . . . . . . . 176

A.1.1 Fit to the transverseW mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

A.1.2 Fit to pl
T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

A.2.1 Comparison between a fit smearing distribution and a fitto the numbers actually used 193

A.3.1 /ET residual, parallel and perpendicular . . . . . . . . . . . . . . . . . .. . . . . . 194

A.3.2 /ET residual for various/ET algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 195

A.3.3 Dependence of the/ET resolution on the choice of noise algorithm . . . . . . . . . . 196

A.3.4 Dependence of the/ET residual on theΣET and transverse lepton momentum . . . . 197

B.1.1 Garfield distributions . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 198

B.2.1 Efficiency for runs 2106 and 2118 . . . . . . . . . . . . . . . . . . .. . . . . . . . 199

B.2.2 Efficiency for different orders of the Poisson expansion . . . . . . . . . . . . . . . 199

B.2.3 Efficiency for run 2106 in data and MC for various LT settings. . . . . . . . . . . . 200

B.2.4 Efficiency for run 2107 in data and MC for various LT settings . . . . . . . . . . . . 200

B.2.5 Efficiency for run 2399 in data and MC for various LT settings. . . . . . . . . . . . 201

B.2.6 r in bins oft from toy MC study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

B.2.7 r in bins oft from default ATLAS calibration. . . . . . . . . . . . . . . . . . . . . 203

B.2.8 Resolution distributions . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 204

B.2.9 Time-over-threshold distributions . . . . . . . . . . . . . .. . . . . . . . . . . . . 204



List of Tables

5.2.1 Branching ratios forW+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.3.1 Number of events, cross-sections, and correspondingluminosity . . . . . . . . . . . 31

5.3.2 Selection criteria for theW andZ decays . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3.3 Acceptances, total reconstruction efficiencies, andresulting statistics . . . . . . . . . 32

5.6.1 Statistical uncertainty as a function of fitting range. . . . . . . . . . . . . . . . . . 48

6.5.1 Summary of experimental systematic uncertainties at10 fb−1 . . . . . . . . . . . . . 61

8.1.1 Signal and expected bosonic backgrounds fractions . .. . . . . . . . . . . . . . . . 72

8.5.1 Breakdown of systematic uncertainties affecting theMW measurement . . . . . . . . 80

9.1.1 Weight comparison between survey data and the updatedGeoModel . . . . . . . . 91

10.1.1 Three examples of TRT digits and their typical physics causes . . . . . . . . . . . . 95

11.3.1 Run selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 108

14.2.1 Breakdown of the causes for dead straws . . . . . . . . . . . .. . . . . . . . . . . 145

16.2.1 Beam types and number of events . . . . . . . . . . . . . . . . . . .. . . . . . . . 152

16.3.1 Mean noise levels of individual channels . . . . . . . . . .. . . . . . . . . . . . . 161

17.0.1 Noise levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 167







Part I

Introduction



Chapter 1

The Standard Model bosons

1.1 Historic review

The discovery of theW andZ bosons [UA283a, UA283b, UA183a, UA183b] at the UA1 and UA2
experiments at CERN with masses and properties as predictedby the Standard Model constitutes one
of the greatest accomplishments, not only of the Standard Model, but of human intellect as such.
Its significance relies on the fact theW andZ bosons in the Standard Model are the carriers of the
combined electroweak force, and thus their mere existence is a direct confirmation of the unified
description of the weak and electromagnetic forces.
In the more than twenty years that have passed since the discovery, the Standard Model has been
tested with an ever increasing precision, but as of yet it hasbeen able to withstand the tests (see
e.g. [LEP07]). Ironically, the success of the model, by now,is one of the major problems in the
efforts to understand the universe at the most fundamental level. The apparent paradox comes from
the fact that despite the success of Standard Model, it is - byconstruction - an insufficient model.
For once, the model relies on the Higgs boson to explain the masses observed for other Standard
Model particles. The Higgs has yet to be discovered and the concern within the community is that the
allowed parameter space is decreasing, so that even if the Higgs boson is found, it can at best only be
marginally allowed as the Standard Model Higgs.

It is intriguing that one of the best ways to pose stringent tests on the Standard Model and possibly
reject it, is by studying the exact same particle originallyused to confirm the model: TheW boson.
As will be discussed in the following, the Standard Model predicts correlations between its various
parameters, in particular between the masses of thetop-quark, the Higgs- and theW boson. Thus by
precisely measuring thetop andW masses one can constrain the mass of the Standard Model Higgs,
and in fact this constrain is beginning to overlap with the lower limit Higgs mass excluded from direct
searches (LEP: [The05] and Tevatron: [Bus07]).

If there is such thing as a Higgs particle, it is likely to be found it at the LHC, and by comparing with
measurements of thetop andW masses it should be possible to resolve the issue of mass generation
once and for all.

To get to the point where the paradox arise requires some understanding of the electroweak part of the
Standard Model, and this follows in the next sections.
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1.2 Elements of the electroweak theory

In order to arrive at the Standard Model bosons it proves useful to begin with constructing the fermions
of the theory. Consider therefore the (God given) Lagrangian density for a free massless fermion field
[PS95]:

L = ψ̄iγµ∂µψ (1.2.1)

To be in accordance with observations, an interaction whichcouples leptons to neutrinos must be
introduced. Moreover, since interactions requiring right-handed neutrinos have not been observed,
they are not part of the Standard Model and therefore the fields are separated into a right-handed and
a left-handed component (considering only the first generation):

ψR = eR, ψL =

(

eL

νe

)

, (1.2.2)

where the handedness is defined byφL = 1+γ5
2 φ andφR = 1−γ5

2 φ for any given fieldφ. Introducing the
SU(2) quantum numberT (weak isospin) and theU(1) quantum numberY (weak hypercharge), the
doublet is assignedT = 1/2 andT = 0 is assigned to the singlet. The upper component of the doublet
has third component of the weak isospinT3 = 1/2, whereas the lower component hasT3 =−1/2. For
the singletY = −2 while the doublet hasY =−1. Using these assignments, the electrical charge,Q,
can be related to the weak charges by:Q = T3 +Y/2. The Lagrangian density decouples into a left-
and a right-handed component:

L = ψ̄Liγµ∂µψL + ψ̄Riγµ∂µψR (1.2.3)

Since observations show, that the mass of left-handed fermions equals that of the corresponding right-
handed fermionsU(1)L×U(1)R must be restricted to theU(1)Y subgroup by which the complete
group of gauge transformations for theU(1)Y part is the following:

ψL→ eiYα ψL, ψR→ eiYα ψR , (1.2.4)

where the phaseα is an arbitrary real constant.

For theSU(2) group there is only one non-trivial transformation:

ψL→ ei~α ·~σ/2ψL (1.2.5)

whereσ j are the Pauli matrices (generators ofSU(2)). One can now enforce that the gauge transfor-
mations not only hold globally, but also locally by substituting: α → α (x), wherex is a space-time
coordinate. In order maintain the invariance of the Lagrangian with respect the toU(1)Y symmetry,
it is necessary to introduce a gauge field,B, and use this to form covariant derivatives - designed so
that the extra contribution originating from the space-time dependence of the gauge is exactly can-
celed. Also, a kinetic energy term of the introduced fields isadded in order to give physical meaning
to the introduced gauge field. For theU(1)Y symmetry, the transformation results in the following
Lagrangian density:

L = ψ̄LiγµDµψL + ψ̄RiγµDµψR+
1
4

FµνFµν (1.2.6)
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whereDµ = ∂µ − i g′

2YBµ is the covariant derivative with theU(1)Y gauge couplingg′ and Fµν =
∂µBν −∂νBµ is the field tensor. The symmetries of this Lagrangian are thefollowing:

ψL→ e−iα ψL, ψR→ e−2iα ψR, Bµ → Bµ +
2
g′

∂µα (x) (1.2.7)

where the factor of 2 in the exponent is due to the assignment of Y =−2 for the weak hypercharge of
the singlet.

For theSU(2)T symmetry the situation is similar; introducing additionalthree gauge vector fields,
Wµ = W j

µ ·σ j/2, the covariant derivative is modified to:

Dµ = ∂µ − ig
σ j

2
W j

µ − ig′
Y
2

Bµ (1.2.8)

by which the electroweak Lagrangian is:

L = ψ̄Lγµ(i∂µ +g
σ j

2
W j

µ +g′
Y
2

Bµ)ψL + ψ̄Rγµ(i∂µ +g′
Y
2

Bµ)ψR−
1
4

W j
µνWµν

j −
1
4

BµνBµν (1.2.9)

which describes a massless fermion fieldψ interacting with four massless gauge fieldsB andW j .

1.3 Introducing masses: Spontaneous symmetry breaking

The observed short range of the weak interactions requires that the responsibleW andZ bosons are
massive. As seen in the previous section, direct mass terms are not allowed by gauge invariance. The
puzzle is resolved by means of spontaneous symmetry breaking.

Consider a doublet of complex scalar so called Higgs fields, with a hypercharge ofY = 1:

Φ =

(

φ+

φ0

)

(1.3.1)

This is the simplest field that can be responsible for the spontaneous symmetry breaking of the elec-
troweak sector, and the corresponding Lagrangian is the electroweak Lagrangian of equation 1.2.9
with the additional Higgs terms:

LH = (DµΦ)†(DµΦ)−V(Φ) (1.3.2)

where the (simplest possible) potential is defined as:

V(Φ) = µ2Φ†Φ+λ (Φ†Φ)2 with λ > 0 (1.3.3)

Forµ2 < 0 the ground state of the potential is degenerate (i.e. the phase ofΦ is arbitrary) as illustrated
in figure 1.3.1. The minimum is obtained when:

Φ†Φ =
−µ2

2λ
≡ v2

2
(1.3.4)

By performing a perturbative expansion around the minimum:

< Φ >=< 0|Φ|0 >=

(

0
v/
√

2

)

(1.3.5)
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Figure 1.3.1:Higgs potential forµ2 < 0. Source [hig08].

the observable particles of the theory (i.e. the mass eigenstates) can be formed by the following linear
combinations of theB andW fields (after going through some algebra, see [GHKD89]):

Aµ = BµcosθW +W3
µ sinθW (1.3.6)

Zµ =−BµsinθW +W3
µ cosθW (1.3.7)

W±µ =
1√
2
(W1

µ ∓ iW2
µ ) (1.3.8)

whereθW is the weak mixing angle (Weinberg angle: tanθW ≡ g′/g ).

Inserting the vacuum expectation value back into the kinetic term of theΦ field, the masses of the
gauge bosons emerge as the coefficients squared of the quadratic terms:

(DµΦ)†(DµΦ) =

(

v2g2

4

)

W+
µ Wµ−+

1
2

(

v2 g2 +g
′2

4

)

ZµZµ +mixed terms (1.3.9)

whereMW = 1
2vg andMZ = 1

2v
√

g2 +g′2 are identified. Note that only two mass terms are present
in equation 1.3.9; one corresponding to the chargedW fields and one for the neutralZ field. The last
field, A, remains massless and is identified as the photon field. Masses for the leptons is generated
similarly: I.e. by identifying terms quadratic in the fieldsof (Dµψ)†(Dµψ). Note in this respect,
that the three generations couple independently to the Higgs field and therefore can obtain different
masses.

From the relations in equation 1.3.9 it is possible to make predictions ofMW based on measurements
of α , MZ andGF (the Fermi coupling constant). Exploiting thatθW is a predicted quantity through its
on-shell definition cosθW = M2

W/M2
Z, the tree level prediction reads [Daw06]:

M2
W,tree = π

√
2

α
GF

(

1−
√

1− 4πα√
2GFM2

Z

)−1

(1.3.10)

Inserting the values from [PDG06] yields:MW,tree = 80.939 GeV to be compared to the present
experimental value:Mexp

W = 80.403±0.029 GeV.
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Figure 1.3.2:Contributions to∆r. Thet− b̄ loop introduces corrections of the order:δMW ∝ m2
t −m2

b whereas
for the Higgs loop diagram:δMW ∝ logMH . Source: [Shp00].

Some discrepancy is expected, since the above only evaluates the masses to lowest order in the cou-
pling. Including higher order couplings and self-couplings modify the vector boson masses. The most
important higher order diagrams forW+ are shown in figure 1.3.2.

In this case, the Fermi coupling constant is modified to:

GF =
πα√

2M2
Wsin2θW

· 1
1−∆r

, (1.3.11)

where

∆r = ∆rt +∆rH and

∆rt =
3GFm2

t

8
√

2π2

(

cos2θW

sin2θW

)

∆rH =
11GFM2

W

24
√

2π2

(

ln
M2

H

M2
W

− 5
6

)

(1.3.12)

TheW mass is then [Daw06]:

MW/GeV= 80.939−0.0579ln
MH

100 GeV
−0.008ln2 MH

100 GeV
−0.5098

(

∆α (5)
had(MZ)

0.02761
−1

)

+0.525

(

( mt

174.2 GeV

)2
−1

)

−0.085

(

αs(MZ)

0.118
−1

)

+ · · ·

(1.3.13)

The dependence on the Higgs mass and the uncertainty onmt alone, prevents a precise evaluation of
the above expression, but even if they were exactly known, the expression would still be subject to
uncertainty from not going to infinite order in the couplings. This subject is revisited in section 2.2
below.



Chapter 2

Theoretical and experimental status

The Standard Model is now computed at two-loop precision [ACFW04, ACF06]. Through it is inter-
nal correlations between its parameters, the electroweak sector of the Standard Model is an extremely
predictive framework, lacking only one vital ingredient yet to be discovered: The Higgs boson. As
discussed in the introduction, the predictive power of the model was first demonstrated by the dis-
covery of the vector bosons in the early eighties. A more recent example, was the discovery of the
top-quark at a mass compatible with the Standard Model prediction [CDF94]. Presently bothW’s
and top’s are subject to precision measurements. The fact that theW boson is intimately linked to
the Higgs boson (as discussed in chapter 1), combined with the fact that thetop-quark is so heavy
and therefore contributes significantly to the relation between the Higgs and theW mass thorough
loop corrections, imply that it is the uncertainties of the masses of theW and thetop-quark that pre-
dominately limit the prediction of the Higgs boson mass. Thestatus of constraining the Standard
Model Higgs is summarized in figure 2.0.1(a). The direct Higgs searches performed at LEP in the
late nineties [Tul02] and these which are currently ongoingat the Tevatron [Bus07], have excluded
the Higgs in the range most favored by a combined Standard Model fit as is shown in figure 2.0.1(b).
The large deviation from the Standard Model prediction constitutes one of the biggest problems of
the model1. The relation between the measured and predicted values based on a combined fit to the
Standard Model electroweak observables is shown in figure 2.0.2. The excellent agreement between
theory and experimental results is based on a combined fit to the Standard Model parameters with a
floating Higgs mass. The correspondent results for the Higgsmass is shown in figure 2.0.1(b). Re-
straining the Higgs to the experimentally allowed region does not severely deteriorate the combined
fit due to the relatively low correlation between the Standard Model parameters and the Higgs mass.

A common approach to resolve when fitting over-constrained data is to introduce additional free pa-
rameters (or at least parameters with some degree of freedom). In a certain sense this is exactly what
is proposed within the frameworks of Super Symmetry and Extra Dimensions although the parameters
added, to some extent are theoretically motivated, i.e. they are “natural” extensions of the Standard
Model. Before entering the discussion of these Standard Model extensions, however, the next section
lists a number of additional problems faced by the Standard Model which, combined with the unre-
solved issues in the Higgs sector, constitute the problems that Super Symmetry and Extra Dimensional
models are invented in attempts to (partially) solve.

1Another significant problem was reported recently: DØ and CDF showed a 3σ deviation of the phase of theBs mixing
amplitude from the Standard Model prediction. See [UT08] for details.
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Figure 2.0.1:(a) The correlation betweenMW, mt and the prediction of Standard Model Higgs mass,MH . (b)
Indirect result forMH from a combined fit to the electroweak observables. The minimum is clearly excluded by
direct searches. Source [The05].

Measurement Fit |Omeas−Ofit|/σmeas

0 1 2 3

0 1 2 3

∆αhad(mZ)∆α(5) 0.02758 ± 0.00035 0.02766

mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1874

ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4957

σhad [nb]σ0 41.540 ± 0.037 41.477

RlRl 20.767 ± 0.025 20.744

AfbA0,l 0.01714 ± 0.00095 0.01640

Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1479

RbRb 0.21629 ± 0.00066 0.21585

RcRc 0.1721 ± 0.0030 0.1722

AfbA0,b 0.0992 ± 0.0016 0.1037

AfbA0,c 0.0707 ± 0.0035 0.0741

AbAb 0.923 ± 0.020 0.935

AcAc 0.670 ± 0.027 0.668

Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1479

sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314

mW [GeV]mW [GeV] 80.392 ± 0.029 80.371

ΓW [GeV]ΓW [GeV] 2.147 ± 0.060 2.091

mt [GeV]mt [GeV] 171.4 ± 2.1 171.7

Figure 2.0.2: Pulls of the various Standard Model electroweak observables, i.e. the deviation in units of
standard deviations from a combined fit to the Standard Model. Source [The05].
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2.1 Problems of the Standard Model

One severe deficit of the Standard Model is the hierarchy problem, which concerns the value of the
Higgs mass. According to figure 2.0.1(b) it must be in the range: [115;194] GeV at 95% confidence
level. In itself, this does not constitute a problem - the Higgs mechanism is invented to resolve the
problem of the non-zero boson and fermion masses, and if incidently this requires that the Higgs mass
is in the GeV range, so be it. However, due to self-couplings,the apparent mass of any particle is
different at the cutoff scale, of the theory,Λ, than at the scale where the mass is probed by experiment.
For fermions, the quantum corrections turn out to be of the same order as the bare fermion mass, but
for the Higgs, the corrections,δMH , are ofO (Λ) [Mar97]:

δM2
H =

|λ f |
16π2

(

−2Λ2 +6m2
f ln

Λ
mf

)

(2.1.1)

whereλ f is the Yukawa coupling andmf is the mass of the fermion - for instance thetop-quark:
mt ≈ 174.2 GeV [PDG06]. Assuming that the Standard Model is complete (i.e. not merely a low
energy approximation of some true theory), the natural choice for the cutoff scale would be the Planck
scale:ΛPlanck∼ 1019 GeV, where the Standard Model is expected to break down, since gravity at this
scale can no longer be ignored. At the Planck scale, the bare Higgs mass and its corrections would
then beO

(

1019 GeV
)

and almost exactly of the same magnitude, since subtractingthem must lead to
a valueO

(

102 GeV
)

. Such extreme fine-tuning is unprecedented in the nature, and although possible
in principle it does seem to hint some other governing mechanism - i.e. some new physics taking
place at scales substantially lower than the Planck scale. In this case the cutoff scale of the Standard
Model would lowered and thus the fine-tuning, at least partially, removed.

Another deficit of the model is that it fails to explain the baryon anti-baryon asymmetry observed in
the universe. To account for the large asymmetry would require aCP violation at a level far beyond
what is observed in the quark sector [KT90]. Also, the model has no dark matter candidate, and thus
cannot offer an explanation as to the nature of 90% of the matter of the universe. In addition, gravity
is not included in the model at all, though this is perhaps a too ambitious request at the moment.

What can perhaps better be characterized as a puzzle, ratherthan a problem of the Standard Model
is the fact that the coupling constants of the electromagnetic, the weak and the strong parts of the
Standard Model seem to nearly unify at some very large scale.Nearly, but not quite. Again, this could
be purely coincidental, but could on the other hand also hintnew physics, unifying the various parts
of the Standard Model. Another puzzle is the origin of the generation multiplicity in the Standard
Model - why is there exactly three generations? Also, the Standard Model has many free parameters
(couplings, mixings etc), which could indicate the presence of a more fundamental theory limiting the
phase-space. In addition, the values of some of these parameters seem to hint an underlying governing
principle: Why is the mixing between quarks of different generations so small? Why is thetop-quark
so much heavier that than the other quarks?

2.2 Super symmetry

A theoretically appealing attempt to resolve some of the problems mentioned above is Super Sym-
metry (SUSY) [HLS75, HHW06]. Common features of this class of theories is that they propose a
symmetry between bosons and fermions so that each of the Standard Model fermions is postulated
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to have a super symmetric bosonic partner, and each StandardModel boson is postulated to have a
fermionic partner. If the symmetry would be exact, the masses of the Standard Model particles and
their respective partners would be the same, obviously contradicting experimental evidence. To re-
solve, the symmetry must be broken. Several proposals for the mechanism responsible for the SUSY
breaking exists - the most popular is Minimal Super Gravity (mSugra)2. The name is in fact mislead-
ing - it is not a theory of super gravity. Its popularity is largely due to the fact that within mSugra the
parameter-space is spanned by only five parameters (defined at a high scale∼ 1016 GeV). SUSY must
be broken at a scale above the electroweak breaking scale andthe implications on the electroweak
breaking are minor. The most striking difference, is that inSUSY models the Higgs sector is enlarged
- the minimal content is two Higgs doublets and a singlet. Allof these states acquire mass according
to a procedure similar to the standard electroweak procedure described in chapter 1.

The main problem which can be resolved by the use of SUSY models is the hierarchy problem,
and the reason for this is, that the additional bosonic loop diagrams contribute to the calculation
of boson masses with opposite sign as their Standard Model fermionic counterparts. In the Higgs
mass calculation this means that the corrections sending the bare Higgs mass to the Planck scale are
canceled term by term, and thus the fine-tuning needed for theStandard Model Higgs to acquire the
“observed” mass, is avoided. The fact that SUSY is broken introduces a difference between the mass
of a Standard Model particle with respect to its SUSY partner. By this, the cancellation is not exact
but of the order:δMH ∼ δm2

t lnΛSUSY
mt

, whereΛSUSYis the SUSY breaking scale.

Of course, the Higgs is not the only particle the additional bosons couple to - all Standard Model
calculations are updated by additional diagrams. In most cases however, corrections are minor and
therefore the theory as such, is not in direct conflict with the electroweak constraints, although certain
regions of the SUSY phase-space are excluded from measurements of Standard Model particles. A
general complication faced when working with SUSY scenarios is the enormous number of additional
and largely unconstrained observables (O (100)). Moreover, there exists a variety of different SUSY
theories, which predict different relations between theirparameters. One of the more popular type of
models is Minimal Super Symmetry Models (MSSM). Although many other SUSY scenarios exist,
focus here will lie on MSSM, the reason being that it is one of the most well established SUSY
scenarios. Intense development has resulted in solid predictions in the electroweak sector, which can
be confronted with measurements, and thus this particular SUSY model is of special interest for the
W mass analysis presented in this thesis.
As the name suggests, MSSM is the smallest possible super symmetric extension of Standard Model.
Even so, the Standard Model Higgs sector must be extended to include additional two Higgs doublets
consisting of two charged and two neutral Higgs particles - one doublet is required to give mass to the
up type fermions, and one to give mass to thedowntype fermions.

Contrary to the Standard Model, the MSSM Higgs sector is largely constrained, and the masses of
the additional four Higgs particles can be expressed in terms of only two parameters, conventionally
chosen to be: The ratio between the vacuum expectation values of the charged and the neutral Higgs
doublet: tanβ = v2/v1 , and the mass ofCP odd neutral Higgs bosonA0.

Of particular interest for the work presented here are the implications on the Higgs mass constraints
given by theW andtopmasses, in case of MSSM.

In MSSM, theW mass calculation proceeds as described in chapter 1 for the Standard Model. The

2In the following, the terms ’mSugra’ and ’constrained MSSM’, CMSSM, are interchangeable. They denote the scenario
where universality is assumed between the soft SUSY-breaking parametersm0, m1/2 andA0 at the GUT scale. See [HHW06]
for details.
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differences are introduced through the radiative corrections∆r only, see equation 1.3.11. As in the
Standard Model case,∆r depends itself on theW mass and can therefore only be solved using iterative
methods. To first loop order, these has been solved, but obviously the result depend on the unknown
masses of the super symmetric particles - in particular the mass of the super symmetric scalar partner
of the top-quark: Thestop-squark. In order not to conflict with other electroweak constraints, the
approximate mass scale of MSSM SUSY particles can be established, see figure 2.2.1. Note here, the
interesting observation that “light” SUSY is preferred by the electroweak constraints, which implies
that SUSY, if it exists, is likely to be discovered at the LHC.Assuming that MSSM is valid and

Figure 2.2.1:MW versus the SUSY breaking mass,m1/2, in various CMSSM scenarios (a specific MSSM
breaking scheme). The central solid lines represents the experimentally measured central value forMW and the
outer solid lines are the uncertainties (±1σ) at the time of publishing the article. Since then,MW is shifted
downward (to80.403± 0.029GeV [PDG06]) but this thus not change the conclusion that theSUSY spectra
must be “light” to avoid conflicting existing measurements.The dashed lines illustrate some supposed future
experimental measurement precision. Source [HHW06].

consequently not contradicting the electroweak measurements, it is possible to make predictions for
theW mass. This important result is shown in figure 2.2.2(left). Here is shown how the region of
allowed Higgs masses is shifted towards larger values in MSSM with respect to the Standard Model.
The green region corresponds to the Higgs singlet,h0, which is most natural to compare with the
Standard Model Higgs (the red region). The right-hand part of the same figure illustrates the overall
MSSM and mSugra performance with respect to fitting all the electroweak parameters - in general the
results do not deviate significantly from the fit to the Standard Model. The theoretical uncertainties
which are underlying figure 2.2.2(left) can be divided into two categories: Those which are imposed
by the experimental uncertainties, and those which are inherently theoretical and stems from not
calculating to infinite order in the couplings. The uncertainty resulting from the latter is not easily
determined, but experience show that corrections tend to reduce in size when the order is raised, and
therefore a common practice is to quote the magnitude of the highest order correction as the theoretical
error. By this, the present estimates of the theoretical uncertainties are [HHW06]:

δMSM
W (theory) = 4 MeV δMSUSY

W (theory) = 10 MeV δMW(exp intro) = 18 MeV (2.2.1)

One plausible estimate of the future development is that thepurely theoretical uncertainty is halved by
the time of the mass measurement of the LHC. As will be shown inPart II, the prospects for reducing
the experimental error are promising - perhaps a reduction factor larger than the theoretical would be
possible by which the combined theoretical uncertainty could be reduced to∼ 5− 10 MeV, both in
Standard Model and MSSM.
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Figure 2.2.2:Left: Correlations between thetop, theW and the Higgs mass in MSSM. Right: Combined fit
to all electroweak parameters within: Standard Model, MSSMand CMSSM.

In many SUSY models, in particular in MSSM, the observed stability of the proton is not reproduced
in a natural way. A popular solution is to postulate the existence of yet another symmetry called
R-parity by which:

R= (−1)2S+3B+L (2.2.2)

is assumed to be a conserved quantity (S denotes the particle spin,B the baryon number andL the
lepton number). Apart from solving the problem of the protondecay, this somewhat ad hoc added
symmetry also has the implication that the lightest SUSY particle (which one it is differs between
models) can be neutral, weakly interacting and stable and thus offers a promising dark matter can-
didate. Moreover, the coupling constants in MSSM and also inother SUSY models unify to exactly
one, or are at least compatible with unification - see figure: 2.2.3.

Figure 2.2.3:Evolution of the coupling constants in Standard Model(left) and light (mass scales∼ 1 TeV)
MSSM SUSY (right). Source [dBS04].
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2.3 Extra Dimensions

Within the framework of extra dimensional theories, the hierarchy problem is sought resolved by
the addition of extra spatial dimensions in which gravity can rule [AHDD99]. In case ofd extra
dimension, gravity would decrease as 1/rd+2 rather than following the usual 1/r2 law. Obviously,
this is not correct at macroscopic scales, since gravity hasbeen probed toO (1 mm) [H+04], but if the
extra dimensions were compactified to smaller scales,R, it would escape the experimental constraints.
By this, Newtons force law:

FNewton(r) =−GN
m1m2

r2 ∝
m1m2

M2
Plr

2
, r≫ R (2.3.1)

is modified to
FED(r)∼ m1m2

Md+2
ED rd+2

R≫ r, (2.3.2)

whereMED is the effective Planck mass (or equivalently Planck scale)relevant for the quantum cor-
rections to the Higgs mass discussed previously.

Requiring a continuous transition between the two force laws yields the following relation:

M2
Planck∼Md+2

ED Rd (2.3.3)

By this the Planck scale is effectively lowered, and the hierarchy problem can be removed with ap-
propriate values ofR andd. A detailed calculation [AHDD99] based on the same arguments as the
above, results in the following relation for the size of the extra dimensionsRd:

Rd = 2·10
31
d −16 ·

(

1 TeV
MED

)1+ 2
d

[mm] (2.3.4)

In order not to reintroduce the hierarchy problem,MED should be close to the electroweak scale, for
example∼ 1 TeV.
Assuming only one extra dimension, its size would have to beR1 ∼ 1015 mm which clearly contra-
dicting observations. However,d = 2 results inR2 ∼ 1 mm which is the approximate scale at which
gravity has been tested.
Although gravitons are presumably massless particles, thefact that they can propagate in the extra
dimensions implies that they appear massive when observed in four dimensions - the apparent mass,
mapp, is given by the momentum in the extra dimensionsm2

app= p2
4+ p2

5+ · · · . Therefore the graviton
is actually a dark matter candidate in some models of extra dimensions.

As for super symmetric models, a variety of extra dimensional models exist. A particular popular
class of models is Universal Extra Dimensional Models in which the existence of one or more extra
dimensions accessible for Standard Model fields is postulated. In order not to conflict with precision
electroweak data which has been probed to length scales∼ 10−15, the extra dimensions must be even
smaller3. Moreover, since the additional dimensions would have to becompactified in order to escape
detection, the mass eigenstates of the Standard Model particles would be discrete, and are called the
Kaluza-Klein (KK) modes. By momentum conservation, the KK mode parity,(−1)n is conserved
(n is the KK excitation number), and thus, for example, an excited photon cannot decay to Standard

3Some tricks exist to reduce this bound somewhat, see e.g. [KM07, ACD01].
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Model particles. For this reason, the KK photons are in fact dark matter candidates in some models
of universal extra dimensions.

The presence of extra dimensions could be difficult to distinguish from SUSY: Both frameworks
predict heavier partners to Standard Model particles (and they are not mutually excluding each other).
In the end, one might need to resolve by using the spin statistics where the models pose different
predictions which could possibly be measured at the LHC, seee.g. [Kit07]. As for SUSY, extra
dimensional models are only able to solve the hierarchy problem in case the heavier partners of the
Standard Model particles are relatively light, say, in the TeV range.

2.4 Future prospects

Should a Higgs boson candidate be found at LHC, precise measurements of theW andtop-quark mass
will help determine whether it is a Standard Model Higgs - complementary to the direct measurements
of the Higgs properties. Furthermore, different proposalsof beyond Standard Model physics give
different predictions on the relation between the Higgs-, the top- and theW masses, so that precise
measurements of theW mass can help to distinguish between different Standard Model extensions
(see e.g. figure 2.0.1(a)).

In the converse case where no Higgs and no new physics is discovered at the LHC, one would be
forced to revisit the Standard Model calculations, and in this case reducing the uncertainty on its key
parameters is of great importance: In particular theW mass uncertainty, since this presently accounts
for the largest contribution to the mass uncertainty of the Standard Model Higgs.

At the LHC, an improvement of theW mass measurement is foreseen. Initial estimates of the expected
statistics and systematics suggest that a measurement of the W mass with a precision of the order
15 MeV could be reachable [ATL99]. This would exclude large parts of the presently allowed SUSY
parameters space as well as possibly the Standard Model depending on the central value (see figure
2.2.2 with a factor of roughly three reduction of the experimental bounds).

In Part II of this thesis the ATLAS detector prospects of measuring the mass are revisited, but first
some aspects of the detector itself are outlined.



Chapter 3

The ATLAS experiment at the LHC

In the following, the LHC accelerator and the ATLAS experiment will be outlined. The discussion is
based on [ATL08a, A+07] and the reader is referred hereto for a more detailed discussion.

3.1 The Large Hadron Collider

Although protons are composite particles and therefore notoptimal as beam constituents, it was de-
cided to base LEP’s successor on protons. The main reason is to limit the synchrotron radiation which
ultimately made it impractical to increase beam energy at LEP. Using protons, the problems of syn-
chrotron radiation are traded by a number of other problems;some of which are discussed below,
while others will be evident during the discussion of theW reconstruction in section 5.3. Since the
LHC is built in the existing LEP tunnel, the maximal collision energy is basically defined by the
strength of the bending magnets. The design of the LHC magnets, however, is complicated by the fact
that the equal charge of the two beams requires two separate beam lines1. For cost optimization, the
two beam tubes share support structure and cryostat, but thecoil assembled around them is different.
The coils consist of a superconducting niobium-titanium alloy and are cooled by super-fluid helium.
The magnets are able to provide a field of 8.33 T allowing a maximal beam energy of 7 TeV2. Due to
quenching problems, however, it is expected to run at a reduced energy of 5 TeV per beam proton in
the startup phase [Aym08].

Before entering the LHC ring, the protons are accelerated to450 GeV by a combined effort of the
existing CERN accelerators: Linac, 1 GeV booster, PS and theSPS [CER08]. Once the 450 GeV
is reached at the SPS, the protons are fed to the LHC in bunches(maximally 2808), containing ap-
proximately 1.15· 1011 protons each. When all bunches are filled, the correspondingbunch-crossing
time is 25 ns. Upon reaching the maximum energy of 7 TeV per beam proton, a bunch-crossing at
the design luminosity, 1034 s−1cm−2, yields on average∼ 20 collisions, resulting in∼ 1000 particles
emerging from the interaction region.

The bunches are brought to collision at four interaction points, around which detectors have been
build:

1The other option: To usepp̄ collisions was rejected due to the high costs of producing sufficient anti-protons.
2Only parts of the 27 km circumference can be filled with bending magnets, a certain fraction must be reserved for

accelerating cavities and focusing/defocussing magnets for beam steering.



16 The ATLAS experiment at the LHC

• ATLAS. Multipurpose experiment, discussed below.
• CMS[CMS06]. Multipurpose experiment using a stronger magnetic field than ATLAS, allowing for
a more compact detector design.
• ALICE[AL95]. Heavy ion experiment, exploiting the fact that the LHC, apart from protons, can
accelerate heavy ions such as lead to a maximum energy of 5.5 TeV per nucleon pair. Designed pre-
dominately to study the properties of the quark gluon plasma.
• LHCb [Lb03]. Motivated by the fact that at high energies,b andbb̄ hadrons are produced in the
forward cone, this single-arm spectrometer is built predominately to studyb decays and CP violation
in theb-quark system.

3.2 The ATLAS experiment

Figure 3.2.1:Overview of the ATLAS detector. Source [ATL08a].

Being a general purpose detector, the list of physics performance goals is, of course, extensive. How-
ever, some measurements stand out as being of particular importance. Discovering the Higgs boson
is such a measurement. As discussed previously, the Higgs can, if it exists, have any mass in the
O
(

102 GeV
)

range, and it must be ensured in the detector design, that discovery is possible re-
gardless of its mass. Since the branching ratio of the Higgs into its various decay channels differs
significantly as a function of the Higgs mass, this implies that the experiment must be designed to
have sufficient sensitivity in a large number of different decay channels. Another physics goal of vital
importance is the possible SUSY discovery. Similar to the Higgs boson case, the masses of the SUSY
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particles are largely unconstrained, and possible discovery depends on the performance of a number
of sub-detector systems and their combined performance to reconstruct missing transverse energy/ET .

The expected cross-sections of the Higgs and SUSY processesare exceedingly small even at LHC
energies: About 1 event in a billion (cross-sections of various processes at LHC are shown in figure
4.0.1). This is the reason to aim for the high interaction rate (40 MHz). Obviously the high interaction
rate and the resulting large track multiplicities complicate the detector design. In order to be able
to perform in the environment provided by the LHC machine, the physics performance goals can be
translated into a set of detector requirements on which the ATLAS experiment has been designed:

• To cope with the interaction rate and the particle multiplicity, the electronics of all sub-detectors
must be fast and radiation hard. Also, the detector granularity must be sufficiently fine so that
the interesting events can be reconstructed despite the many overlapping events.

• For overall event reconstruction, and in particular to reconstruct secondary vertexes fromb or τ
decays, the charged particle momentum must be measured witha high resolution and efficiency:
σpT /pT = 0.05%· pT ⊕ 1%.

• Large acceptance in pseudorapidity and full azimuthal coverage is essential.

• To identify and precisely measure the energy of electrons and photons the electromagnetic
calorimeter must perform well:
σE/E = 10%/

√
E ⊕ 0.7%.

In addition, the hadronic calorimeter measures the energies of hadrons and jets:
σE/E = 50%/

√
E ⊕ 3% (barrel) and

σE/E = 100%/
√

E ⊕ 10% (end-cap).

• Muons must be accurately identified and measured:
σpT /pT = 10% atpT = 1 TeV.

• Events must be sorted on a short timescale so that uninteresting events can be rejected, hereby
ensuring that the maximal output event rate is below the hardware limitation of about 200 Hz.

How these requirements are met by the ATLAS experiment is briefly discussed in the following.

3.2.1 The Inner Detector

The tracking of charged particles is performed by the Inner Detector. This detector is built utilizing
a typical layered structure, consisting of three sub-detectors based on different detector technologies
to best cope with the requirements. Each sub-detector consists of a barrel part and two end-caps as
shown in figure 3.2.2. The resolutions quoted below represent the values of [ATL08a] which is the
most recent assessment. However, as will be discussed in chapter 18, the performance of the real
detector generally resembles the design well.

Pixel

Closest to the interaction point is the very radiation hard and finely segmented Pixel Detector (Pixel),
whose pixels are as small as 50×400µm2. The sensitive detectors of the Pixel barrel are placed on
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↓TRT barrel module - see figure 3.2.4 for details.

Figure 3.2.2:The structure of the Inner Detector. Source [ATL08a].

Figure 3.2.3:The structure of the Inner Detector barrel. Source [ATL08a].
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concentric cylinders around the beam-line, whereas the end-caps consist of disks placed perpendicular
to the beam axis, extending to|z| ≈ 50 cm, as indicated in figure 3.2.3. Altogether the pixel detector
counts 80.4 million read-out channels, providing three measurements for each track. In the barrel the
expected intrinsic accuracy is 10µm in rφ and 115µm in thez plane whereas the corresponding
values for the end-caps are 10µm in rφ and 115µm in the r direction. The innermost layer of
the Pixel detector is placed merely 5.1 cm from the nominal beam position whereas layers two and
three are located at 8.9 cm and 12.3 cm respectively. For thisreason, the Pixel detector is subject to
a significant radiation dose. Despite significant efforts tolimit the effects caused by this, the harsh
hadron environment in which the Pixel detector operates, causes the detector to degrade over time. It
is expected that the detector will be replaced at a future detector upgrade.

SCT

The next sub-detector met by a traversing particle consistsof the four double-sided silicon layers of
the SemiConductor Tracker (SCT) - a silicon micro-strip detector with a read-out pitch of 80µm.
Due to a small stereo angle between the read-out strips, the SCT provides four space-points for each
penetrating track. Arranged in a setup similar to the Pixel detector (see figure 3.2.2), the SCT barrel
yields a binary resolution of 17µm in rφ and 580µm in z. In the end-caps the samerφ resolution is
achieved whereas the resolution inr is 580µm. Altogether, the SCT has 6.3 million read-out channels
and occupies the region: 30 cm< r < 52 cm and|z|< 2.8 m.

TRT

Figure 3.2.4:Left: Layout of the 96 TRT barrel modules and support structure. Right: The structure of a TRT
barrel module. Source [TRT08b].

The cylindrical volume extending from a radius of approximately 56 cm to 108 cm is covered by the
gaseous Transition Radiation Tracker (TRT).
As will be described in detail in Part III, the TRT is based partly on the principles of a normal straw
based gas-detector for tracking, and partly on the principle of transition radiation for particle identi-
fication. Transition radiation arises when an ultra-relativistic charged particle traverses the boundary
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between materials of different dielectric constants, as will be explained in detail in chapter 12. This
effect is proportional with theγ-factor of the traversing particle and can provide particleidentification
capabilities from the amount of transition radiation produced by a given particle.
To exploit the transition radiation, the TRT is built from 73layers of kapton/mylar straws containing
XeCO2O2 (70:27:3) gas interleaved with radiator material. Centrally in each straw is a gold-plated
tungsten wire which acts as an anode due to a voltage applied between the wire and the straw. Ad-
vantages of this design is, that the gas is relatively cheap and can be constantly exchanged, hereby
diminishing effects of radiation. In the barrel region, thestraws, which are 4 mm in diameter, are as-
sembled in 96 modules of three different types (see figure 3.2.4) arranged parallel to the beam whereas
the end-cap straws are arranged in 14 wheels and point radially away from the beam axis3. In order
to reduce problems of large occupancy, the 9 innermost straw-layers in the barrel are insensitive in
the central region. Also, all barrel straws are isolated centrally and read out at both ends, so that each
straw provides two read-out channels. In total the TRT has 351.000 read-out channels.
In the barrel, the intrinsic measurement accuracy is expected to be 130µm pr straw in therφ plane.
The poor single measurement resolution compared to the silicon based detectors, is largely compen-
sated by the long lever arm and the large number of hits: A typical track leaves∼ 36 hits in the TRT,
by which the TRT contributes to the momentum resolution roughly as much as the combined Pixel and
SCT sub-detectors during low luminosity running, L=1033 s−1cm−2, where the occupancy problems
are not expected to dominate TRT performance.

Results from the commissioning of the Pixel, SCT and TRT sub-detectors, at the surface, as well as
combined tests in the ATLAS cavern will be presented in chapter 18.

3.2.2 Calorimeters
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Figure 3.2.5:Left: Overview of the calorimeter systems. Right: The structure of the LAr calorimeter. Source
[ATL08a] and [ATL96a].

The ATLAS calorimetry consists of an inner electromagneticcalorimeter supplemented by a dense
hadronic calorimeter as depicted in figure 3.2.5(left). Theelectromagnetic calorimeter is built using

3The original design consisted of 18 wheels, but 4 were stageddue to financial problems. It is likely that these wheels
will never be installed.
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an accordion structure of lead plates interleaved with liquid argon (LAr) and functions basically as a
drift-chamber due to a strong electric field. This design hasthe advantages of completeφ symmetry
without azimuthal cracks, and moreover the active LAr can bereplaced during detector operation,
hereby minimizing effects of radiation damage. The detector covers the region up tor = 2.25 m cor-
responding to >22 (>24) radiation lengths in the barrel (end-caps). The granularity shown in figure
3.2.5(right) corresponds to that of the central barrel part(η = 0). Alongη , the cell size varies signifi-
cantly as determined by an optimization of the energy resolution. The very fine segmented innermost
sampling is designed fore/π separation, whereas most energy is deposited in the square sampling
towers of the second sampling. For triggering purposes, 4 by4 cells are combined into towers with a
single output.

The hadronic calorimeter covers the region up tor = 4.25 m and consists of a barrel part, two extended
barrels, two end-caps and two forward calorimeters. In order to reduce the effects of the radiation the
latter two sub-detectors, which are subject to the largest track multiplicity, are based on LAr. The first
two sub-systems are sampling calorimeters using steel absorbers and scintillating tiles of plastic. The
readout proceeds via wavelength shifting fibers to photomultiplier tubes placed on the outer rim of the
calorimeter. The total thickness of the tile calorimeter is9.7 radiation lengths atη = 0. As for the
electromagnetic calorimeter, the cell sizes differ significantly inη and it serves little purpose to repeat
them here. Instead, the reader is referred to [ATL08a].

3.2.3 The Muon System

2

4

6

8

10

12 m

00

Radiation shield

MDT chambers

End-cap
toroid

Barrel toroid coil

Thin gap 
chambers

Cathode strip
 chambers

Resistive plate chambers

14161820 21012 468 m

Figure 3.2.6:Overview of the Muon System. Source [ATL08a].

Due to the thickness of the calorimeters, the punch-throughprobability of hadrons into the Muon
System is low, so that hits in this system can reliably be assumed to be caused by muons. However, the
purpose of the Muon System is not only to identify muons, but also to provide precision measurements
of muon momenta and to be used for triggering. The combination of these requirements have led to
the complex design of the muon system sketched in figure 3.2.6(and briefly explained below).

The Muon System consists of a barrel region and two end-cap regions located partially within the
toroids magnets (see figure 3.2.1). In the barrel, sensitivemonitoring drift tubes (MDT) are placed
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on three cylindrical layers whereas the end-cap regions uses vertical concentric structures. The tubes,
which are built of aluminum, have a diameter of 3 cm and are filled with a mixture of Argon (93%)
and CO2 (7%) operating under a pressure of 3 bar. Centrally in the tubes, an anode wire composed of
W-Re collects the electrons freed by a passing muon. The spatial resolution which can be achieved by
this design is about 80µm per measurement.

In the regions of larger pseudo-rapidities, the requirements of segmentation and radiation hardness
are more severe, and here measurements are performed by the cathode strip chambers (CSC). This
multi-wire proportional chamber uses a ArCO2CF4 (30:50:20) gas-mixture, which provide a single
hit resolution∼ 60 µm.

For triggering purposes, the MDTs and CSCs are not useful dueto the long drift times involved (up to
700 ns) and therefore two separate sub-systems have been built: Resistive plate chambers (RPC) in the
barrel region and thin gas chambers (TGC). The main reason tobase the trigger chamber on different
technologies is the difference in occupancy between the barrel and the end-cap. Both sub-detectors
are based on small gas volumes and provide drift-times of typically 10 ns.

As opposed to other sub-systems, the space limitations faced by the Muon System are not severe, and
thus the advantages of long lever arms can be afforded. For example, are the MDTs of the barrel
layers placed at radii of 4.93 m, 7.12 m and 9.48 m respectively.

3.2.4 The magnet system

For the Inner Detector, a magnetic field of approximately 2 T is provided by the central solenoid (CS),
situated at 1.22 m< r < 1.31 m. In order to prevent heating problems induced on the surrounding sub-
detectors, the central solenoid is based on a superconducting mixture of NbTi, Cu and Al cooled by
liquid helium. The fact that the magnet is placed in front of the calorimeters allows its size to be small,
but also implies that electromagnetic showers tend to startin the magnet rather than in the calorimeter.
In order to diminish this effect and prevent unnecessary degrading of the calorimeter performance, the
magnet is constructed using a minimum of material. In addition, the magnet is located inside a vacuum
vessel shared by the electromagnetic calorimeter hereby eliminating two vacuum walls.

Muons are bend by the barrel- and end-cap air-core toroids, which are based on the same supercon-
ducting alloy as the central solenoid. The huge toroid system encapsulates the experiment, except for
parts of the muon layers, as can be seen in figure 3.2.1. Needless to say, the fields provided varies
significantly in the volume of the ATLAS experiment, peakingat approximately 4 T.

3.2.5 Triggering

Since the type of events that the LHC is primarily built to search for (i.e. Higgs and SUSY) are
expected to be extraordinarily rare, the interaction rate must be enormous. At the design luminosity,
bunch-crossings take place every 25 ns yielding about 20 collisions on average. Even utilizing zero
suppression and packing, the raw data rate from the ATLAS experiment would be∼ 80 TB/s 4 -
which is clearly beyond present day capabilities of data handling and storage. To bring this rate to an
acceptable level, a three level trigger filtering system hasbeen implemented, each level refining the
decision of the previous level, based on an increasing amount of data. A schematic view of the trigger
system is provided in figure 3.2.7. At the level one trigger (L1), the decision on whether or not to keep

4Assuming 2 MB/event, i.e. 2 MB·40 MHz=80 TB/s.
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Figure 3.2.7:Overview of the ATLAS triggering scheme. Source [ATL99].

an event is based on the trigger chambers of the muon spectrometer, as well as reduced-granularity
cells of the electromagnetic- and hadronic calorimeters. Thus, anything with sufficiently highpT ,
whether it be muons, electrons, photons, jets, hadrons or even /ET causes a positive trigger decision.
While awaiting the L1 decision (maximally 2.5 µs) subsequent events are stored in pipelines, and
upon completion, the initial 40 MHz event rate is reduced to 75 kHz.
The level two trigger (L2) is based upon the Regions of Interest (RoI) defined by the L1 trigger, but
refines the reconstruction by reading the full granularity of all available detector data within the RoIs.
Within typically 40 ms the event rate is hereby reduced to about 3.5 kHz.
This rate is sufficiently low that the events can be fully reconstructed at the event filtering (EF), which
uses optimized versions of the standard offline ATLAS reconstruction software as well as various
conditions data5. After Event Filtering, the event rate is reduced to roughly200 Hz. Although this
rate can be handled offline, limitations of bandwidth and CPUresources for the event analysis imply,
that offline analysis cannot be performed centrally by all users. Instead, the data is distributed to a
number of computer facilities around the world, directly from the ATLAS pit.

In modern particle physics, of course, it is not sufficient toperform collisions and measure the out-
comes in the detector. The experiment must also be simulatedin order to reliably extract signatures
of new (or known) physics phenomena. The complexity of the ATLAS experiment as briefly sum-
marized above is reflected in the software which simulates ATLAS events. An introduction to the
software developed and used in the ATLAS experiment is givenin chapter 9. Before entering the de-
tails of the simulation, however, the next part of the this thesis is devoted to a study of the capabilities
of the ATLAS experiment to measure the mass of theW boson.

5Data from the experiment describing the instantaneous condition of the detector, i.e. threshold settings, voltages,
temperatures etc.
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Chapter 4

Introduction to the W mass analysis

Integral parts of the analysis and writeup is adopted and expanded from two papers: [ATL08b] and
[ATL08c] which are in the publishing process at the time of writing. The first paper is written in
collaboration with S. Mehlhase, T. Petersen, M. Boonekamp and N. Besson whereas co-authors of the
latter are: T. Petersen, M. Boonekamp, and N. Besson. For completeness and readability the content
(and parts of the writeup) of the two papers has been merged and expanded, and constitutes this Part
of the thesis. With respect to the papers, additional focus is here put on the work done by the author,
however, it is emphasized that not all results are due to author. In particular, the results presented in
chapter 7 is based on studies done by the other authors.

In the previous chapters, the importance of theMW measurement was argued. In this Part of the
thesis, the ATLAS experiment prospects for theW mass measurement are discussed. Compared to the
Tevatron measurements [CDF07a, CDF07b, DØ98, DØ96, DØ00b], which currently dominates the
world average [PDG06], the increase in energy and luminosity imply an increase in statistics, so that
the ATLAS MW measurement, is expected not to be statistically dominatedas has been the case for
the Tevatron measurements. Consequently, understanding and minimizing systematic errors become
of paramount importance for theMW measurement, and this is the topic of the present analysis.

The expectedW cross-section at the LHC is about 20 nb [H+03]. In 10 fb−1 of data, a benchmark for
one year of integrated luminosity during the first years of stable running, more than 100 millionW-
and nearly 10 millionZ events will be collected in the exploitable decay channels (W→ eν ,µν and
Z→ee,µµ), providing a combined statistical sensitivity of about 2 MeV for theW mass measurement.
The total expected production cross-section forW’s at the LHC is shown in figure 4.0.1.

Especially the largeZ sample is of importance since this precisely measured resonance, due to the
large overlap in kinetics, can be used to constrain and evaluate theW systematics.

Earlier estimates [ATL99, H+03, B+07a] of the systematic uncertainties affecting theMW measure-
ment amount toδMW ∼ 20 MeV for the ATLAS experiment. The main sources are the imperfect
determination of the absolute energy scale, and the uncertainties in theW boson kinematic distribu-
tions (rapidity, transverse momentum), which in turn stem from proton structure functions uncertain-
ties and higher orders QCD effects. As discussed in the following chapters, the uncertainties can be
significantly reduced usingZ boson measurements.

The analysis is structured as follows: After introducing theW production and reconstruction, the sig-
nal selection and fitting procedure are discussed in section5.3. Also listed here are the ingredients
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Figure 4.0.1:Expected production cross-sections at the LHC. Source: [LHC06].

needed to describe theW distributions used in the fit, and a general description on how these ingredi-
ents can be determined. The sources of uncertainty are then treated in turn, in chapter 6 (experimental
uncertainties), chapter 7 (theoretical uncertainties), and chapter 8 (backgrounds, underlying event,
and effects related to the machine operation). Correlations between these effects are discussed in sec-
tion 8.4, and the results are summarized in section 8.5 and discussed in section 8.6, which concludes
the analysis.



Chapter 5

W mass measurement

5.1 W Production

At the LHC, the dominant production mechanism forW andZ bosons is the Drell-Yan process of
quark-antiquark annihilation - see figure 5.1.1. Being a proton-proton collider, the anti-quarks would
have to be sea quarks whereas the quarks can be either valenceor sea quarks. The enhanced avail-
ability of u quarks with respect tod quarks from the proton substructure(uud), implies that the
cross-section forW+ production is larger than that ofW− and have slightly different kinetics as will
be discussed in section 7.3.1. In hadron machines, even whenproduced in the Drell-Yan process,

Figure 5.1.1:Diagrams forW+ production. Left: Leading order Drell-Yan production. Middle and right:
Diagrams to first order inαs. Source [Shp00].

W’s will acquire some transverse momentum due to the Fermi motion of the quarks in the hadron.
However, a much larger source of transverse momentum is contributions to theW production from
higher order diagrams which include gluon- or quark radiation, as shown in figure 5.1.1. As a result,
theW can obtain a significant momentum in the plane transverse to the beam,pT , as shown in figure
5.1.2(left). The momentum is balanced by quark/gluon radiation, experientially seen as a spray of
hadrons bouncing the boson: Hadronic jet(s) - see figure 5.1.2(right).

5.2 W reconstruction

Since aW boson decays within∼ 10−25 s it must be reconstructed from its decay products. The decay
can proceed either leptonically or hadronically - the branching fractions of the available decay modes
are given in table 5.2.1. Since the di-jet cross-section at hadron colliders is many orders of magnitude
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Figure 5.1.2:Left: Reconstructed transverse momentum ofW andZ bosons in the muon decay channel. The
larger resolution in theW events causes the wider peak at lowpT , while at higherpT theZ spectrum slightly
dominates. Right: JetpT in W→ µν andZ→ µµ events. The structure at lowpT is due to the jet reconstruction
algorithm.

Decay mode Branching f raction
e+νe 10.75±0.13%
µ+νµ 10.57±0.15%
τ +ντ 11.25±0.20%
qq̄
′

67.60±0.27%

Table 5.2.1:Branching ratios forW+. Source [PDG06].

larger than theW boson cross-section, the hadronic decay modes ofW andZ bosons are not usable
(see figure 4.0.1σtot ≈ σdi− jet). Theτ mostly decays hadronically, and even when it does decay lep-
tonically, the two additional neutrinos created with respect to the electron and muon channel make
this mode unsuitable for precision mass measurements. Therefore, only the leptonic decay modes
W→ ℓν andZ→ ℓℓ whereℓ = e,µ are considered for theW andZ reconstruction.

In an LHC collision, the remnants of the interacting protonsproceed undetected along the beam
line. Moreover, the momentum fractions of the interacting quarks are unknown, by which full event
reconstruction is possible only in the transverse plane (but of course parts of the event such asZ decays
can be fully reconstructed). In case ofW production and decay, the event reconstruction is further
complicated by the presence of a neutrino, which escapes theexperiment undetected. To reconstruct
theW despite the difficulties one must take advantage of the factsthat the ATLAS experiment offers
close to 4π coverage in solid angle, and that only very rarely additional neutrinos are produced in aW
event (< 1%). By this, one can assume that everything, with significant transverse momentum, except
for the neutrino from theW decay, is reconstructed. The transverse momentum of the neutrino is
then simply given as the energy imbalance of the event, evaluated by vectorially summing all energy
deposits in the detector. Rewriting the invariant mass equation for theW in terms of measurable
quantities yield:
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M2
inv = (El +Eν)2− (~pl

T +~pν
T)2− (pl

z+ pν
z )2

⇓
M2

T ≡ (El
T +Eν

T)2− (~pl
T +~pν

T)2

≈ 2~pl
T ·~pν

T = 2pl
T pν

T(1−cos(∆φlν ))

(5.2.1)

where∆φlν is the angle between the decay products as illustrated in figure 5.2.1 and it has been used
that El ≫ ml c2. The right hand side of this figure illustrates a typicalZ decay and the difficulties
faced when reconstructing. As indicated by the sizes of the uncertainty ellipses, these decays are
fully reconstructed to a high level of precision. Nonetheless, theW→ lν andZ→ ll events are very
similar both from a physics- and a detector point of view. By this, the precisely reconstructedZ events,
inferring the constraints given from the LEP measurements of theZ properties, constitute an excellent
sample for calibration and for the study of systematics inW events as will be discussed later.

W→ ℓν

ν

ℓ

px

py

u

∆φℓν

Z→ ℓℓ

ℓ

ℓ

px

py

u

pT(Z)

Figure 5.2.1: Transverse view of aW → ℓν (left) and aZ→ ℓℓ (right) event. The combined transverse
momentum of the recoilu, which should match that of the boson, is used to estimate themomentum of the
undetected neutrino in theW→ ℓν decay. The dotted ellipses represent the uncertainties.

5.3 Outline and strategy of the analysis

5.3.1 Simulation and data sets

The simulatedW andZ samples on which this study is based are generated using thePYTHIA event
generator [SMS06]. Photon radiation is carried out byPHOTOS [BW94], andτ -decays are handled
by TAUOLA [JWDK93]. Simulation of particles passing through the detector is done usingGEANT4
[G403] based on the implementation of the ATLAS geometry in the so called GeoModel (explained
in chapter 9). Events are reconstructed using the ATLAS software. The simulated data is partly
used as real data (“pseudo-data”), and partly to produce thetemplates, exploiting the generator-level
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Channel Statistics [events] Cross-section [pb] Corresponding L [pb−1]
W→ eν 170143 20510 13.3
W→ µν 189903 20510 13.5
Z→ ee 377745 2015 218.7
Z→ µµ 150650 2015 83.4

Table 5.3.1:Number of events, cross-sections, and corresponding luminosity of the simulatedW andZ signal
samples used in this chapter.

distributions together with estimated detector smearing corrections. The samples used in this chapter
are due to the Computer Systems Commissioning (CSC) production [AFGS+07] and the simulated
statistics of the main signal samples are shown in table 5.3.1. As can be seen from this table, theW
signal samples correspond to about 13 pb−1 but for transparency, all results presented in this chapter
are scaled to 15 pb−1 in order for the reader to be able to assess what can be done which this limited
amount of data. In the section concluding the chapter all results obtained are summarized and scaled
to 10 fb−1, which is the luminosity expected for the competitiveW mass measurement of ATLAS
[ATL08b, ATL97a]. In chapter 7 special customized simulations of larger data samples are defined
and used.

5.3.2 Event selection

W events are required to have one isolated lepton1 with pT above 20 GeV and missing transverse
energy (/ET ) in excess of 20 GeV.Z events are required to have two isolated and oppositely charged
leptons withpT above 20 GeV. The triggers providing these events are an isolated 15 GeV electron
trigger and a 20 GeV muon trigger. The electrons are requiredto pass tight identification criteria2,
and only muons which are reconstructed from track-segmentsin both the Inner Detector and the
Muon Spectrometer are used [CSC08a]. Both electrons and muons are required to lie within the
tracking region|η | < 2.5 (see figure 5.3.1). In addition, the calorimeter barrel - end-cap transition
region 1.3 < |η |< 1.6 is excluded for electrons due to poorer resolution, lack ofuniformity and most
importantly significant bias on the lepton momentum.

Apart from this basic selection, some other requirements apply. To reject backgrounds fromtt̄ and
QCD di-jet events, the signal events are required not to havelarge hadronic activity. A summary of
the requirements can be found in table 5.3.2. The reason for the somewhat arbitrary cut values is, that
the cuts should be optimized with respect to the final systematic error, and therefore a cut optimization
at the present stage of the analysis (i.e. before data is available) would be premature3.

The expected numbers of events in 15 pb−1 from the above mentioned event selection are summarized
in table 5.3.3. Though the expected number of reconstructedZ events is an order of magnitude smaller
than that ofW events, the fact thatZ events are fully reconstructed and thus have much better mass
resolution compensates for this deficit.

1The ratio between the energy in a cluster of size∆R≡
√

∆η 2 +∆φ2 ≤ 0.2 and the full energy in the cells of a 3x7
sliding windows is required to have some minimum value. The exact value dependsET andη . For details see [ATL08e].

2Based on hadronic leakage, isolation and electromagnetic samplings. For details see [ATL08e].
3It is not as in many other analyzes useful to optimize with respect to signal significance. Instead, a cut that make theW

andZ look alike is preferable.
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Requirement W→ eν W→ µν
Reconstructed lepton pT > 20 GeV,|η |< 2.5 pT > 20 GeV,|η |< 2.5
Isolation Econe

T /ET < 0.2
Missing energy /ET > 20 GeV /ET > 20 GeV
Crack region Remove 1.30< |η |< 1.60
Recoil momentum pT < 50 GeV

Requirement Z→ ee Z→ µµ
Reconstructed leptons pT > 20 GeV,|η |< 2.5 pT > 20 GeV,|η |< 2.5
Isolation Econe

T /ET < 0.2
Crack region Remove 1.30< |η |< 1.60
Recoil momentum pT < 50 GeV

Table 5.3.2:Selection criteria for theW andZ decays. See text for details.
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Figure 5.3.1:Distribution inη of reconstructed muons (left) and electrons (right) fromW events (blue) andZ
events (red).

Channel W→ eν W→ µν Z→ ee Z→ µµ
Acceptance [%] 44.3 45.4 42.4 39.9
Reconstruction eff. [%] 21.7 39.1 10.4 33.4
Statistics for 15 pb−1 [103] 66.7 120.2 3.2 10.1

Table 5.3.3:Acceptances, total reconstruction efficiencies, and resulting statistics for 15 fb−1 of data. TheW
cross-sections are inclusive, while theZ cross-sections are for invariant masses above 60 GeV. Both contain the
relevant branching fractions. The acceptance is the fraction of events which lies within the detector acceptance,
while the reconstruction efficiency is the overall efficiency for an event to pass all selection criteria.
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5.3.3 Input to W mass fit

The fact that the invariant mass of theW cannot be reconstructed forces the use of variables sensitive
to theW mass for the measurement. As explained in the introduction of this chapter, one such variable
is the transverse mass, defined as:

•MW
T ≡

√

2pl
T pν

T(1−cos(∆φlν )).

But there are also others:
• The lepton transverse momentum,pl

T .

• The missing transverse momentum,pν
T ≡ /ET .

The lepton transverse momentum is measured with an accuracyof about 2% for electrons and muons
in the momentum range of interest (cf. sections 5.4.2 and 5.5.1). This is an order of magnitude better
compared to the accuracy of the missing transverse energy determination, which has a resolution of
about 20-30% (section 5.5.2). Finally, theW transverse mass combines the two along with the angle
between them in the transverse plane.
All of the above distributions have a Jacobian edge either atMW/2 (pl

T andpν
T ) or MW (MW

T ), which is
sensitive to theW mass - see figure 5.3.2. The sharpness of the edge is affected both by the resolution
and the bosonpT .
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Figure 5.3.2:Distributions sensitive toMW based on quantities of reconstructedW→ µν events.MT (left),
transverse muon momentum (middle) and/ET (right).

While the leptonpT has a very good resolution, thepT of the boson smears this Jacobian edge. On
the contrary,MW

T is to first order insensitive to thepT of the boson, but here the edge is smeared by
the poor resolution of the missing transverse energy (see figure 5.3.3). Finally,pν

T suffers from both
effects, and is therefore the poorest candidate for a fittingvariable.

SinceMW
T is formed frompl

T and pν
T , it is of course correlated withpl

T . However, the correlation is
only about 30%, and since they have different systematic errors, combining the measurements could
improve the sensitivity.

5.3.4 Fitting theW mass with templates

The lepton transverse momentum andW transverse mass distributions,pl
T and MW

T , shown in fig-
ure 5.3.3, are the result of several non-trivial effects. For this reason no analytical expression describes
the distributions in detail, and one is forced to use numerical methods to describe and compare distri-
butions. One method of comparing two such distributions is template fitting. Templates of thepl

T and
MW

T distributions produced with varyingMW values, are compared bin by bin to the corresponding
distribution observed in data (see figure 5.4.4). The comparison is based on a binnedχ2 method.
To estimate the impact of a given systematic effect on theW mass determination, templates unaware
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Figure 5.3.3:Distributions ofpl
T (left) andMW

T (right), showing the Jacobian edge, and the effects of resolution
and recoil (i.e.pT of theW). While pl

T is more sensitive to the recoil than the resolution, the converse is true
for theMW

T distribution.

of the effect under consideration are produced and subsequently fitted to data, which includes the
effect. Assuming an unbiased fit, in the absence of systematic effects (cf. sections 5.4 and 5.5), the
resulting shift in fit value measures the systematic error ontheW mass from not including the effect.
By gradually changing the size of an effect, the systematic error on theW mass as a function of the
effect can be determined. As most effects are small, the dependencies are approximately linear. In
general different systematic effects have different influence for thepl

T andMW
T fits. If an effect can be

characterized by one parameter (α ), the systematic errors (δMW) can be calculated from the deriva-
tive ∂MW/∂α times the size of the uncertaintyδα. If more parameters are required, the systematic
uncertainty is calculated from all parametersα i and their covariances Covi, j [Cow].

δMW =
∂MW

∂α
δα (Single parameter) δMW

2 = ∑
i, j

∂MW

∂α i

∂MW

∂α j
Covi, j (Multi parameter)

Thus, the evaluation of systematic effects used throughoutthe analysis proceeds in two steps: First
the dependence ofMW on the systematic effect is mapped with respect to a characterizing parameter
(∂MW

∂α ). The next step is to estimate the expected uncertainty onα , δα, by which the impact on theW
mass measurement is found as the product of the two quantities.

5.3.5 Required inputs

For the above procedure to work in practice, one must predictthe pl
T andMW

T distributions as a func-
tion of theW mass. These distributions however result from many effects, which need to be included
correctly in order to avoid biases in the mass fit. The inputs needed are listed below.

• Experimental inputs: The energy scale and resolution need to be known in order to describe the
Jacobian edge correctly (position and spread). Electron and muon reconstruction efficiency effects
also distort the spectra, if this efficiency ispT dependent (and for electrons it is - cf. section 5.4.3).

• Theoretical inputs: TheW rapidity distribution,yW, affects theMW
T and pl

T distributions through
acceptance effects. The transverse momentum of theW, pW

T , directly affects thepl
T spectrum, whereas
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its impact on theMW
T spectrum is weaker. The shape of theyW and pW

T distributions result from the
proton structure functions and from higher-order QCD effects. The lepton angular distribution in the
W rest frame is of importance for bothpl

T andMW
T and changes with theW polarization [MO94].

Finally, QED effects (photon radiation in theW decay) shifts the leptonpT downward. Since the ra-
diated photons are mostly collinear to the charged decay lepton, the impact on electrons and muons is
different: The measured muon momentum entirely reflects themomentum loss by radiation, whereas
the electron energy, measured essentially in the electromagnetic calorimeter, includes most of the ra-
diated energy.

• Environmental inputs: These include, among others, backgrounds surviving theW selection, un-
derlying event, pile-up effects on reconstructed energiesand momenta, random neutron hits in the
muon spectrometer (“cavern background”), and the impact ofa non-zero beam crossing angle. In all
cases, imperfect modeling of these inputs biases the event reconstruction, lead to distortedpl

T andMW
T

distributions.

After presenting the fitting procedure below, the systematics originating from these inputs are dis-
cussed separately.

5.4 Fitting the W mass with templates - electron channel

5.4.1 Modeling templates forW mass fit

Two assumptions have to be validated before one can start thestudying systematics using the template
approach. Theunbiasednessof the fit in itself and theportability of the calibration from theZ to
theW. The unbiasedness is tested by assuming perfectly known physics and detector response. In
practice, the detector response is determined at this stagefrom direct comparisons of the lepton recon-
struction to the generator-level kinematics, using eventsfrom theW sample. The fit is then repeated
using templates with the detector response estimated from theZ sample, still comparing reconstruc-
tion to generator-level truth. An unbiased result validates the portability, i.e. that detector parameters
can indeed be ported fromZ toW events, justifying anin situdetermination of these parameters using
Z events.
In addition it has to be verified that the template componentscan be included without biasing the fit,
and thus that a subsequent calibration, which matches the truth, will yield unbiased templates. This is
tested in the following.
Note thatper eventtruth information is used only in the first step, to obtainErec/Etruth - the distribu-
tion which is fitted. In the following steps only distributions of the same quantity are used, by which
the exercise can be performed in real data, withZ events playing the role as truth. The procedure is de-
picted in figure 5.4.1. The statistical sensitivity of theW→ eν sample, corresponding to 13.3 pb−1 of
data, is about 120 MeV, and an estimate of the required precision on the detector response parameters
to keep the systematic uncertainty within this limit is provided.
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figure 5.4.2←−

figure 5.4.4(left)←−

figure 5.4.4(right)←− −→ figure 5.4.5

−→ figure 5.4.3

Figure 5.4.1:Outline of the template fitting procedure.

5.4.2 Fits toMW using templates: Validation of the method - electron channel

In this section the electron channel is studied, the detector parameters being determined from fits to
Erec/Etrue, the ratio of reconstructed to true energy of the decay electrons. The fits are performed
using the so-called “Crystal Ball” probability density function [Gai82], which aims at describing the
result of calorimetric resolution together with upstream energy loss in a single function. It has four
parameters and consists of a Gaussian core, and a power-law tail at low energy. Its expression is, up
to normalization factors:

CB(x) =

{

e−( x−α
σ )2

, x > α −nσ
(β/n−|n|−x)−β , x < α −nσ

(5.4.1)

wherex = Erec/Etrue, α is the position of the peak,σ the Gaussian width;n gives, in units ofσ , the
point of transition between the Gaussian and power-law descriptions, andβ is the exponent controlling
the tails. The relative normalization of the two componentspreserves continuity atα − nσ , up to
the first derivative. While not fully satisfactory from a theoretical point of view (the combination
of resolution effects and radiation should in principle be given by a proper convolution), it is very
effective in describing the observed electron response.
The fits are performed in bins ofη andpT . The angular range 0< |η |< 2.5 is divided in intervals of
size∆η = 0.1. In each interval, fits are done for 10 GeV< pT < 70 GeV, in intervals∆pT = 10 GeV.
Figure 5.4.2 shows a number of example fits, at different values ofη andpT . Theη dependence of the
fit parameters, for 30 GeV< pT < 40 GeV, is displayed in figure 5.4.3. In the fits, theβ parameter was
constrained to the range 0< β < 5. As the examples in figure 5.4.2 illustrate, theβ parameter appears
to systematically choose values close to its upper bound, while satisfactory fits are still obtained. The
main reason for this is the strong correlation betweenβ andn, and the fits indicate that in practice,
only one of the two can be fitted.

Therefore, the remaining of the analysis uses a fixedβ = 5, and treat the response functions in terms
of α , σ andn only.
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Figure 5.4.2:Example of detector response functions fitted toErec/Etrue, for 30 GeV< pe
T < 40 GeV. From

upper left to lower right:0.4 < |η |< 0.5, 0.8 < |η |< 0.9, 1.3 < |η |< 1.4, and1.9 < |η |< 2.0.
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Figure 5.4.4:Left: Templates obtained at three example mass points, namely α = MW/Mtrue
W = 0.98,1,1.02.

Right: Template forα = 1 (histogram), compared to the pseudo-data (points).

The pT -spectrum templates are produced from generator-levelW→ eν events, where the electrons
are smeared using the above function and parameters according to their kinematic variables. Three
example template distributions are shown in figure 5.4.4(left), corresponding to three values ofMW.
The number of events used to produce the templates is ten times larger that the fully simulated sample
size. Although this limits the impact of statistical fluctuations in the templates on the result, template
fluctuations are still visible.

The mass fit is performed using binnedχ2 comparisons between the pseudo-data and the template
histograms. Given that allpT bins contain at least several hundred events, theχ2 of a given comparison
can be defined as:

χ2 =
N

∑
i=1

(ni,data−ni,template)
2

σ2
i,data+σ2

i,template

, (5.4.2)

where the sum is over the histogram bins, andn andσ are the bin contents and their errors, respectively
(σ =

√
n). Computed as a function ofMW used in the templates, theχ2 follows the parabola illustrated

in figure 5.4.5, which can be used to determine theM f it
W as the vertex and its error,σ , is the interval

from the vertex to the point where the parabola is increased by one unit. In practice, this is computed
as 1/

√

par(2), wherepar(2) is the constant of the second degree term in the polynomial. The result
obtained is:M f it

W = 80.468± 0.117 GeV, to be compared to the input valueMtrue
W = 80.405 GeV.

The stability of this result is verified by repeating the exercise a number of times, with the detector
smearing applied independently in each exercise (i.e., producing independent sets of templates). The
distribution ofM f it

W has a spread well compatible with the estimated fit uncertainty.

Thus it is concluded that within the statistical sensitivity of theW→ eν sample, the current procedure
provides an unbiased estimate ofMW.

5.4.3 Sensitivity ofMfit
W to the template components

This section quantifies the stability ofM f it
W under variations of the assumptions used to produce the

templates.
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Figure 5.4.5:χ2 vs.α = MW/Mtrue
W , for the comparisons of pseudo-data and templates described in the text.
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Efficiency

Distortions in thepT distribution can be caused by the lepton reconstruction efficiency, in the case
where it has a non-trivialpT -dependence, i.e.εl = εl (pT). This is the case in the electron channel, as
illustrated in figure 5.4.6.

The impact of thispT -dependence is quantified by taking the pseudo-data as it is,but assuming a flat
efficiency in the templates. Sinceεl (pT) is an increasing function ofpT , one can expect that the tem-
plates will be biased toward lowerpT-values, inducing a positive shift inM f it

W . Performing the mass
fit indeed yieldsδMW = 360 MeV (this bias corresponds to a perfectly flat efficiency assumption).
Thus the estimated relative bias per percent due to thepT -dependence ofεl is:

∂MW/∂εl = 3.6 MeV/%. (5.4.3)

Note that the analysis only relies on thepT -dependence ofεl and not on its absolute value.
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W ,
with non-Gaussian tails included (full line) or not (dashedline).

Non-Gaussian tails

The impact of non-Gaussian tails is studied as follows. Starting from the detector response parametriza-
tion described in section 5.4.2, the tails of the distribution are suppressed by assuming a pure Gaussian
response. The parameters describing scale and resolution are kept to their previous value and tem-
plates are produced and fitted to data as above.
The procedure is illustrated in figure 5.4.7. The response distribution can be compared to figure 5.4.2
to assess the impact of neglecting the non-Gaussian part of the distribution. As can be seen, the cor-
responding templates are biased toward higherpT ; thus it is expected, that an underestimation of the
tails should imply a negativeδMW.

The resulting bias isδMW = −555 MeV, corresponding to an underestimation of the non-Gaussian
tails by 100%. By denotingτ the non-Gaussian fraction of the response function and assuming a
linear dependence, the bias as a function of the relative error on the tails can be estimated as:

∂MW/∂τ =−5.5 MeV/%. (5.4.4)

5.4.4 Comparison ofW and Z events

Before explicitly calibrating detector parameters fromZ events and applying them in theMW fit, it
must be verified that this procedure is indeed justified - i.e.the portability must be verified. To this
end, the detector response fits as described in section 5.4.2are performed on theZ→ ee sample,
obtaining a map of the response parametersα , σ andn as a function ofη andpT of the electrons.
A first check is to compare the obtained values of the fit parameters to those extracted from the
W sample. This is illustrated in figure 5.4.8. Agreement is found within the statistical sensitivity
throughout the analyzed electron phase space, for all parameters. Thus it is expected that templates
produced using detector response toZ events will provide an adequate description ofW events.

A MW fit is performed next. Templates are produced from generator-level W→ eν events, smeared
according to detector performance based onZ events. The resulting distributions are shown in fig-
ure 5.4.9; good agreement is observed. The result of the fit isM f it

W = 80.567±0.118 GeV, compatible
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with the input valueMtrue
W = 80.405 GeV.

5.5 Fitting the W mass with templates - muon channel

5.5.1 W decays in the muon channel

In many respects, the muon channel yields similar results asthose shown for the electron channel and
focus in this section lies primarily on the differences. In addition, a template fit of theMW

T distribution
is described.
The functional dependence of scale and resolution for theMW fit is the same in the muon channel as
for the electron channel. The muon momentum resolution is generally slightly worse, and whereas
the electron resolution improves withpT , the converse is true for the muon resolution. Figure 5.5.1
shows four examples of the momentum ratio distributionsprec

T /ptrue
T for muons - two fromW events

and two fromZ events. As can be seen, the shapes can be modeled well with a core bifurcated Gaus-
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Figure 5.5.1:Distributions of transverse momentum ratiosprec
T /ptrue

T for muons fromW (top) andZ (bottom)
decays at1.5 < |η | < 1.6 (left) and 0.5 < |η | < 0.6 (right) in the momentum range 10-20GeV (left) and
30-40 GeV (right). Abbreviations: CB: Crystal Ball (equation 5.4.1), BF: Bifurcated Gaussian, L: Left, R:
Right.

sian4 distribution (BF), describing the general muon bias and resolution, complemented by an out-lier
Crystal Ball function (CB) accounting for the muons, which encounter parts of the detector with poor
muon spectrometer coverage and increased material, resulting in a slightly degraded resolution.

To check the portability, the fitted constants are again compared betweenW and theZ events, as can be
seen in figure 5.5.2. In general, the resemblance is satisfactory although some degree of discrepancy
is observed. A number of crosschecks are performed to validate the fitting- and smearing procedure:
• pT andη binning effects.
• Increased template statistics.
• Taking into account uncertainty on fit-parameters when defining smearing functions.
• Fit smearing distributions and compare with original fit.
Some results from these exercises are shown in Appendix A. Here it suffices to state that the studies
did not reveal significant problems in the method used.

Figure 5.5.3 shows the results of the template fitting and verifies the unbiasedness of the fitting pro-
cedure. The results are 80.400±0.106 GeV when smearing using the detector response fromW and
80.541±0.105 GeV when using theZ detector response function. Both are in compatible the input
value of 80.405 GeV.

Unlike the electron case, the muon reconstruction efficiency does not vary significantly over the mo-

4An asymmetric Gaussian with two widths: One accounting for events on the right-hand side of the peak, and one
accounting for events on the left-hand side.
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Figure 5.5.2:Comparison of fit parameters betweenW (blue) andZ (red) events for muons in the momentum
range30 GeV< pT < 40 GeVin 25 bins of|η |.
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Figure 5.5.3:Top: Reconstructedpl
T distributions for data (black) along with templates produced with theW

mass hypothesis78.792 GeV(red) and82.008 GeV(blue). The templates have been smeared using the detector
response fromW (left) andZ (right). Bottom:χ2 value of fitting templates to the reconstructed distribution as
a function of the template’sW mass hypothesis (compared to the nominal mass). Left plot issmeared using the
W smearing functions and right plot is smeared using those from Z events.
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mentum range of interest. As can be seen from figure 5.5.4, theefficiency is approximately constant
above 10 GeV, varying only slightly between the barrel (ε = 95.8%) and end-cap (ε = 94.3%) region,
due to increase of material. As the reconstructed muons are required to have a momentum above
20 GeV, the efficiency is essentially constant.
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Figure 5.5.4:Left: Muon efficiency as a function ofpT for W (red) andZ (blue) events. The hypothesis of a
flat probability in the range10−60 GeVhas been tested to be valid. Right: Muon efficiency ratio betweenW
andZ events. NopT dependence is seen, and a linear fit yields a slope of(0.00011±0.00045), consistent with
zero.

The flatness of the efficiency is expected to be retained up to several hundred GeV, where radiative
losses grow larger than those due to ionization. Using the “tag-and-probe” method [DØ00a], the
hypothesis of a flat muon efficiency is tested. The uncertainty in the linear fit translates for 15 pb−1

into a systematic error of: 0.00045 GeV−1 ·50 GeV·100%·3.6 MeV/%= 8 MeV, which is much less
than in the electron channel, as expected.

By comparing figures 5.4.2 and 5.5.1 it is clear that the muonprec
T /ptrue

T ratios have less events in the
tail as compared to the corresponding electron distributions Erec/Etrue. Thus the non-Gaussian tail
is smaller in the muon case, and to estimate the impact of non-perfect modeling, the electron result,
∂MW/∂τ =−5.5 MeV/%, can be used as an upper limit of the effect.

5.5.2 Fitting the transverseW mass

Having tested the template fitting of thepl
T distribution, this section concerns to theMW

T distribution.
In addition to the lepton transverse momentum residuals, this fit requires residuals for the missing mo-
mentum. In terms of/ET the detector response is expected to depend on the total transverse hadronic
activity, ∑ET(hadrons), (i.e. total and not vectorial sum) and the recoil momentum perpendicular to
the direction of the leptons (cf. figure 5.2.1).
Dividing the hadronic activity into 10 bins in the range [0;200] GeV and the perpendicular recoil
momentum into 10 bins in the range [0;40] GeV, each with an additional overflow bin, yields a sat-
isfactory description of the missing momentum response. Anexample of the residual distributions
can be found in figure 5.5.5. The distributions are well described by two Gaussian distributions with
a common mean, and unlike the lepton momentum ratios, the missing momentum residuals are not
expected nor observed to have asymmetric tails.



46 W mass measurement

Missing momentum residual (GeV)
-50 -40 -30 -20 -10 0 10 20 30 40 50

N
um

be
r 

of
 e

ve
nt

s

0

20

40

60

80

100

120

140

160

Missing momentum residual (GeV)
-50 -40 -30 -20 -10 0 10 20 30 40 50

N
um

be
r 

of
 e

ve
nt

s

0

20

40

60

80

100

120

140

160

Figure 5.5.5: Distribution of /ET residuals,/ET
rec− /ET

true, for W decays with a recoil momentum parallel
(left) and perpendicular (right) to the lepton axis in the range [8;12] GeV and a hadronic activity in the range
[20;30] GeV. The fitting function describes the distributions well (χ2/nd f in all ( ∑ET(hadrons), pl

T ) bins is
below 2.
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Figure 5.5.6:Left: ReconstructedMW
T distribution (black) along with templates produced with the W mass

hypothesis78.792 GeV(red) and82.008 GeV(blue). Right:χ2 value of fitting templates to the reconstructed
distribution as a function of the template’sW mass hypothesis (compared to the nominal mass). The fit yields
80.421±0.059 GeVin agreement with the input value of80.405 GeV.

Using the above modeling of the missing momentum response,MW
T templates are produced and the

unbiasedness of the fit is tested. Unlike the lepton case, no additional efficiency curve has to be
included, as the missing momentum is calculated for every event. As can be seen from figure 5.5.6,
theMW

T templates match the reconstructed distribution, and the fitis unbiased, giving a fitted value of
M f it

W = 80.421±0.059 GeV compared to an input value ofMtrue
W = 80.405 GeV.

5.5.3 Fitting the transverseW mass using theZ events for calibration

In the case of transverse mass fitting, the detector responseis not exactly the same forW andZ events.
The discrepancy is in the missing momentum perpendicular tothe lepton direction, where the residual
for Z events is slightly biased toward negative values in most configurations (see figure 5.5.7).

While the missing momentum residual yields the same result for Z andW in the direction parallel to
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Figure 5.5.7:Distribution of /ET residuals,/ET
rec− /ET

true, parallel (left) and perpendicular (right) to the lepton
axis forW andZ decays.
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Figure 5.5.8:Left: ReconstructedMW
T distribution (black) along with templates produced with the W mass

hypothesis78.792 GeV(red) and82.008 GeV(blue). Right:χ2 value of fitting templates to the reconstructed
distribution as a function of theW mass hypothesis. The fit yields80.347±0.060 GeV, which is one standard
deviation from input value of80.405 GeV.

the muon, this is not the case in the perpendicular direction. Though the shape of the two residuals
are compatible, their means are shifted. The shift is thought to be caused by the missing momentum
algorithm, which is not capable of separating the leptons from the hadronic recoil to the required level
of precision. This results in a difference between the asymmetricW events and the more symmetricZ
events. Since the resolution is dominated by the hadronic recoil, this does not change between theW
and theZ distributions. The parallel direction is unaffected, as the lepton momentum does not affect
this direction.
This important issue is the topic section 6.3. Here a procedure is presented to assess and quantify the
bias, allowing the/ET scale and resolution inZ andW to be compared despite the significant bias.

Postponing the dealing of the problematic issues and proceeding as normal yields the result shown in
figure 5.5.8, which is based on theZ response functions. The fit yields 80.347±0.060 GeV compared
to an input value of 80.405 GeV. Incidentally, no significantbias is observed. However, a better
calibration of the missing momentum scale is needed.
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5.6 Statistical uncertainty as a function of fitting range

As previously stated, the sensitivity to theW mass comes from the Jacobian edge in the fitting dis-
tribution. Generally the Jacobian edge is slightly sharperfor the MW

T distribution (see figure 5.3.3),
yielding a smaller statistical uncertainty. To test the influence of the fitting range, three different fitting
ranges have been tested for thepl

T andMW
T distributions in theW→ µν sample. Since the typicalMW

T
values are double that of thepl

T values, the size of the fitting range is chosen to be double. The result
is shown in table 5.6.1. As can be seen this table, thepl

T statistical uncertainty changes of about 30%

Transverse lepton momentum,pl
T TransverseW mass,MW

T
Fitting range [GeV] σstat.[MeV] Fitting range [GeV] σstat.[MeV]

10-70 95.5 20-140 58.7
20-60 106.2 40-120 59.1
30-50 131.0 60-100 61.5

Table 5.6.1:Statistical uncertainty as a function of fitting range forpl
T andMW

T fits. The uncertainties are the
result of the sharpness of the Jacobian edge (see figure 6.4.3).

with fitting range, while theMW
T statistical uncertainty is essentially insensitive to therange, and gen-

erally somewhat lower as expected. Considering that most systematic effects (such as backgrounds,
electron calibration and efficiency, etc.) are largest at low momenta, a sacrifice inpl

T statistical un-
certainty will be countered by a gain in systematic uncertainty. Expanding the fitting range to higher
momenta, e.g. 30-100 GeV yields a statistical uncertainty of 107 MeV, which means that some of the
statistical sensitivity can be regained. For theMW

T fit a narrow range is surely preferable. However,
it is not possible to quantify the gain, and optimize the fitting range, until all systematic uncertainties
have been calculated.



Chapter 6

Calibration using Z events

6.1 Lepton scale and resolution

TheZ boson resonance has been measured very precisely at the LEP during the 90’s [ADL+06]. The
Z boson mass and width can be exploited as an absolute reference to determine as precisely as possible
the detector energy scale, its linearity and resolution.

The basic method is rather simple, and consists in comparingthe position and width of the observed
mass peak in reconstructed di-lepton events with theZ boson parameters. A shift of the observed
position of the mass peak, with respect to the nominalZ peak position, is corrected for by scaling the
detector response, hence determining the detector absolute scale; the additional spread of the mass
distribution, as compared to the naturalZ boson width, is used to estimate the resolution.

The high statistics expected at the LHC however impose a number of refinements. First, the scale
obtained as above is averaged over the lepton kinematic spectrum, whereas an energy-dependent scale
is needed for a correct description of the Jacobian distributions inW events. Secondly, lepton energy
resolution effects induce a small but non-negligible shiftin the di-lepton invariant mass distribution.
This shift needs to be subtracted before converting the scale measured from theZ invariant mass
distribution into the scale used to describe the Jacobian distributions inW events. The resulting
method has been described in detail in [BB06], and is summarized below.

Impact on MW from the lepton scale,α l and resolution,σl

Using the electron transverse momentum as observable, templates with varying scale and resolution
are produced. For each choice of the lepton scaleα l , the χ2 parabola is fitted using the fixed set
of templates. By this, the relation between the fit result, expressed asδMW ≡ M f it

W −Mtrue
W and the

relative scaleδrelα l ≡ α f it
l −α true

l
α true

l
is determined, as illustrated in figure 6.1.1(left).

As expected for small systematic effects, the relation between the size of the systematic effect and its
impact on theW mass measurement can be satisfactorily described by a linear fit. Not surprisingly, a
strong dependence is found as the slope of the fit:

∂MW

∂relα l
∼ 800 MeV/%, (6.1.1)
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Figure 6.1.1: Left: Bias onMW, δMW = M f it
W −Mtrue

W , as a function of the relative bias onαl , δαl =

(α f it
l − α true

l )/α true
l . Right: bias onMW as function of the resolution bias,δσl = (σ f it

l − σ true
l )/σ true

l . A
linear dependence is observed in each case, with∂MW/∂relαl = 800 MeV/% and∂MW/∂relσl = 0.8 MeV/%
respectively.

Note that this result means that the error inflicted on theW mass is directly proportional to the average
lepton scale error (800 MeV/%≈ MW/100%). The effect of the resolution is studied by varying the
resolution parameter in the pseudo-data while fitting to templates with fixed resolution and collecting
the corresponding values ofM f it

W . This provides the relation between the resolution bias andthe
resulting bias onMW:

∂MW

∂relσl
= 0.8 MeV/% (6.1.2)

as illustrated in figure 6.1.1(right).

6.2 Lepton performance determinationin situ

In this section the algorithms to calibrate the lepton response usingZ events are reviewed, and the
results are fed back to theMW fit.

The calibration of the absolute energy/momentum1 lepton scale plays a central role, as it is the largest
systematic uncertainty and the starting point of all other calibrations.

To first order, a single average lepton scale factor, defined as α = EReco/ETruth, independently ofη
andpT , can be obtained by demanding that the reconstructedZ peak matches its known mass.

6.2.1 Average scale and resolution

First a global scale analysis is performed to verify whetherneglecting possible non-linearities in the
response can be expected to induce a significant bias. In the following, only to the electron channel
is considered. Fixing the non-Gaussian tail parameters ton = 0.8 andβ = 5, as expected from the
studies performed in section 5.4.3, templates of theZ resonance are produced by varying the electron
scale and resolution. These response parameters are applied to generator-level electrons as before.
The templates are then fitted to the fully simulatedZ peak. A very good fit is obtained, as shown in

1These two terms cover the same aspect, but will generally be used about electrons and muons, respectively.
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Figure 6.2.1: Fully simulated data (dots with error bars), compared to an example resonance template with
α = 1, σ = 0.02, and to the best fit.

figure 6.2.1. An average scaling factor ofα = 0.9958±0.0003, and an average relative resolution of
σ = 0.0207±0.0003 provide a satisfactory description of the resonance.

The precision of the fit corresponds toL = 200 pb−1.

While this assures the correct lepton scale and resolution for Z events, the energy scale obtained in
this way might not apply toW events. Because of non-linearities and non-uniformities,the different
pT andη distributions inW andZ events can possibly introduce significant bias.

6.2.2 Differential calibration

If needed, an upgrade to a differential calibration can be performed, which contrary to the average
calibration includes variations in energy/momentum,η , and/orφ. The key ingredients to such a
calibration are:

• The precise knowledge of theZ mass, width, and decay kinematics.

• The overlap inpT andη of the decay leptons (cf. figure 6.2.3).

• The very large sample ofZ bosons that will be produced at the LHC.

The calibration uses a large sample of reconstructedZ→ ℓℓ events along with a corresponding sim-
ulated sample (representing the knowledge of theZ line-shape). Through a comparison of the two in
bins of the variables of interest (pT , η , andφ) one can extract the scale and resolution in each of these
bins.
By considering the scale and resolution variations inpT , one can obtain the correct parameters for the
(largely overlapping)W region from theZ region ofpT , hence securing linearity of the lepton scale.
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For each event the two leptons are assigned to binsi and j (choosingi ≥ j) according to energy /
momentum,η , and/orφ. Based on the lepton bins, events are divided into categories (i, j). For each
category(i, j), the reconstructed sample is compared to the knownZ line-shape (obtained from the
corresponding simulated sample), and aZ mass resolution functionRi j is obtained from requiring that
its convolution with the theoretical line-shape matches the reconstructed distribution (see equation
6.2.1). Each of theseZ mass resolutionsRi j are the direct result of combining two lepton momentum
resolutionsRi andRj :

f (MZ)Reco
i j = f (MZ)Truth

i j ⊗ Ri j , Ri j = Ri⊗Rj (6.2.1)

The complicated lepton scale and resolution calibration can thus be split into two parts, which both
saves computing time and allows for intermediate checks andchanges. GivenN lepton bins and thus
lepton resolution functions to determine, there areN× (N + 1)/2 Z mass resolution functions, and
thus the over-constrained system can be solved by a globalχ2 fit. This calibration procedure is il-
lustrated in figure 6.2.2. Because of the non-zeropT of theW andZ bosons (and to a certain extent
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Figure 6.2.2:Illustration of the lepton detector response calibration.Events from data/simulation (box) are
divided into categories (squares top right) according to the reconstructed/truthpT andη of the two leptons,
here eightpT bins and twoη bins (barrel (B) and end-cap (E)), as demonstrated (top left). For each category
a Z mass resolution function (bottom middle) is determined from folding it with the simulated distribution to
match the reconstructed one (bottom left). Finally, leptonbias and resolution parameters are determined for
each of the8×2 = 16 lepton bins, by fitting the16×17/2= 136Z mass resolutions, which each is a result of
the individual lepton resolutions (bottom right).

also their widths), the correlation betweenpT andη is diluted. This allows for a determination of the
detector response for all combinations ofpT andη , and a large overlap between the high statistics
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calibration constants determined withZ bosons and used forW bosons. The overlap inpT andη is
shown in figure 6.2.3.
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Figure 6.2.3:Left: η versuspT for muons ofW (blue) andZ (red) decays (normalized to the same number of
events). Right: The ratio between the content of the (η , pT ) cells of theW andZ histogram on the left-hand
side. Note that there is no region in phase space where the leptons of theW andZ events are disjunct - i.e. theZ
events can be used for calibration in the full phase space, but of course the statistics relative to theW statistics
differs depending onη andpT .

A simplified version of the above analysis has been performed, with the aim of obtaining not the full
resolution functions, but simply their means, which corresponds to the scale (i.e. possible biases).
This means that the resolution functionsR in equation 6.2.1 reduces to calibration constants. The
result of the calibration is shown for both electrons and muons in figure 6.2.4, along with the scales
obtained from the truth information.
As can be seen from the figure, the simplified calibration yields the correct scales in general. Some
fluctuations around the expected values is seen, but this is possibly the result of not conducting the full
calibration, which includes the full shapes of the distributions, and not just their means. Curiously,
the electrons and muons in both barrel and end-cap seem to have the same scale offset and structure
as a function ofpT .

For the present analysis, the outlined procedure for differential in situ calibration has not been at-
tempted, it is presented as a possible extension needed for the actualMW measurement in ATLAS.

6.3 Recoil scale and resolution

TheW andZ bosons are produced similarly and thus one expects the main features of remaining part
of the event (i.e. the underlying event) to be alike on a statistical basis2. For this reason one can study
the recoil scale and resolution in fully reconstructedZ events, and apply the results toW events after
performing the relevant verification. QCD events (minimum bias and di-jet) will on average have
vanishing/ET , which can also be used as a cross check of the hadronic detector response.

2One obvious difference is, the different phase space available, ultimately caused by the difference in theW andZ boson
masses.
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Figure 6.2.4:Lepton scale constants for electrons (left) and muons (right) as obtained from simplified cali-
bration to theZ peak (blue circles) and from truth (black squares). The firsteight bins are scale constants for
leptons of increasingpT reconstructed in the barrel, while the last eight are for those in the end-cap (see text).
The result is in good agreement with average scale of0.9958±0.0003(indicated by blue line in left plot) found
in section 6.2.1.

The main conceptual difference with respect to the lepton scale calibration is, that for/ET there is
no immediate overlap between theW andZ case, whereas for the transverse lepton momentum the
overlap is significant.

To enforce an overlap between/ET in W and Z events and thus give a “handle” to the calibration,
Z→ eeevents are considered, artificially removing a lepton, herean electron.

As a first naive attempt the electron removal is performed offline - simply by removing the four vector
of an electron at the analysis level (i.e. after the event reconstruction). The procedure is depicted in
figure 6.3.1. As expected the result of the removal shows the appearance of a significant/ET in the
“Z→ eν ” event. The small and more or less randomly oriented existing /ET vector has been added to
the pT of the removed electron and the result is labeled as:EtMiss_mod in figure 6.3.1.
Assuming that the/ET calculation is indeed unbiased, one can in a straightforward way predict the
impacts of the/ET scale and resolution on theW mass measurement. In this simplified situation, the
systematic effects are given by the uncertainty of the mean and width ofEtMiss_modresidual which
in turn are determined solely by theZ statistics.

Repeating the procedure pictured in figure 6.3.1 for variousfractions of the fullZ sample statistics
gives the uncertainties of the peak position and resolutiondepending on theZ statistics. The points
scales as 1/

√
#Z as expected and are shown in figure 6.3.2 along with a fit.

Assuming an unbiased/ET calculation, the expected error on theW mass introduced by the imperfect
(but unbiased)/ET calculation is obtained by scaling figure 6.3.2 to 10 fb−1 which yield a relative
precision of:δrelα /ET

= 5·10−5 andδrelσ/ET
= 6·10−4 respectively.

The next step is to map the uncertainties of the/ET mean and resolution into derivatives, which can
be used to estimate the impact on theW mass due to/ET scale and resolution. This is done by the
template fitting based on templates of various scales:δα/ET

and resolutions:δσ/ET
respectively. The

result is shown in figure 6.3.3.
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Figure 6.3.1:An electron of aZ→ eeevent is removed and the corresponding transverse momentumis added
to the missing energy.
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Figure 6.3.3: Left: Bias onMW, δMW = M f it
W −Mtrue

W , as a function of the bias on the recoil scale,δα/ET
.

Right: δMW as function of the resolution bias,δσ/ET
. A linear dependence is observed in each case, with

∂MW/∂relα /ET
=−200 MeV/% and∂MW/∂relσ/ET

=−25 MeV/%.

Impact of /ET scale,α /ET
, and resolution,σ/ET

, on theMW measurement

The bias onMW is evaluated by systematically varying the recoil scale, producing corresponding
pseudo-data samples as discussed in the previous sections,and fitting each sample to perfectly cali-
brated templates. In the form of a derivative, the followingdependency of theMW bias on the recoil
scale and resolution is obtained:

∂MW

∂relα /ET

=−200 MeV/%
∂MW

∂relσ/ET

=−25 MeV/% (6.3.1)

as illustrated in figure 6.3.3.

6.4 Refined estimates: Neutrinofication

In the previous section the lepton was naively removed offline, implicitly assuming perfect separation
between leptonic and hadronic signals in the/ET calculation. I.e. it is assumed that the/ET algorithm
must perform equally well regardless of whether the/ET is low as inZ events of significant as inW
events. The fact that the peak in figure 6.3.1 is off-centeredreveals that this assumption, in general, is
not justified. To assess the bias a lepton of aZ event is removed prior to reconstruction: The lepton is
neutrinoficated. This method avoids mixing the lepton and hadron signals, which is a problem of the
current/ET algorithm.

To accomplish, a software package is written, entering the reconstruction chain before the/ET calcu-
lation and already at this stage removes the calorimeter cells corresponding to aZ→ eeelectron. The
outline is as follows:

• ReconstructZ→ eeevents using the event selection criteria explained in section 5.3.2.

• When a electromagnetic cluster of aZ→ eeelectron is identified, the energy content of its cells
is replaced by noise as shown in figures 6.4.1 and 6.4.2.
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Figure 6.4.1:Electron cluster removal. The projection of all calorimeter cell energies onto a plane (i.e. all
layers summed) before (a) and after the modification (b).
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Figure 6.4.2:Left: electron cluster in aZ→ eeevent. Right: the same calorimeter region, after the cluster has
been removed. The energy in each cell belonging to the electron cluster is replaced by a number drawn from a
Gaussian with mean and RMS corresponding to detector noise in cells of the same type.

The cluster corresponding to aZ→ eeelectron is now removed, and the reconstruction algorithm
sequence proceeds; in particular the clustering- and/ET calculation.
When completed the/ET of the event and truth electron transverse momentum of the electron can be
compared - examples of this are shown in the next section.

Note that although the present approach makes use of the MC truth, the constraint on theZ mass
combined with excellent tracking makes a realZ→ eeevent essentially as good as MC truth and thus
the method is useful in real data as well.

6.4.1 Neutrinofication performance

The lepton removal requires that one can identify and removethe electron signal from the struck
calorimeter cells, and substitute by arealistic contribution from noise and hadronic background. Sev-
eral approaches have been tested, such as replacing the contents of the electron cluster cells by energy
measured away from any high-pT object in the event (e.g. at 90◦ in azimuth), or by the average ex-
pected electronic and hadronic noise. Some results obtained using different noise algorithms can be
found in Appendix A.3.
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Figure 6.4.3: Take into account the natural topology of the event: The (transverse)Z direction of flight.
Obviously, one cannot define this system in data forW events as easily due to the undetected neutrino. However,
the bias introduced by using instead the/ET vector is considered to be insignificant.

To assist the/ET performance group in locating the origin of the bias, as wellas to validate the Neutri-
nofication tool, some additional tests are made. Among thesetests are:

• Dependence on choice of/ET calculation algorithm.

• Dependence on the number of neighboring cells removed.

• Dependence on theΣET of the event and the transverse lepton momentum.

The reader is refereed to Appendix A.3 for details on the Neutrinofication performance. In summary,
the results show that theobject based/ET algorithm [ATL08d] (on which figure 6.4.4 is based) has the
smallest bias, and that the number of neighbors removed and choice of noise algorithm has little or no
influence on the bias. Also, as expected there are clear correlations between the magnitude of the bias
andΣET on one side and the transverse lepton momentum on the other.

6.4.2 Results

To determine the/ET resolution and possibly correct for the bias in its measurement, the difference
between reconstructed/ET of Z→ eeevents before and after the removal of one electron is compared to
the to the transverse momentum of the removed electron. A non-zero average value of this distribution
points to a bias in the/ET reconstruction.

As was concluded in section 5.5, the conventional coordinate system tends to conceal the effects of
the event to event bias. Instead the natural frame of the event, with axes parallel (‖) and perpendicular
(⊥) to theZ boson transverse momentum, is used as coordinate system, see figure 6.4.3. Imperfect
calibration of /ET will show up as biases in these distributions, which can thensubsequently be cor-
rected for within the statistics available. Projecting themissing energy onto the coordinate system
defined in figure 6.4.3 reveals a significant bias as shown in figure 6.4.4(bottom left).
As can be seen in this example, a bias is observed in the/ET reconstruction along theZ line of flight.
No bias is observed along the other axis. In this example, thecalibration thus appears correct on
average in the conventional coordinate system, but the/ET reconstruction does not respond correctly
to the event-by-event topology.
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Figure 6.4.4:Top: resolution of~/ET , projected onto the (x,y) coordinate system, for unmodified, fully simulated

Z→ eeevents. Bottom:~/ET resolution in the (‖,⊥) coordinate system. The absence of bias along the x and y
axes show that the overall calibration is correct on average, but the observed bias along the‖-axis, corresponding
to the Z line of flight, indicates imperfect calibration of the response to the event-by-event topology.

Obviously, the correct procedure to resolve, would be to track down and correct the bias in the/ET al-
gorithm. This, however, is beyond the scope of the present analysis. Instead it is assumed that in time
of the actualW mass measurement using the transverse mass, this will be corrected3. Even in this
case, it must be verified that the Neutrinofication approach is a valid procedure to obtain the/ET bias
and resolution, i.e. it must be proved that no bias is added bythe Neutrinofication approach (but also
no bias is removed, that remains up to the/ET community). To this end, one approach to quantify
the possible added bias, is to consider the quantity/ET be f ore-/ET a f ter+ pT(truth) in the two coordinate
projections (where ’before’ and ’after’ refers to before and after Neutrinofication). In case bias is
added, this distribution should be off centered, otherwisenot. The results is shown in figure 6.4.5.
From this figure it is concluded that neutrinofication does not add significant bias, and can thus be
assumed to be a valid method to obtain the/ET resolution and scale. Since the/ET resolution and scale
break down into the parallel and perpendicular direction, derivatives plots corresponding to figure
6.3.3 must be replaced by two dimensional distributions, asshown in figure 6.4.6.

As can be concluded from the present discussion,/ET reconstruction is a very difficult experimen-
tal algorithm to control, especially to the level of precision desired for theW mass measurement.
Therefore, the estimated impact on theW mass measurements, obtainable either from figure 6.4.6 or
the correspondent one dimensional one (figure 6.3.3) shouldbe seen as a final aim. Instead, lacking
proof that the sensitivity enhancement provided by increasing the statistics to 10 fb−1can be fully
exploited, it is assumed that and overall uncertainty ofδMW(σ/ET

,α /ET
) = 5 MeV can be reached.

3Already at the time of writing, part of the bias have been corrected with respect to the presented results. Further
improvements are expected in a near future (ATLAS offline software release 14).
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Figure 6.4.5:/ETbe f ore−/ETa f ter + pT(truth) in the parallel (left), and perpendicular (middle) directions. Also
shown(right) is/ETbe f ore−/ETa f ter versuspT(truth) in the parallel direction.
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Figure 6.4.6:Relation between the uncertainties of the/ET scale and resolution and the corresponding error
introduced on theW mass measurement. Data has not been scaled and has a resolution 7000 MeV.

This is a factor of three higher than the purely statistical sensitivity, and a factor of three smaller than
the systematic uncertainty obtained in recent CDF measurements [CDF07a] based on an integrated
luminosity of 200 pb−1and about 8000Z events for calibration of the hadronic recoil.

6.5 Summary of experimental uncertainties atL = 10 fb−1

The response parameters determined in situ usingZ events (cf. section 6.2) are used to produce tem-
plates of thepl

T -spectrum inW events, as shown in figure 6.5.1. The resulting fit yieldsMW =
80.466± 0.110 GeV, with no bias with respect to the true value. This result shows that forL =
15 pb−1, propagating a global scale determined onZ events does not induce a significant bias in the
analysis. Given this result one can estimate the impact of the scale and resolution uncertainties on the
W mass measurement using the results presented in section 6.2and equations 6.1.1 and 6.1.2:

δM(α ) = δα
α · ∂M

∂αrel

√

Lsample

L f inal
= 0.0003

0.9952 ·800 MeV/% ·
√

200 fb−1

10 fb−1 ≈ 4 MeV and correspondingly

δM(σ) = δσ
σ · ∂M

∂σrel

√

Lsample

L f inal
= 0.0003

0.0207 ·0.8 MeV/% ·
√

200 pb−1

10 fb−1 ≈ 1 MeV.

From the fits presented in figures 5.4.2 and 5.5.1 a conservative estimate of the uncertainty on the
fraction of events in the non-Gaussian tails is given by the uncertainty on the fraction between the two
fit function components (Crystal Ball and Bifurcated Gauss). Typically the relative error is∼ 5% by
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Figure 6.5.1:Left: pl
T -spectrum from fully simulatedW decays (dots with error bars), andpl

T -template ob-
tained assuming theZ-based scale and resolution and the true value ofMW. Right: Template fit toMW.

Method pT(e) pT(µ) MT(e) MT(µ)

δMW(α ) 4 4 4 4
δMW(σ) 1 1 1 1
δMW(tails) 1 0.5 1 0.5
δMW(ε) 0.5 0.3 0.5 0.3
δMW(σ/ET

,α /ET
) – – 5 –

Table 6.5.1:Summary of experimental systematic uncertainties at 10 fb−1 in MeV.

which an estimate of the precision of which the non Gaussian event fraction will be know at 10 fb−1 is
≈ 0.2%. The estimated impact on theW mass measurement is then given by equation 5.4.3, the result
is: 0.5 MeV. For electrons, the tails and hence the uncertainty in their determination are some larger.
In table 6.5.1 this is taking into account by doubling the error based on the muon result. The expected
precision of the in situ efficiency measurement (section 5.5) and equation 5.4.3 imply a systematic
uncertainty on the fit result of aboutδMW = 8 MeV in the muon case. For electrons, [CSC08b] shows
that the electron efficiency can be determined to within 1.5%using 100 pb−1, yielding a corresponding
error of: 1.5%·3.6 MeV/% = 5 MeV. Assuming pure statistical nature, the expected uncertainty at
10 fb−1 is≈ 0.3 MeV for muons and≈ 0.5 MeV for electrons. It was not attempted to determine the
recoil calibration in situ. However, a method was presentedto assess and evaluate the/ET algorithm to
the required level of detail needed for the measurement ofMW in this channel. Presently, it is unknown
to which level the ATLAS/ET will be unbiased at the time of theMW measurement. Reckoning that a
total absence bias is unlikely, the Tevatron experience is taking into account, allowing an estimate of
the systematic error due to the combined/ET scale and resolution of 5 MeV.



Chapter 7

Theoretical uncertainties

Below the uncertainties related to imperfect physics modeling of W production are discussed. The
correlation of the mass measurement with theW width, the impact of final state radiation, and biases
in the pl

T andMW
T distributions induced bypW

T andyW distortions are discussed in turn.

7.1 W boson width: δMW(ΓW)

A change in theW width, ΓW, affects the Jacobian edge, and can cause a bias in theW mass measure-
ment. To assert the size of this effect, samples with the sameW mass, butW widths varying in the
range 1.7−2.5 GeV were produced and subsequently fitted. The relation betweenΓW and its effect
on theMW fit result is linear, with a slope depending on the distribution used in the mass fit. UsingW
transverse mass gives:

∂MW

∂relΓW
= 3.2 MeV/%

whereas the corresponding result when fitting the lepton transverse momentum is:

∂MW

∂relΓW
= 1.2 MeV/%

The intrinsic width of theW resonanceΓW has been measured to be 2.141± 0.041 GeV, while the
Standard Model prediction is 2.0910±0.0015 GeV [PDG06]. It should be taken into account that the
LHC data is expected to improve the precision on theW width significantly. Considering previous
measurements, an improvement by roughly a factor five shouldbe achievable, leaving the uncertainty
δMW(ΓW) =1.3 MeV and 0.5 MeV for theMW

T andpl
T fit, respectively.

Of course, inclusion ofΓW as a systematic uncertainty in theW mass measurement is unambitious:
ΓW is worthwhile to be measured, providing a test of the standard model in itself. In practice,MW and
ΓW will likely be extracted simultaneously, from two-parameter fits to the usual distributions.

7.2 QED final state radiation: δMW(QED)

Final state radiation (FSR) causes significant distortionsof the naive, lowest orderpT spectrum of the
W decay leptons. The stability of the theoretical calculation below is estimated, using thePHOTOS
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Figure 7.2.1: Distribution of the fraction of measured lepton energy relative to the energy in absence of FSR

for PHOTOS in exponentiated mode. All photon energy radiated within a cone of radius∆R=
√

∆η 2 +∆φ2 =
0.1, corresponding to the size of reconstructed electromagnetic clusters is added to the energy of electrons.
Muon momentum is measured bare, after FSR.

program [GW06] as a benchmark.

The numerical importance of final state radiation is illustrated in figure 7.2.1, which displays the
distribution of the measured lepton energy fraction relative to their energy in the absence of FSR.
For electrons, measured via calorimetric clusters, most ofthe (collinearly radiated) photon energy is
collected in the cluster. The momentum of muons tracks, on the contrary, is measured independently
of any photon radiation. The average muon energy is shifted 1% with respect to the initial value,
meaning that ignoring the effect entirely would cause a biason theW mass of about 800 MeV. The
theoretical stability of the calculation is thus of critical importance.

In recent versions ofPHOTOS, it is possible to switch between several degrees of precision, i.e. number
of orders inα . In particular,W andZ boson decays can be simulated with photon emission up to
O(α ), O(α 2), O(α 4), or with photon emission exponentiation - a scheme for reshuffling the dominant
terms between orders of expansion [YFS61]. To study the model differences, about 106 events have
been generated for each setting, and for each production anddecay channel (W→ lν , Z→ ll , for
l = e,µ).

Figure 7.2.2 shows the evolution of the average energy fractions,RFSR=< Econe/EnoFSR>, for suc-
cessive theoretical refinements. The different results obtained for electrons and muons reflect the
different methods by which their energy or momentum is measured. The calculation appears stable to
within ∼1-2·10−4, the residual differences being compatible with statistical fluctuations.
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Figure 7.2.2: Development ofRFSR=< Econe/EnoFSR> (i.e. average of the distributions of figure 7.2.1), for
variousPHOTOS settings.

To support the above argument, consider theZ boson mass measurement at LEP1 [ADL+06]. Sim-
ilarly to the case for ATLAS, QED corrections, in the form of initial state radiation off the electron
beams, have a large impact on theZ line-shape, inducing a decrease of the cross-section of about
30%, and a shift of the peak position of about 100 MeV. Nevertheless, the theoretical uncertainty on
these effects are estimated to 0.3 MeV, compared to a total measurement uncertainty of 2.1 MeV. The
theory of QED radiation thus carries negligible uncertainty.

For the QED inducedMW uncertainty to be as small, the event generators used to produce the tem-
plates thus need to have similar theoretical accuracy, withthe additional complication that the present
analysis requires an exclusive description of the final state (i.e., a complete description of the photon
distributions), whereas theZ line-shape analysis only relies on the effective energy of the beams after
radiation. In [NW06], the accuracy of thePHOTOS algorithm is upgraded to NLO accuracy. Similarly,
theHORACE event generator [CMNT04] contains QED and weak correctionsto NLO accuracy. Both
programs implement photon emission exponentiation.

It is therefore assumed that ultimatelyδMW(QED) ≤ 1 MeV can be reached. This assumption is
conditioned by the availability of the necessary tools in time for the measurement.

Finally note thatW andZ events behave differently under QED radiation, as illustrated in figure 7.2.3.
The average energy fraction inZ events is 5-7·10−3 smaller than inW events, depending on the final
state. The energy scale measurement (cf. chapter 6) and theW mass measurement should properly
account for the difference in the respective QED radiation patterns. This will be discussed further in
section 8.4.
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Figure 7.2.3: Difference betweenW andZ events of the averages of figure 7.2.2, for variousPHOTOS settings
(see text).

7.3 W distributions

TheW rapidity and transverse momentum distributions result from the interplay of the proton structure
functions, and strong interaction effects at theW production vertex. To simplify the discussion, the
longitudinal and transverse distributions are consideredindependently, as respective results of parton
distributions and QCD higher orders.

7.3.1 Rapidity distribution: δMW(yW)

TheW rapidity distribution is essentially driven by the proton parton density functions (PDFs). The
study is based on the CTEQ6.1 structure functions sets [P+02], which provide, in addition to the global
best fit, PDFs corresponding to the variation of each diagonal parameter (i.e., the linear combination of
input parameters that diagonalize the covariance matrix) by ±1 standard deviation. The PDF-induced
uncertainty for an observable is obtained by computing its value with all sets, taking the central value
as given by the best fit, and quadratically summing the biases(with respect to the best fit value)
obtained from the uncertainty sets.

As illustrated in figure 7.3.1 (see also [B+07a]), the current PDF uncertainties induce an uncertainty
in theW rapidity distributions which, through acceptance effects, propagates a systematic uncertainty
on theW mass determination of∼25 MeV. Below an attempt to estimate how this will improve with
the LHC data is presented.

At the LHC,W andZ particles are essentially produced through sea quark interactions; the influence of
valence quarks is small. Low-x, high-Q2 sea quarks mainly evolve from higherx, lowerQ2 gluons, and
a consequence from perturbative QCD flavor symmetry is that up to initial asymmetries and heavy-
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Figure 7.3.1:Bias onMW obtained when varying the proton PDFs within their uncertainties. Each point on
the abscissa corresponds to a given PDF set: Set 0 is the best fit, and gives 0 bias by definition; sets 1-40 are the
uncertainty sets, each inducing a given bias onMW. The total uncertainty onMW is given by the quadratic sum
of the biases, givingδMW ∼ 25 MeV.

quark mass effects, the different quark flavors should be represented democratically. This then implies,
that the impact of sea quark PDF uncertainties onW andZ production should be very similar. In other
words, when varying PDFs within their uncertainties, one expects a strong correlation between the
induced variations of theW andZ distributions.

This is confirmed by figure 7.3.2(left)1, which shows the correlation between the widths of theW
andZ boson rapidity distributions. It is chosen to use the distributions RMS, denotedσW

y andσZ
y ,

to quantify their width. The spread of the points representsthe current uncertainty on theW andZ
rapidity distributions, and the error bars on each point represent the expected precision of a measure-
ment exploiting 10 fb−1 of LHC data. The current CTEQ6.1 prediction,σZ

y = 2.16± 0.03, will be
refined to a precision ofδσZ

y = 0.001. Exploiting figure 7.3.2 (right), which quantifies the correlation
betweenσW

y and σZ
y , this can be translated into a prediction of theW boson rapidity distribution,

δσW
y = 0.0013, to be compared to the current predictionσW

y = 2.24±0.03.

From the above arguments it seems reasonable to expect an improvement on theZ rapidity distribution
by a factor∼30. This is also illustrated in figure 7.3.3, where two extreme predictions (with current
knowledge) of theZ rapidity distribution are compared with an example distribution representing the
same measurement. Given the residual decorrelation between theW andZ distributions, this translates
into an improvement on theW rapidity distribution by a factor∼ 23.

Starting withδMW(yW) ∼25 MeV, putting in a precise measurement of theZ rapidity distribution
at the LHC, and exploiting the strong correlation between the W and Z production mechanisms,
the final uncertainty from the description of theW rapidity distribution is thus anticipated to be:
δMW(yW)∼1 MeV.

In practice, the analysis will of course proceed via a formalQCD analysis to the LHC data: The

1This plot is reminiscent from figure 2 in [Nad05], displayingsimilar correlations in the production rates. Note that for
the present purpose, normalizations are irrelevant and interest is only in the distributions.
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Figure 7.3.2:Left: Correlation between theW andZ rapidity distributions, estimated via their spreads in
rapidity σW

y andσZ
y , when varying the CTEQ6.1 PDFs within their uncertainties.The fitted pseudo-data is

scaled to an integrated luminosity of 10 fb−1. Right: Distribution of the ratioσW
y /σZ

y , again varying the PDFs
within their uncertainties. The spread of the ratio distribution is4 ·10−4.
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Figure 7.3.3: The line histograms represent two extreme predictions for theZ rapidity distribution, as given
by the CTEQ6.1 PDF sets. The points are pseudo-data, obtained with the central set, and scaled to an integrated
luminosity of 10 fb−1.
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Figure 7.3.4: Upper plot: The outer histogram represents the complete rapidity distribution forW production
at the LHC; the inner histogram represents the range selected by the condition|ηl |< 2.5. Lower plot: The outer
histogram represents the complete rapidity distribution for Z events. The innermost histogram is obtained re-
quiring two decay leptons within|ηl |< 2.5; the intermediate histogram is obtained when allowing one electron
within |ηl |< 4.9. The two symmetric histograms at high rapidity correspond to the LHCb muon acceptance.

measuredZ differential cross-section dσ/dy, together with other measurements, will be fed to parton
distribution fits, and the systematicδMW(yW) from the improved PDF sets will be evaluated as above.
The present discussion however allows to estimate the expected improvement while avoiding these
complications.

Note also thatZ rapidity distribution can be analyzed over a domain that fully includes the range
relevant forW production. The usualZ acceptance, given by|η l | < 2.5 for both decay leptons, can
be extended in the electron channel by allowing one of the electrons to be detected within|ηe|. 4.9.
In addition, high-rapidityZ events will be produced and detected at LHCb [Lb03] (for example, the
geometric acceptance of the muon detector is approximately2.1 < |ηµ | < 4.8). Accounting for this,
and as illustrated in figure 7.3.4, theW rapidity range selected for theMW measurement is entirely
included in theZ. This remains true in terms of the parton momentum fractions.

The above results are partly consequences of the assumed flavor and charge symmetry in the low-x
proton; notably, the parton parameterizations used in the fits used above assume thatd(x) = d̄(x) =
u(x) = ū(x) at low-x, ands= s̄ at all x. This implies the strong correlation discussed above, since the
Z production rate is proportional touū+dd̄+ . . ., and theW rate is proportional toud̄+dū+ . . .. It is
thus important to quantify the dependence of the result on these hypotheses.

The anti-quark flavor asymmetry ¯u− d̄ was measured to be non-zero in the region 0.015< x < 0.35,
and Q2 ∼ 50 GeV2 [NA5194, NS01], in contradiction with the flavor symmetry assumption. The
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relative asymmetry,(ū− d̄)/(ū+ d̄), is however of the order∼ 10−2, decreasing towards higherQ2.
Starting fromū= d̄ and full correlation betweenW andZ production (i.e.W andZ distributions have
the same rate of change under PDF variations), ¯u 6= d̄ induces a decorrelation of order(ū− d̄)/(ū+
d̄)×(u−d)/(u+d), where both factors are of order 10−2 (see for example figure 1 in [P+02]). Hence,
even in the presence of non-vanishing ¯u− d̄, the freedom of theW distributions is very limited onceZ
ones have been precisely measured. Thus it is assumed that the estimates remain correct; nevertheless,
measurements of theW charge asymmetry, sensitive to ¯u− d̄, will allow to verify this hypothesis.
Additional information will be provided by measuringMW in W+ andW− events separately.

7.3.2 Transverse momentum distribution:δMW(pW
T )

The prediction of vector bosonpT distributions at hadron colliders has long been an active sub-
ject [CSS85, MS99, BNOY05]. It is also a crucial input for theW mass analysis, especially when
using thepl

T observable. Below the impact ofpW
T uncertainties on theW mass determination is dis-

cussed.

The measurablepW
T and pZ

T distributions are the result of several effects, most notably the repeated,
partly non-perturbative parton radiation occurring in thetransition from the low-Q2 proton towards
the hard process (commonly referred to as parton showers, orQCD resummation). Another source
is the transverse momentum intrinsic to the partons in the proton. Rather, reckoning that althoughW
andZ production differ in several respects (the coupling to initial partons is different in both phase
space and flavor), the non-perturbative mechanisms are universal, it is evaluated how precisely their
combined effect can be measured in neutral current events, and how this improves theW predictions.
Notice that heavy flavor PDFs have caused only a small decorrelation betweenW andZ events in the
previous section; this is assumed to remain true in this discussion.

The relation between the biases in the modeling ofpW
T and the measurement ofMW is investigated

by applying scaling factors to thepW
T distributions in the pseudo-data, deducing the corresponding pl

T
distributions, and fittingMW against un-distorted templates. The bias inMW appears to be a linear
function of thepW

T mis-modeling, with a slope of order 0.3, meaning a 3 MeV bias on pW
T results in

a 1 MeV bias onMW, when exploiting thepl
T distribution for theW mass measurement (whenMW

T is
used, the effect is negligible).

Neutral current di-lepton events allow to measure thepll
T distribution, as a function of mass, over a

large mass range. Assuming usual selections,pll
T will be measured precisely for 30 GeV< Mll .

200 GeV. This large lever arm, in addition to the very precisedetermination ofpll
T on theZ peak,

provides a precise control ofpll
T whenMll ∼MW. This is illustrated in figure 7.3.5, which displays the

di-lepton mass dependence of its average transverse momentum,< pll
T >.

On theZ peak,pll
T will be known to about 7 MeV with an integrated luminosity of 10 fb−1. Thanks

to the Drell-Yan continuum, the accuracy in the region ofMW is still ∼8 MeV. This leads to an
uncertainty onMW of about 3 MeV.

Arguably, thepW
T distribution can not be summarized by its mean value. However, in the low pW

T
region, it can be empirically described by a two-parameter function. As an exercise, the mass-
dependence of the parameters were determined on Drell-Yan events, their values and uncertainties
in theMW region were used to producepl

T pseudo-data as above, and corresponding fits toMW were
performed. The spread inMW resulting from the uncertainty in the empirical parameterswas found
compatible with the above estimate.



70 Theoretical uncertainties

 (GeV)-l+lM
30 40 50 60 70 80 90 100 110

210

310

410

 (GeV)-l+lM
30 40 50 60 70 80 90 100 110

 (
G

eV
)

- l
+ l Tp

8

10

12

14

16

18

20

22

24

Figure 7.3.5:Left: Di-lepton invariant mass spectrum, from inclusive neutral current events (γ and Z exchange
are included). Right: Di-lepton averagepT as a function of the di-lepton invariant mass. The W-mass region
is strongly constrained by the lever arm provided by the Z peak and the Drell-Yan rise at low mass (note the
improved precision in these regions). The points correspond to a measurement with 10 fb−1.



Chapter 8

Environmental uncertainties

8.1 Backgrounds

The leptonicW final states benefit from low backgrounds. The dominant contributions come from
similar vector boson decays;W→ τ (→ lνν )ν , Z→ ll (where one lepton is not reconstructed), and
Z→ τ (→ lνν )τ . QCD di-jet events will, despite their large cross-section, not be dominant due to the
good particle identification capability of the ATLAS detector[ATL97a]. The backgrounds fromtt̄ and
W+W− events are negligible.
If the size and shape of the backgrounds would be perfectly known, they would not affect theW
mass measurement, as they could be included in the templates. The systematic error onMW arises
from uncertainties on the background shape and normalization in the fitting range of thepl

T andMW
T

spectra.

Uncertainties on theW andZ background size, relative to the signal size, depend on cross-sections,
branching fractions and acceptances. These are obtained from [PDG06] and take into account the
studies described in sections 5.4.3 and 7.3. Note that in contrast to the studies presented until now, the
background uncertainty does not scale with statistics.

The background shapes are determined from simulation, and are essentially unaffected by variations
in the production, decay, and resolution model. For QCD background, as a separate study, both nor-
malization and shape will have to be measured directly from the data. Thepl

T distributions, including
signal and backgrounds, are illustrated in figure 8.1.1.

W→ τν events: The largest background is fromW→ τν events, where theτ decays leptonically.
This background is irreducible, as the final state is identical to the signal; however, due to the addi-
tional neutrinos, itspl

T andMW
T are on average lower, leaving only a tail into the fitting range. Despite

being the main background, its uncertainty is small, as onlyτ decay parameters and the acceptance
enter, with respective uncertainties of 1.0% and 2.5%.

Z→ ll events: The second largest background is fromZ→ ll events, where one lepton is either
undetected or not identified. The latter background can be reduced using aZ veto rejecting events,
where the lepton and a second isolated object (track and/or cluster) forms an object with an invariant
mass between 80 and 100 GeV (see figure 8.1.2). Due to the high mass of theZ boson, thepl

T
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Figure 8.1.1:Signal and background in thepl
T distributions, forW→ eν (left) andW→ µν (right). The upper

histogram is the signal; the lower histograms correspond, from bottom to top, toZ→ ττ , Z→ ll , W→ τν .

distribution extends well into the fitting range. TheMW
T distribution is less affected due to the low of

missing momentum in these events.

The size of this background has uncertainties from theW to Z cross-section ratioRWZ (1.8%),Z veto
efficiency uncertainty (2.0%) and the acceptance uncertainty (2.5%). It is expected to be larger for
muons than for electrons, as the former cannot be vetoed for|η |> 2.7 and thus contribute significantly
to /ET .

Z→ ττ events: A small background originates from theZ→ ττ process, where oneτ decays lep-
tonically, while the other is not identified. While the cross-section for such a process is small, it can
contain significant/ET and is thus likely to pass theW selection criteria. The largest uncertainty in
the size of this background comes from theτ detector response (5.0%), along with cross-section ratio
RWZ (1.8%), and acceptance (2.5%) uncertainties.

The expected background from boson events is summarized in table 8.1.1.

Electron channel Muon channel
Process Fraction [%] Process Fraction [%]
W→ eν 97.8 W→ µν 93.9
W→ τν 1.4 W→ τν 1.4
Z→ ee 0.7 Z→ µµ 3.9
Z→ ττ 0.1 Z→ ττ 0.2

Table 8.1.1:Signal and expected bosonic backgrounds fractions after the event selection described in sec-
tion 5.3.2 and in thepl

T range [30;60] GeV.

QCD events: Due to theoretical difficulties, the QCD background can not be obtained reliably from
simulation. It will thus have to be measured directly from data. For the Run IW mass measurement at
CDF, this background was estimated to a precision of∼ 50% [Gor98], limited by lepton identification
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Figure 8.1.2: Distribution of invariant mass between lepton and a second isolated object (track and/or cluster)
in Z→ ll events. Events in the range 80-100 GeV are rejected.

performances and statistics. At ATLAS, a precision of∼ 10% is assumed in the electron channel,
where this background is expected to be significant. The assumed improvement is justified by the
superior granularity and better electron identification resulting from the good resolution of the elec-
tromagnetic calorimeter [ATL97a]. The muon final state is less contaminated by jet events, muons
being measured behind all calorimetry. A specific background is however constituted by muons from
hadron decays in flight. As there is presently no reliable measure of the uncertainty on this back-
ground, the results implicitly assume it is small. It shouldbe stressed that these estimates are essen-
tially qualitative. A realistic estimate of their impact onthe measurement will only be possible with
data.

Overall impact: As mentioned, the background shapes are determined from simulation. They are
essentially unaffected by variations in the production, decay and resolution model. For QCD back-
ground, as a separate study, both normalization and shape will have to be measured directly from the
data. First the overall impact of the backgrounds is assessed. The backgrounds remaining after the
selection described in section 5.3.2 are given in table 8.1.1, and thepT spectrum of each process is
shown in figure 8.1.1.

Ignoring the background altogether in the templates leads to a biasδMW =−10 MeV. This is however
the result of a conspiracy: TheW→ τν background alone gives a bias of−80 MeV, while theZ→ ℓℓ
background gives a bias of+70 MeV; both sources of background can vary independently within the
uncertainties given above. The other backgrounds have negligible impact. Thus, the estimated bias
per percent relative error on the background normalization(checked to scale linearly with the size of
the background) is:

∂MW/∂Nτν−bkg = −0.8 MeV/%, (8.1.1)

∂MW/∂Nℓℓ−bkg = 0.7 MeV/%. (8.1.2)

For completeness and in spite of the mentioned difficulties,the impact on theMW measurement from
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the QCD background is taken from [ATL08b] to be:

∂MW/∂NQCD−bkg = 0.05 MeV/%. (8.1.3)

Note that the backgrounds are evaluated by fitting the transverse leptonpT distribution and assumed to
be valid also in the transverse mass fit. This of course need not to be the case, but there is little reason
to suspect that the transverse mass distribution should suffer significantly more from backgrounds
than thepl

T distribution.

8.2 Pileup and underlying event

The soft hadronic activity accompanying the hard process (underlying event), and the overlap with
soft events produced in the same bunch crossing (pile-up) generate additional particles that contribute
to the detector occupancy. In particular, the additional calorimetric energy overlaps with the electron
signal and distorts the scale measurement.

Typically, a soft event produces about 10 particles per unitrapidity (integrated overφ), with average
transverse momentumpT ∼ 500 MeV [M+05a, M+05b]. An electron cluster of typical size∆η ×
∆φ∼ 0.1×0.1 is expected to contain about 40 MeV of hadronic background,to be subtracted from
the electron signal.

In particular, the hadronic background may have a non-negligible Q2-dependence, generating a non-
universality betweenW andZ events. These effects are small, but need to be properly accounted for
when aiming at a precision on the absolute scale ofδα/α ∼ 2·10−5.

This aspect was not studied here, but the argument of [ATL97a] is followed. By measuring the energy
flow away from any high-pT objects, as a function ofη , independently inW and Z events, a 2%
precision on the hadronic energy flow looks achievable. Sucha result would bring down the size of
the effect from 40 MeV to about 1 MeV.

Thus, it is concluded that although soft hadronic interactions generate shifts in the energy measure-
ments which are large compared to the statistical sensitivity to MW, these shifts can be measured in the
data with sufficient accuracy. The final contribution toδMW is small. This source affects the electron
scale and the recoil measurement; the muon scale is not affected.

8.3 Beam crossing angle

According to the specifications of the LHC accelerator, the proton beams are brought to collision at
an crossing angle of 142.5µrad [BHO99]. In terms of momentum, this translates into a 7000 GeV/c·
142.5 ·10−6 ≈ 1 GeV/c boost in the horizontal plane, per beam proton. In thesimulation however,
protons collide head-on, giving rise to a systematic shift in pW

x of all particles produced. In addition,
the simulation fails to take into account the momentum-spread of the beam particles - an effect which
might increase the smearing of the quantities used for theW mass determination. In order to study
the bias introduced to theW mass measurement from these sources, software was developed allowing
to boost and smear the four vectors of the particles producedin a collision [Kli08]. The modification
takes place at the generation level - i.e. before passing thegenerated particles through the detector.
Since any realistic boost or smearing is merely a perturbation of the usual event record, the detector in
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Figure 8.3.1: Distribution of difference in the transverseW momentum resulting from the boost,
∆pW

x = pW
x − pboost

x .

∆pW
x [GeV]

assumed to respond similarly in the two cases. For this reason a study was performed using ResbosZ,
andW samples, where larger statistics can be afforded [BY97]. Infigure 8.3.1 is shown the difference
in the transverseW momentum resulting from the boost. Obviously the boost causes a shift inpW

x
and thereforep⊥ in the individual event, but what is important for the present analysis is, that on the
average,pW

⊥ is approximately unaffected by the boost, as it should be as most of the effect is averaged
out by the rotational symmetry. By this, as manyW’s increase- as decrease theirpW

⊥ , and by the same
amount (in average). Note that the magnitude of the spread isas one would expect fromxW which
has central value aroundxW = MW/pbeam≈ 0.006, by which the expected centralp⊥ difference is:
xW ·2 GeV/c≈ 11 MeV/c - coinciding with the peaks observed in figure 8.3.1.
The size of the effect is estimated as usual, by including thepboost

x in the pseudo-data and letting the
templates unchanged. The effect is found to be smaller than 0.1 MeV.
The beam spread has an influence onW events similar to that of the beam crossing angle: The indi-
vidual events may be shifted inp⊥, whereas< p⊥ > is unchanged. Since the magnitude of the shift
is expected to be smaller yet than in the case of beam crossingangle, it is concluded that also this
contribution to the systematic error is insignificant.
During the study of the influence of the beam crossing angle ontheW mass measurement a software
package was developed. Since, the beam crossing angle and spread, despite its little influence on the
W mass measurement, in principle affects all ATLAS analyzes,the code has been made public and is
part of the standard ATLAS offline software repository. The connection of the tool to the remaining
ATLAS reconstruction chain is depicted in figure 8.3.2. The tool can be steered, so that not only can

Figure 8.3.2: The EventBoost algorithm. See [Kli08] for details.

the events be boosted according to the LHC machine specifications, also the bunches can be smeared
either as Gaussian ellipsoids or boxes. It is yet unknown which of the two (if any) is the more realistic,
and of course other bunch shapes are easily implemented.
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Figure 8.4.1: Bias onMZ obtained when varying the proton PDFs within their uncertainties. Each point on
the abscissa corresponds to a given PDF set: Set 0 is the best fit, and gives 0 bias by definition; sets 1-40 are the
uncertainty sets, each inducing a given bias onMZ. The total uncertainty is given by the quadratic sum of the
biases. The result is:δMZ ∼ 2.5 MeV.

8.4 Correlations

So far, all main sources of systematic uncertainties have been investigated independently. Before
moving to the combination of the results, it needs to be addressed whether important correlations are
to be expected between the sources. It is however beyond the scope of this work to discuss this issue
extensively, and this section concerns only the most important examples.

The uncertainty related to the absolute scale has the strongest lever arm on the determination ofMW

(δMW/δα = 1). Therefore, it is investigated below whether uncertainties which affect theW mass
measurement can also bias the absolute scale.

8.4.1 Absolute scale vs. PDFs

Z boson mass templates are produced with the CTEQ6.1 central set and compared to pseudo-data
produced with the 40 uncertainty sets. The results of the 40 fits are displayed in figure 8.4.1, in
the form of biases with respect to position of the mass peak obtained in the templates. The CTEQ6.1
uncertainty sets induce typical biases of∼0.5 MeV with respect to the central value. Summing over all
uncertainty sets gives a total scale uncertainty of about 2.5 MeV. This translates intoδMW∼ 2.2 MeV.

In other words, with current knowledge, the PDF uncertainties induce a direct systematic uncertainty
of about 25 MeV via distortions of theW distributions (cf. section 7.3.1), and an indirect uncertainty
of 2.2 MeV via distortions of theZ line-shape, propagating to the absolute scale determination.

Hence, the conclusions of section 7.3.1 are essentially unchanged. Using measurements of theZ
boson distributions, the PDF induced systematic uncertainty should drop to about 1 MeV.
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8.4.2 Absolute scale vs. QED corrections

QED corrections affect the determination of the absolute scale in two ways.

First, as was mentioned in section 7.2, the observedW andZ decay lepton spectra are strongly af-
fected by photon emission. This effect needs to be taken intoaccount properly when producing theZ
mass templates. In muon final states, the theoretical distributions are based on the final muons, after
simulation of the QED photon emissions. Final state electrons can not be separated experimentally
from the mostly collinear photons. Hence, the simulation needs to reproduce this recombination pre-
cisely. This demands precise theoretical control of the photon distributions, an aspect which seems
under sufficient control (cf. section 7.2). Likewise, a precise description of the detector geometry
and electromagnetic calorimeter (EMC) shower developmentin the simulation are needed to properly
simulate the fraction of photon energy recombined in a givenelectron cluster.

Secondly, as a consequence of the above, the absolute scale extracted fromZ events actually corre-
sponds to a mixture of photons and electrons. In ATLAS, the EMC response to electrons and photons
is different by about 1%, an effect coming from calorimeter geometry (because their showers develop
differently, electrons and photons of a given energy do not “feel” the same sampling fraction) and
from the passive material in front of the EMC, which causes early showers or conversions, with dif-
ferent probabilities for both particle types [ATL96b]. It is thus important to know whetherW andZ
behave similarly in this respect, and if any difference is well understood theoretically.

As is shown in figure 8.4.2, the electron energy fraction in electromagnetic clusters differs by about
0.6% betweenW and Z events, meaning that the energy scale measured inZ events needs to be
corrected by a factor 1%·0.6%= 6·10−5.

Failing to take this factor into account would induce a bias of ∼ 5 MeV on theMW fit. However,
figure 8.4.2 also shows a good stability of the theoretical prediction. Hence, although this correction
is not negligible, it does not carry a significant uncertainty.

8.5 Impact on theW mass measurement

Below the main results are summarized. Table 8.5.1 recalls the main systematic contributions to the
pl

T - andMW
T -basedMW measurement, with 10 fb−1 of data. In both tables, numbers are given for the

electron and muon channels separately when applicable.

The major difficulty is, as expected, the determination of the absolute energy scale of the experiment.
The analysis of theZ peak however allows to strongly constrain this uncertainty. The analysis is
non trivial, because in addition to theZ mass parameters, many other effects enter the theoretical
description of the line-shape; most notably, QED radiation. Although the effect is large, the theoretical
understanding is adequate, as the LEP1Z mass measurement indicates. TheZ mass relies on an
analytical formulation of the QED corrections; theW mass measurement at the LHC however requires
a complete MC implementation at the same level of precision.

The electron channel appears somewhat more difficult than the muon channel. The first reason is
the pT -dependent electron identification efficiency, which distorts the Jacobian distributions. This
effect is essentially absent in the muon channel. The secondreason is again related to QED radiation:
Since the muons do not recombine with the emitted photons, the description of the effect is purely
theoretical. In the case of electrons, a large fraction of the radiated energy is included in the electron
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Figure 8.4.2: For electron final states inW andZ events, the energy fractionRe deposited by electrons in
reconstructed electromagnetic clusters (1-Re is photon energy), for variousPHOTOS settings (see section 7.2).

cluster. Determining this fraction requires a precise description of the detector geometry, and reliable
simulation of electromagnetic showers.

The uncertainties related to the description of theyWand pW
T distributions are estimated to be small

once theZ differential cross-section has been measured. The largestremaining systematic comes
from the modeling ofpW

T , in the pl
T-based measurement, contributing a 3 MeV uncertainty. TheMW

T
measurement is more stable in this respect. This advantage,however, is compensated by additional
experimental complications related to the experimental control of the/ET reconstruction. As discussed
in section 7.3, this result relies on the assumption of lightquark flavor and charge symmetry in the
low-x, high-Q2 proton. Relaxing these hypotheses within bounds allowed bythe existing data is
presumably unlikely to invalidate the result.

Backgrounds contribute an uncertaintyδMW ∼ 2 MeV. Of all components, the background from jet
production is the least well known, but its contribution is expected to be small. The possible impact
of cosmic rays and hadron decays in flight, which occur in the muon channels, is not investigated, but
Tevatron experience indicates the impact is small [CDF07a].

The most questionable uncertainties are the recoil scale and resolution. The estimates presented are
based on the assumption of a totally unbiased/ET evaluation. A method has been presented to evaluate
the possible bias of/ET in data, and it is likely that this will indicate that a significant systematic
uncertainty must be added in theMW

T measurement. However, at the present time, it is not possible
to estimate this systematic error with any certainty, and therefore the number quoted in table 8.5.1 is
based on the Tevatron experience.

All in all, a total uncertainty of 6−7 MeV can be achieved, in each channel, using either thepl
T of

theMW
T method, with the equivalent of 10 fb−1 of data. Most sources of systematic uncertainty are ex-

pected (and assumed) to scale with the accumulatedZ statistics; notable exceptions are backgrounds,
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QED radiative corrections and the underlying event. Their contribution toδMW is however sub-
dominant. Combining channels, and allowing for more data, one can therefore expect further im-
provement.

8.6 Conclusions and perspectives

The most important systematic uncertainties affecting theW mass determination at the ATLAS ex-
periment have been investigated. It is found that the analysis of Z production constrains most of the
systematic uncertainties to a total of 6− 7 MeV per channel, exploiting 10 fb−1 of data. Increasing
statistics may allow to move towardsδMW ∼ δMZ, an absolute lower bound on the LHC timescale.

Among all investigated sources of systematic uncertainty,two items in particular rely on assumptions.
The first one concerns the treatment of QED radiation. It is argued that the theory is under very good
control, having notably allowed a very preciseZ mass measurement at LEP1, where QED effects are
large, but the uncertainties finally have an almost negligible contribution. To preserve this situation at
the LHC, theMW measurement requires QED simulation tools providing the same level of accuracy.

The second assumption concerns the effect of the light sea asymmetry in the proton. Relaxing the
symmetry assumption in use in the current global QCD fits willcause some decorrelation between
W and Z production at the LHC. This decorrelation is expected to be small, but will have to be
measured using the LHC experiments, notably using the rapidity-dependentW charge asymmetry,
(σW+ −σW−)/(σW+ +σW−), and the study of associatedW + charm production.

A number of obvious sources have not been studied explicitly, notably the underlying event (affecting
the electron energy scale) andW polarization effects (affecting the leptonic angular distributions). It
is believed these mechanisms can be brought under sufficientcontrol, on the time scale of the LHC
measurement ofMW.

The results presented here have only exploitedZ boson measurements. Many other robust calibra-
tion processes exist, that give additional constraints on the detector performance and on the physics
mechanisms influencingW production. While first providing a way to verify the robustness of theZ-
based calibrations, these processes can help to reduce the uncertainties further in the case of consistent
results. These refinements are reserved to the analysis of the forthcoming ATLAS data.

Note that CMS is expected to achieve similar sensitivity as ATLAS with mostly uncorrelated system-
atics (since the lepton scale determination causes the largest error) [B+07b].
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Source Effect ∂MW/∂relα [MeV/%] δrelα [%] δMW [MeV]

Prod. Model W width 1.2 0.4 0.5
yWdistribution − − 1
pW

T distribution − − 3
QED radiation − − <1

Lepton measurement Scale & lin. 800 0.005 4
Resolution 1 1.0 1
Efficiency 3.6 0.15 (e) 0.5 (e); 0.3 (µ)
Tails − − 1 (e); 0.5 (µ)

Recoil measurement Scale − − −
Resolution − − −

Backgrounds τν -0.8 2 1.6
ll 0.7 2 1.4
QCD events 0.05 10 0.5

Pile-up and U.E <1 (e);∼ 0(µ)
Beam crossing angle <0.1
Total (pl

T ) ∼6

Source Effect ∂MW/∂relα [MeV/%] δrelα [%] δMW [MeV]

Prod. Model W width 3.2 0.4 1.3
yWdistribution − − 1
pW

T distribution − − 1
QED radiation − − <1

Lepton measurement Scale & lin. 800 0.005 4
Resolution 1 1.0 1
Efficiency 3.6 0.15 (e) 0.5 (e); 0.3 (µ)
Tails − − 1 (e); 0.5 (µ)

Recoil measurement Scale -200 − −
Resolution -25 − −
Combined − − 5

Backgrounds τν -0.8 2 1.6
ll 0.7 2 1.4
QCD events 0.05 10 0.5

Pile-up and U.E <1 (e);∼ 0(µ)
Beam crossing angle <0.1
Total (MW

T ) ∼7

Table 8.5.1:Breakdown of systematic uncertainties affecting theMW measurement, when using thepl
T distri-

bution (top) and theMW
T distribution (bottom). The projected values ofδrelα are given for a single channel and

assume an integrated luminosity of 10 fb−1.
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Introduction to Part III

The precision measurement of theW mass discussed in the previous chapters relies on the performance
of all sub-detector systems and their description in the software. This part of the thesis concerns itself
with the simulation of the ATLAS experiment - in particular the TRT sub-detector. Since this sub-
detector contributes to the momentum resolution about as much as the Pixel and SCT combined, the
TRT, including accurate simulations of its performance, isof integral importance for theW mass
measurement, as well as for many other ATLAS analyzes. As discussed in section 8.4, accurate
knowledge of the detector geometry with respect to both active and non-active material is important
when estimating the systematic error onMW arising from QED corrections.
In chapter 9, the implementation of the detector geometry inthe simulation is introduced. Summarized
in this chapter is also the software implementation of the TRT geometry as it appears after an update
based on survey data from the TRT assembly. In chapter 10, thedigitization scheme used in the TRT is
discussed, focusing on a number of updates in the underlyingmodel, which have been implemented.
The results of these updates are in chapter 11 compared with corresponding results obtained in test-
beam data. The transition radiation model, and a tune to the same is presented in chapter 12, whereas
an example of the usage of the TRT for reconstruction of photon conversions is presented in chapter
13. One expected application of this is in situ updates of thedetector geometry, but before entering this
discussion, the next chapter describes how the initial geometry is determined, and how it is described
in the software.



Chapter 9

Simulation and detector description

In order for the ATLAS experiment to be a useful tool to gain knowledge of the physics taking place
during and after the collision of two proton beams, the simulation of the detector response is of utmost
importance. The complexity of not only the final states but also the detector itself calls for precision
simulation allowing for detailed comparisons with data.

The simulation of events proceeds in several steps: First event generators simulate the primary hard
physics process. The output in terms of particle types and their four vectors is subsequently passed
to the detector simulation which propagates the particles through the detector while simulating its
interactions with the traversed material. For interactions with active material - i.e. some sub-detector
volume, the position, time and energy deposit is recorded asa “simulation hit” (simhit). Based on
collections ofsimhits the task for the digitization is to simulate the detector response as it would
appear in the real detector. Finally tracks, clusters etc. are found by the reconstruction algorithms
regardless of whether the input is that coming from the digitization software or from the real detector.

Event generation: In the ATLAS experiment a number of specialized event generators are used,
each favored for some special application. However, most physics groups have some usage of multi-
purpose event generators such asPythia [SLMS03] andHerwig [C+02] - at least to generate QCD
background samples. Quite often the specialized event generators are linked to general purpose toolk-
its, which then take care of the hadronization of the underlying soft event.

Detector simulation: As opposed to event generators, the detector description and detector simula-
tion takes place centrally using respectively the GeoModel[BT04, Bou03] andGEANT4 frameworks
[G403]. Apart from propagating tracks through the detector, the detector simulation also takes care
of decaying any long lived particles on the way. For the propagation, detailed magnetic field- and
detector geometry maps are utilized, so that the direction of each particle in a given step is calculated
based on the initial particle momentum and the local fields (electrical or magnetic). Depending on the
material and particle, the cross-section for all possible interactions with the material are calculated,
and based on random draws, it is decided whether or not some given interaction takes place in the
given step.

Although in many respects successful, the so-calledf ull simulation as described above only have
a somewhat limited usage. The reason is, that with∼200 tracks in an average interesting physics
event, the time spent for simulating the detector response exceeds 30 minutes per event on a standard
computer (1 GHz). In the ideal world, e.g. theW mass analysis, would requireO (10) times the
number of simulated events compared to real data events. However, withO (100 M) expected events,
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this is simply not feasible. What is done throughout the physics groups is therefore to rely on different
fast simulation schemes1 as much as possible, and only use full simulation when it is absolutely
required (and even in this case often with questionable statistics).

Digitization: Regardless of the level of precision of the simulation, the simulated events need to
be digitized before comparison with detector output is possible. Whereas the simulation of particles
passing through the detector is performed centrally regardless of sub-system, the digitization is carried
out in custom software packages, as required due to the technological differences between the sub-
detectors.

The approach used for the TRT is described in detail in chapter 10, but common for all sub-detectors
is, that the task consists of transforming a list ofsimhitsas supplied from the simulation, to a realistic
digitized output as it would appear coming directly from thedetector hardware.
For the TRT this requires that the energy deposit is translated to an amount of ionization, which is
then drifted to some anode, where it gives rise to a signal. Asis the case in the real detector, the signal
is shaped and finally discriminated against some threshold in appropriate time-bins. Depending on
whether the signal is above threshold, the output of the digitization (as from the real detector) is a
stream of digits.

Reconstruction: Using calibration and alignment data, the complex task for the reconstruction algo-
rithms is, by the use of numerous pattern recognition methods, to combine the various digits coming
from the different detector parts into tracks and clusters.Due to the detector complexity, some effort
has been invested in order to slim the output to ease practical aspects of the offline physics analysis.
Also, to support the many different types of physics analysis expected, the output of the reconstruction
algorithms comes in multiple formats with various amount ofinformation and event sizes.

9.1 Detector description

The description of the ATLAS detector, and in particular theInner Detector, is performed centrally
within the GeoModel framework as outlined in figure 9.1.1. Sub-detectors are described in the soft-
ware by separate software modules, called GeoModels, whichalong with the service structures such
as cables and pipes, are built from primary numbers stored ina versioned database called the De-
tector Description Database. The simulation geometry needed byGEANT4 is automatically generated
from the GeoModel description using the Geo2G4 package. Similarly, the geometries necessary for
the digitization and reconstruction are interfaced by the InDetReadoutGeometry package. Note that
this approach, where all geometry information is stored centrally, ensures synchronization between
reconstruction and simulation geometries.

Inside the different GeoModels, the sub-detectors are build from a hierarchical structure, each having
a set of translational and rotational transformations related to it. One advantage of this is that effects
such as misalignments, which may well concern different groupings of sensitive detector elements
such as a TRT barrel module, can be handled easily. For example, aligning a TRT module can be done
by a simple translation, based on a single vector, rather than moving the individual shells, radiators,
straws etc. An example of this is shown in figure 9.1.2, where arrows indicate the individual movement
of the TRT barrel modules (only arrows corresponding to the intermediate module layer are shown).
This illustration is based on large scale test of the full simulation framework of ATLAS; the CSC

1Ranging from the most crude: A simple smearing of the generator level kinematics, to more advantaged approaches
where the traversed detector parts are taking into account [S+06].
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Figure 9.1.1:Overall architecture of the Inner Detector GeoModel. On theleft-hand side is the Detector
Description Database. The middle boxes (with blue writing)refer to various geometry relatedC++ packages.
The right-hand boxes indicate their connection with the remaining software (alsoC++ structures). Source
[Gor08].

production [AFGS+07] which, among other things, consisted of a test of the misalignability of the
detector, and to what extent the reconstruction and calibration is able to correct for the misalignment.
Other tests are related to the material density of the detector which is scaled in some regions.

When making misalignments or performing general development on the detector description, the com-
plexity of the detector geometry requires continuous validation with specialized tools. One of the most
common problems arising when performing such work is geometry clashes, i.e. volumes belonging
to the same level in the hierarchical structure, which by mistake overlap each other (or they extent
outside their “mother” layer). In the obvious cases, such overlaps may be so large that they can be
spotted easily using detector visualization tools such as HEPVis [S+08] or the VP1 tool [K+08]. For
illustration purposes, figure 9.1.3 shows an example from VP1 where a cooling tube is misplaced so
that it accidentally overlaps with a TRT straw.

In less severe cases, overlapping volumes can be difficult tolocate by visual inspection, and a com-
monly used method in such situations, is to simulate the response of non-physical particles called
Geantinos. These particles do not have interactions but canreport which detector elements they tra-
verse and how much material they encounter. In a region of geometry overlap they will report their
position as well as the names of the two volumes simultaneously encountered, hereby easing the bug
finding for the developer. Even if there are no overlaps, Geantinos are useful to test the alignment of
the various sub-detector volumes with respect to each-other (according to read-out geometry), since
one can visualize the coordinates of the various sub-detectors hit, and compare with the expected
straight line of the Geantinos (no interactions imply straight tracks).
An example of the usage of Geantinos is given in figure 9.1.4, where it is exploited that Geantinos
apart from supplying the names of the encountered volumes, also can measure the amount of material
traversed in terms of radiation lengths,λ .
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Figure 9.1.2:Example from the CSC misaligned production. The individualTRT barrel layer 1 modules have
been misplaced, and the task of the TRT calibration is to find and correct for the misplacements. Figure is
provided by A. Bocci.

Figure 9.1.3:Clash between a cooling tube and a straw in a TRT barrel module. Visualized using the VP1
tool.
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Figure 9.1.4:Radiation lengths,λ , encountered by 10 K Geantinos fired in the region|η | < 0.1 before (left)
and after (right) an update of a volume called TRT Barrel Outer Support (as the name suggests the volume
describes support structures, see figure 9.1.7). Note that the distributions have the same shape, but the scale on
thex axis differs, showing that the geometry was unaltered, onlythe density was increased.

9.1.1 As built detector geometry

The ATLAS detector description consists not only of a description of the active volumes, but also
accounts for non-active (dead) material such as support structure, wires, etc. For the TRT, the latter
has recently been subject to a major revision, since the “as built” geometry and weight deviated
significantly from what was outlined in the original design report [ATL97a]. The latter basically
defined the TRT GeoModel until measurements of the assembleddetector parts allowed for an update.

As described in [Gou06] the completed TRT detector was subject to detailed measurements of di-
mensions and weight in the assembly hall, and a significant effort was invested in blue print studies
as well as discussion with constructors. Following this, the total barrel weight was observed to have
increased by∼10% with respect to the original design, mainly due to changes in the dimensions of
the support structure volumes and material composition. Figure 9.1.5 shows the increase of material
in the service region following the software implementation of the revised geometry.

Based on measurements for the end-caps [Gou07], a similar increase of weight was implemented in
the software2, with the addition, that survey data showed that the±zsymmetry previously assumed in
the TRT GeoModel software could not be retained. When subsequently implementing these updates
in the software a number of technical problems had to be resolved, such as frequent geometry clashes
due to overlapping volumes - often between volumes belonging to different sub-detectors. To solve
the puzzle, the whole hierarchical structure was revisited- a visualization of the resulting GeoModel
structure is provided in figure 9.1.6.

A weight comparison between survey data and the updated GeoModel for both barrel and end-cap is
given in table 9.1.1, whereas illustrations of the volume described in this table can be found in figures
9.1.7 and 9.1.6. Also, a visualization of the material increase is provided in figure 9.1.8. As can be
seen in this figure, the increase of material especially pronounced in the transition region between the
TRT barrel and end-cap, and consequently the negative impact on the physics performance is larger
in this region.

In the software, the virtual detector is built to resemble the real detector geometry. However, this is

2The implementation was a joined effort between T. Shin and the author.
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λ [%]

Figure 9.1.5:TRT barrel material in terms of radiation lengths,λ , before (blue) and after (red) the major
update discussed in the text. “ATLAS-DC3-07” is an example of a Geometry tag, which specifies a particular
version of the Detector Description Database.

Figure 9.1.6:Overview of volumes describing the TRT end-cap in the TRT GeoModel. The term “stack”
denotes a collection of end-cap wheels.
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Volume Measured GeoModel
[kg] [kg]

Active region 361.8 359.4
End-Flange 226.4 226.4
Services 25.4 25.4
InnerSupport 23.7 23.7
OuterSupport 65.6 65.6
Inner Volume A 37.6 37.5
Inner Volume B 33.5 33.5
Active region A 92.1 97.5
Active region B 104.0 100.7
Outer Volume A 269.8 269.8
Outer Volume B 276.3 276.4
Membranes 48.4 48.3
Services 219.0 218.9
End-ring 11.9 11.6
Squirrel Cages 36.1 36.7

Table 9.1.1:Weight comparison between survey data and the updated GeoModel of the various TRT sub-
detector parts.
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Figure 9.1.7:The TRT barrel and services. Plot is provided by T. Shin.
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feasible only to a certain level of detail. In some cases, forexample when describing airy volumes
with a large number of cables from the detector read-out, it is not possible to exactly reproduce the real
detector. What is done in this case is to determine the nuclear composition of the material (e.g. a cable)
and describe the enclosing volume as consisting of homogeneously averaged material with the correct
nuclear content but with a density scaled so that the overallweight corresponds to the measured. An
example of this is shown in figure 9.1.4, where the density of avolume called BarrelOuterSupport
(see figure 9.1.7) is scaled to match measurements of the detector, as determined in the assembly hall.

When adding new volumes to the GeoModel, corresponding new nodes (sets of primary numbers) are
added in the Detector Description Database, and updates generally consists of updating a number of
database entries while adding a few new ones. Subsequently,the software needs to be updated in order
to be able make use of the new database entries to build the additional volumes. However, an issue
of integral importance is backward compatibility; i.e. thefact that it must be possible, with the latest
version of the software, to reproduce results computed witholder versions of the software and older
versions of the Detector Description Database. Also, this ensures that data, once stored, can always
be reconstructed at a later point using an appropriate geometry. Due to this, the developer must con-
stantly ensure that updated software, when presented with an older version of the Detector Description
Database (communicated through a geometry tag), resemblesthe corresponding older version of the
software. Some effort is invested to ensure backward compatibility without complicating the overall
software structure or the readability of the code too much.
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Figure 9.1.8:Up: Updates in the TRT (left) and Services (right). The different histograms represent different
geometry tags - the red histograms correspond to the most recent tag including the updates discussed in the text.
Below: Present material budget of the Inner Detector [Gor07] (geometry tag: ATLAS-CSC-02).



Chapter 10

TRT digitization

10.1 TRT thresholds and digitization scheme

The time-structure and amount of the energy deposited in a TRT straw when crossed by a particle, in
principle holds a great deal of information, usable both fortracking and particle identification. For
practical reasons, the analog signal in the wire is digitized in the front-end electronics before it, given
a level 1 trigger, is read out by the higher level triggers andpossibly stored offline. More specifically,
the analog signal treatment (amplification and shaping) as well as the analog to digital conversion step
is performed in the ASDBLR chips1 while the links to the timing, trigger and read-out systems are
handled by DTMROC’s2.

The analog to digital conversion proceeds via discrimination against two thresholds:

• LT: Low threshold used for tracking. Approximately corresponding to the signal height pro-
duced by a single electron cluster with a deposit of 300 eV.

• HT: High threshold used for detecting the absorption of energetic photons emitted by electrons
(mostly) through transition radiation. The high thresholdis usually set in the range 5-7 keV.
Chapter 12 discusses transition radiation and explains whya HT setting in this range is optimal.

With respect to the LT, the 25 ns period corresponding to one bunch crossing, is divided into 8 bins of
approximately 3.125 ns (giving a resolution of 3.125 ns/

√
12≈ 0.9 ns), and in each bin a single bit

is stored, indicating whether the LT was exceeded (1) or not (0). Regarding HT, only one single bit is
stored, representing the whole 25 ns period. Data is then read out in 75 ns segments, requiring a total
of 27 bits per read out straw.

The terminology used in the following will be, that a digit has a HT if at least one of the three possible
HT bits is set, and the termbit pattern refers to the pattern of the 24 LT bits. A few examples of
typical bit patterns are shown in table 10.1.1.

Since the energy loss of particles passing through matter (i.e. dE/dx loss as described by the Bethe-
Bloch equation [PDG06]) depends on theγ-factor, the probability of a given LT bit being set depends
on theγ-factor of the penetrating particle. Due to the large mass difference between the most abundant

1Abbreviation for Amplifier/Shaper/Discriminator with Baseline Restoration, see [BNVBW96] for details.
2Abbreviation for Drift Time Measuring Read Out Chip, see [A+01] for details.
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Bit Pattern HT LT Bit Pattern Typical cause0 00000000 0 00001111 0 11111000 off 000000000000111111111000 Passingπ0 00000000 1 11111110 0 00000000 on 000000001111111000000000 Passinge0 00111110 1 00000011 1 11111110 on 001111100000001111111110 π followed bye

Table 10.1.1:Three examples of TRT digits and their typical physics causes.

particles:π, p, eandµ , theirγ-factors generally differ significantly for comparable momenta, and thus
the bit pattern contains particle identification information simply from the number of LT bits being
set. To make use of this, a parameter called time-over-threshold, ToT, is defined. ToT represents the
number of set LT bits between the leading edge (the first set bit encountered from the left-hand side)
and the trailing edge (the last set bit). In case the last bit set coincides with the last bit in the string, the
ToT is set to zero. Note that this definition is somewhat ambiguous: For example one could count as
well unset bits in between the leading- and trailing edge, and in fact this was done in earlier versions
of the software3. A study of the energy loss in the TRT and its usability for particle identification
purposes is given in [Ric08].

10.2 General digitization outline

The task of the TRT digitization software is, based onsimhits, to generate a list of digits for each straw
simulating the output of the read-out electronics of the real detector. The TRT digitization package is
based on the energy deposits supplied by the simulation. Forthe TRT, however, the defaultGEANT4
simulation approach turns out to be inaccurate to simulate the physics of a charged particle passing
through the very thin gas layers. Customized packages called the Transition Radiation model (TR)
[Dam04] and Photon Absorption and Ionization model (PAI) [AC80] perform the creation transition
radiation, and the energy loss of charged particles due to ionization respectively. The results, in terms
of a timed list of energy deposits, are propagated to the TRT digitization where they constitute the
primary input. Using the known ionization potential, the content of the list is interpreted as clusters
corresponding to a number of initial electrons at a given point in space and at a given time. The
primary task of the digitization is to simulate the drift of these electrons to the anode wire, and to
model the response of the front-end electronics to the signal thereby created.
The TRT digitization software has a long list of contributers4 The present structure is mainly due to
T. Kittelmann [Kit07]. Below, a number of updates in the model are discussed, but it is emphasized,
that the overall framework is not due to the author.

10.3 The physics of electron drift - A simplified model

In order to understand and improve the simulation of electron drift toward the anode, it is beneficial
to develop a simplified model. The predictions of this model can then be compared to a very detailed
gas simulation performed by a program called Garfield [Vee93], which in itself is much too detailed
and computational heavy to be used in any large scale simulation of detector response. The simplified
model is not intended nor able to provide precise drift timesor spread, but by comparing the results

3ATLAS offline software release 12 and older [OAC+06].
4Some of whom are: P. Nevski, F Luehring, D. Barberis. and K. Assamagan
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Figure 10.3.1:Snapshot of electron drift according to Garfield simulationwith a 2 T magnetic field perpen-
dicular to the plane of the paper.

with the Garfield simulation, it helps understanding the dependence of the various parameters, and
can thus pinpoint where the TRT digitization can be improved. In the following, a simple model is
built which describes the drift of an electron to the anode wire.
In general, the time,t, spent for an electron to drift from its initial position to the anode wire can be
expressed as the following integral along the electron path:

t =

∫

path

1
v(s)

ds (10.3.1)

Since the electrons undergo scattering while drifting toward the anode, one might expect that the
effective drift distance is prolonged with respect to the direct path. One way to parametrize this is to
rewrite the length of the electron trajectory to an effective length given by:

s 7→
√

r · (r +d) (10.3.2)

wherer represents the length of the direct path, andd is a diffusion parameter. Apart from the electric
field responsible for the overall drift, there is also a magnetic field, which over the volume occupied
by a given straw can be assumed constant. To the extent that the field has a component perpendicular
to the direction of drift (so that~E×~B is non vanishing) this tends to increase the drift distance as
illustrated in figure 10.3.1. A simple parametrization of this is illustrated in figure 10.3.2, which
also explains the parameters used below (note that in the following, only half the electron path is
considered for simplicity). Assuming small deviations from the direction path, the figure gives:

r = ρsinφ→ φ = arcsin(r/ρ)≈ r/ρ +
1
6
(r/ρ)3 (10.3.3)

The increase of the trajectory,∆, thus becomes:
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Figure 10.3.2:Simplified electron drift under influence of a magnetic field.The electron path is assumed to
be part of a large circle centered atC and with radiusρ. The hatched area is not considered for the development
of the model - the factor of two from the increased path lengthis anyway absorbed in a constant.

∆ ∝ ρ ·φ− r ≈ ρ
(

r/ρ +
1
6
(r/ρ)3

)

− r =
1
6

r3/ρ2 (10.3.4)

In addition, sincep⊥ ≈ 0.3ρB by whichρ ∝ 1/B, the following hold for the deviation,∆: ∆ ∝ r3B2,
where it is assumed that the mean transverse momentum is similar for all electrons.

So in the presence of a magnetic field component along the wireand therefore perpendicular to the
electron drift, one expects, apart from the terms discussedabove, an additionalr3 term which is
proportional toB2.

Taking into account that the expression forsalready contains one factor ofr, the revisited expression
containing effects due to the deviation caused be the magnetic field reads:

s 7→
√

r · (r +d) · (1+ r(r +d))kB2 (10.3.5)

for some constantk.

In order to evaluate the integral of equation 10.3.1 a few approximations are needed; the first of which
is to expandv as a power series:

v(s)≈ v0 +v′s+
1
2

v′′s2 + · · · (10.3.6)

by which the integral reads:

t =
1
v0

∫ S0

0

ds

1+ v′
v0

s+ 1
2

v′′
v0

s2
(10.3.7)

Keeping terms of the orders2, the integral can be solved by a Taylor expansion:

t =
1
v0

∫ S0

0

(

1− v′

v0
s− 1

2
v′′

v0
s2 +

v′2

v2
0

s2
)

ds=
1
v0

(

S0−
1
2

v′

v0
S2

0−
1
6

v′′

v0
S3

0 +
1
3

v′2

v2
0

S3
0

)

(10.3.8)

Inserting the expression fors (equation 10.3.5) and keeping terms of orderr3 leads to the following
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expression:

t =
1
v0

√

r(r +d)
(

1+kB2r(r +d)
)

− 1
2

v′

v2
0

√

r(r +d)
(

1+2kB2r(r +d)+k2B4d2r2)

+
1

v3
0

(

1
3

v′2− 1
6

v0v′′
)

(r(r +d))3/2(1+3kB2dr
)

(10.3.9)

Obviously the above argument is crude, omitting a number of subtle effects. However it does qualita-
tively explain the behavior observed in figure 10.3.3, wherethe derived expression (equation 10.3.9),
is tested against detailed Garfield simulations in the two cases: With and without magnetic field. The
fits are performed in two steps. First themagnet offresults are fitted and the parameters accessible:
d, v0, v′ andv′′ are then fixed before fitting themagnet onresults. The results are the following:

d = (0.0±1.6) µm

v0 = (62.6±1.1) µm/ns

v′ = (−1.7±0.5) ns−1

v′′ = (−2.0±0.2) µm−1ns−1

k = (1.22±0.02) ·10−8 T−2

(10.3.10)

Note that the negative sign ofv′ is expected since the electric field decreases as a function of radius, and
that the magnitude ofv0 is reasonable compared to the expected 50µm/ns [TRT08a]. The negligible
value ofd indicates that this parameter is inaccessible due to the approximations, i.e. the diffusion
which must be present is absorbed in the other parameters. That diffusion indeed exists is obvious
from the snapshot of a simulated event shown in figure 10.3.1.

In figure 10.3.4, the drift time is shown as a function of magnetic field magnitude in various config-
urations. The data is fitted using equation 10.3.9. The good description illustrates that only the field
along the wire is relevant, and that the dependence on the drift time (for a constant drift distance) is
quadratic as expected. Apart from showing the validity of the physics model, the fact that the two sets
of measurements are described by the same fit illustrates that the constants multiplying the magnetic
field term are the same in barrel- and end-cap-like geometry:Only the~B field perpendicular to the
drift influences the drift time. In the simulation, the drifttime dependence on the magnetic field is
implemented by using two sets of(r, t) measurements: One without field and one withB = 2 T (per-
pendicular). For each cluster, the components of the magnetic field are retrieved from the magnetic
field map using the precise cluster position, and the drift time is computed from the parabola with
vertex in thet = (B= 0, rcluster) and intersecting the pointt = (B= 2 T, rcluster). By this approach, the
drift in any configuration of local(x,y) in the straw and with any~B field is accurately described and
simulated.
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Figure 10.3.3:Drift time as a function of drift distance without magnetic field (red) and with a 2 T field
perpendicular to the direction of drift (black). The simulated data is fitted using the expression in equation
10.3.9.
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Figure 10.3.4:Drift time as a function of magnetic field for straws (placed along thez direction, centered at
(x,y) = (0,0)) based on simulations using electrons placed at(x,y) = (0,2) mm (i.e. at the straw wall). Red and
green correspond to(0,0,Bz) and(Bx,0,0) respectively. Purple is(Bx,0,Bz) for various combinations, whereas
the blue points are(0,By,0). The latter fit is consistent with a constant.
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As briefly accounted for in the simplified model, the following effects are important in order to arrive
at a precise simulation:

• Input : From the PAI model simulation a timed list of energy deposits and corresponding posi-
tions is retrieved.

• After correcting for the flight time, i.e. the time spent fora particle with light velocity to reach
the straw volume, the overall drift due to the presence of theelectric field is simulated.

• Once electrons start drifting, the presence of the magnetic field becomes important (depending
on whether or not the electron drift has a component perpendicular to the field).

• Stochastic recapturing of drift electrons in the drift gas.

• Drift time spread.

• Gain amplification.

• Signal propagation time along the (direct and reflected).

• Discriminating the signal against threshold.

Apart from the effects of overall drift under the influence ofthe magnetic field, which has already
been described above, these effects are treated separatelybelow.

10.4 Determining the initial number of electrons in a cluster

Although the ionization energy for Xenon is only about 12 eV,measurements have shown that on
average 25.3 eV is used per ionization [Cwe06]. The explanation lies in the fact that the ion gains
energy by the ionization in terms of vibrations and excitation of gas molecules [Cwe06]. In the default
simulation, no spread in the number of primary electrons wasaccounted for in the TRT digitization,
but a detailed study reveals that this number,N, should fluctuate as a Gaussian with width;σ = 0.19N
[Cwe06]. In the present version, this has been implemented with the cut off, that no more electrons
thanEcluster[eV]/12 eV can be produced (and no less than zero).

10.5 Recapture

When electrons drift toward the anode, there is some probability of them being recaptured by the
electronegative oxygen in the gas. The details of the process are complicated due to the presence of
the magnetic field which tends to stretch the energy levels ofoxygen, hereby increasing theO2+e−→
O+ O− and O2 + e− → O−2 cross-sections. The effect, however, is implemented in theGarfield
simulation package allowing for detailed study.

In the previous versions of the TRT digitization software, electrons were subject to a constant recap-
ture probability of 60%. In figure 10.5.1(a-c) is shown the effect on the time-over-threshold distribu-
tion from changing this number. The distributions have the expected behavior: Reducing the number
of electrons arriving at the wire reduces the time over threshold. Also shown is the effect on time over
threshold for hits belonging to tracks depending on the distance of closest approach of the track to the
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Figure 10.5.1:Effect on time-over-threshold of the recapture probability: precap. Black curves are for all
tracks, while, blue and red curves are for tracks with distance of closest approach to the anode wire less than-
and greater than 1 mm respectively. (d) represents the recent implementation utilizing the reattachment curve
of figure 10.5.2 rather than merely a constant reattachment probability as is the case in (a-c).

wire, illustrating that time over threshold is influenced differently depending on the track orientation
in the straw.

Inaccurately simulated time over threshold could influencethe physics performance, since many an-
alyzes require the time over threshold to exceed a minimum value to reject noise or select electrons,
whose larger signal tends to cause a larger value of the time over threshold variable.

Figure 10.5.2 shows the results of a Garfield simulation of the recapturing probability in the gas used
in the TRT. Not surprisingly there is a strong dependence onr. A satisfactory description is obtained
by fitting the data using a fourth order polynomial as shown inthe figure.

In the digitization, the fit curve is implemented in such a waythat for each primary freed electron, a
flat random number is discriminated against the curve and theelectron is ignored in the digitization if
this number is above the curve (i.e. using the ’hit and miss’ technique [P+95, PDG06]). This imple-
mentation gives rise to the time-over-threshold distribution shown in figure 10.5.1(d). A comparison
of this figure to the corresponding distribution of the previous approach shown in figure 10.5.1(a-
c) shows that the resemblance is largest for recapture probability; precap = 70%, but in the present
implementation the RMS is somewhat increased.
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Figure 10.5.2:Survival probability of individual electrons as a functionof cluster radius with respect to the
wire.

10.6 Gain amplification and drift time spread

Closely related to the issue of recapture is the amplification of electrons during drift and the corre-
sponding spread in the final number of electrons arriving at the anode wire.

Figure 10.6.1(left) shows the gain of single non-recaptured electrons as a function of the production
radiusr.

From studying the details of this figure, one can realize thatnot only does the gain depend onr, so
does the spread of the gain. I.e. in order to get the distributions of gain correct for all values ofr, it is
necessary to fit the gain as a function ofr and for each drifting electron choose a gain from one such
distribution by using therejection principle(also know as the “hit and miss” method [P+95, PDG06]).

In figure 10.6.2 is shown two examples of fits to gain at different distances from the electron to the
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Figure 10.6.1:Left: Distribution of gain for single (surviving) electrons as a function of their distance to the
wire. Right: Mean values of the left-hand distribution connected by piecewise linear functions as implemented
in the software (note that the left-hand distribution extents outside the plotted range).
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Figure 10.6.4:Comparison between previous (left, blue points) and present (right) gain modeling as explained
in the text. Left-hand plot is due to P. Cwetanski.

anode. The exponential fits satisfactorily describe the distributions allowing the rate parameter of
the exponentials (i.e. the “decay constant”) to be parametrized as shown in figure 10.6.3. This is
what has been implemented in the software, which therefore proceeds as follows: Given a distance
from the initial (surviving) primary electron, a rate parameter is retrieved from the piecewise linear
parametrization of the rate parameter distribution (figure10.6.3). Since the naive reject method, would
be very CPU demanding due to the tail of the exponential function, a refined approach is utilized by
exploiting that numbers,t, generated according to an exponential distribution of rate parameterτ can
be generated simply by:

t =
−1
τ

ln( f ) (10.6.1)

for a flat random numberf ∈ [0;1] [PDG06].

In figure 10.6.1 is shown the results of single electron gains. In the previous implementation no corre-
sponding plot is available, but only the combined effect of gain and recapture evaluated by simulating
clusters of 250 primary electrons and calculating the average number of electrons reaching the wire
per initial electron, see figure 10.6.4(left). In order to compare the two approaches, the recapture
probability plot shown in figure 10.5.2 is multiplied by the gain distribution (figure 10.6.1(right)) and
the result is shown in figure 10.6.4 (right).

Apart from an overall scale difference explained by updatesin the Garfield simulations [Cwe07], the
distributions share most features. Since in the end, only the low threshold is tuned, the actual scale of
the distributions is not important, and in the digitizationsoftware, both figures 10.5.2 and 10.6.1(right)
are normalized (whereas figure 10.6.4 is not used at all).

10.7 Signal shaping

Once the electrons arrive at the wire, the response of the front-end electronics is modeled:

• Energy deposits are filled (as delta functions) into a vector in the appropriate time bins.

• This vector is convoluted with the signal shaping functions.
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by active baseline restoration by the front-end electronics. The right-hand plot shows the shaping functions
implemented in the digitization package to model the effectof the ASDBLR chips. Note that the curves are
normalized to a maximum height of 1. Source [ATL97b, Kit07].

• The signals are then discriminated against low and high thresholds in appropriate time slices
and the output digit constructed.

In figure 10.7.1 is shown the implemented signal shaping functions. No updates have been performed
with respect to this particular part of the TRT digitizationpackage, and the reader is referred to [Kit07]
for details.

In order to complete the digitization overview, two additional actions were taking:

• Noise is added based on a test-beam study.

• Mis-functioning straws are removed.

Since these issues are largely decoupled from the remainderof the TRT digitization, they will be
discussed (in chapters 15 and 16) after a comparison betweenthe digitization model outlined above
and test-beam results .

The digitization model described in this chapter, has been implemented in the TRT digitization pack-
age. Backwards compatibility is ensured by the use of a so-called digitization version, which is a
flag stored in the Detector Description Database. The above model corresponds to TRT digitization
version 11.



Chapter 11

Comparison with data

In the previous chapter, the model for simulating the TRT detector response was presented. In this
chapter, simulated data based on this model is compared withdata from test-beam studies. Before
presenting the actual results, the first short section is devoted to describing the experimental facilities
from which the data originate: The 2004 Combined Test Beam setup (CTB) [DGDG+05, ATL07].

11.1 The 2004 Combined Test Beam

Figure 11.1.1:Basic setup of the 2004 Combined Test Beam. Source [DGDG+05].
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In July 2004 a fully functional slice of the ATLAS detector was placed at the CERN Prévessin site at
the end of a test-beam delivered by the SPS [CER08]. Using various targets and magnet field selectors,
beams of either pions, electrons or muons were delivered at the detector setup.
In figure 11.1.1 this setup is shown, with the beam entering from the left. Before and after passing
the TRT barrel, the beam passes through various detectors providing particle identification, tracking
and shower vetoing. The dipole magnet encapsulating the Pixel and SCT provides a maximal field of
1.4 T.

The setup thus provides events where the identity of the passing particle is well known and with good
external knowledge of the parameters of the passing track, making them suitable for detailed studies
of detector performance. Details of the CTB setup and its performance are described in [DGDG+05,
ATL07].

Regarding the TRT, this was the first test-beam with the front-end electronics (including the ASDBLR
chips) essentially of the final design, while the read-out chain and data acquisition system were final
prototypes, very similar to those used in ATLAS.

11.2 r− t relationship

Regardless whether one is discussing data or MC, what is obtained from the front-end electronics (or
the corresponding part of the simulation) are streams of bits, with each bit corresponding to a time
slot of 3.125 ns, and the bit value specifying whether or not the signal exceeded the threshold in the
given time slot. However, in terms of tracking particles, what is more relevant than the time, is the
corresponding radius at which a particle crossed the straw.The process of interpreting the measured
time as a radius, is itself an involved process known as “ther − t calibration”. The ambiguity of
determining the side of the anode at which a given particle passed, must be resolved by the tracking
algorithm. Assuming that the drift velocity of the freed electrons is approximately constant (indepen-
dent of radius in the straw), one would expect that a plot ofr versust for multiple passing particles
would exhibit a V-like structure, which is the reason that this particular distribution is often referred
to as a V-plot. I.e.

r ≈ vdri f t · (tbin ·3.125 ns− t0) (11.2.1)

An example of such a plot is shown in figure 11.2.1. Note that apart from the V-like structure there
is a certain offset, denotedt0, which varies from straw to straw and depends in a complicated way
on the length of read-out wires, synchronization of the front-end electronics etc.t0 is extracted from
the data itself and subtracted before further processing ofthe data. Ther− t calibration is performed
separately for data and MC.

The comparison between data and MC falls naturally in two categories: Those which depend strongly
on ther− t relation, and those which do not. To the first category belongresolution studies, whereas
efficiency and to some extent time-over-threshold studies,fall in the latter.
The reason for this distinction is that once the TRT digitization is changed according to prescription
described in the previous chapter, ther − t should be re-calibrated in order for the tracking to work
optimally. This will be postponed to the resolution study, performed on a toy MC which is presented
in section 11.6. As will be discussed in section 11.6, the comparison of resolution between data
and simulation is not entirely straightforward, and certain assumptions must be made. However, as
discussed below, the comparison of efficiency and time-over-threshold is indeed feasible without in-
troducing questionable assumptions. Since the time-over-threshold distribution has some dependence
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Figure 11.2.1:The so-called V-plot, showing the relation between drift radius and the measured time.

on ther− t relationship, this study is repeated in the next section where ther− t is re-calibrated.

11.3 Efficiency and Time over Threshold comparison between data and
MC

11.3.1 Data selection and analysis cuts

The Combined Test Beam data was collected using a large number of different configuration setups,
some of which are useful for the present study and some not.
The detector setup differed mainly by the magnetic field strength, whereas the applied beams differs
in energy, particle composition and position (i.e. vertical elevation with respect to the sub-detector
modules). In table 11.3.1 the main features of the runs used in the present analysis are summarized.
Data taken from runs with magnetic field is preferred since the field tends to sweep away the low
energy electrons which are otherwise present in the beam andwhich could potentially interfere with
the results. Note that the field is applied only in the Pixel/SCT region, and the wake field is negligible,
so that particle tracks in the TRT (called TRT segments) can be assumed straight apart from multiple
scattering in the material.

runnumber E B Ne Nπ
[GeV/c] [T]

2118 2 0.33 41877 8336
2106 5 0.82 36865 38322
2107 9 1.4 11094 35046

Table 11.3.1:Run selection and size according to the selection in [MP07].

In order to bypass effects of imperfect tracking algorithms, it is necessary to perform a number of
quality cuts to ensure that only events with properly reconstructed tracks are considered. The require-
ments are:

• Precisely one global track per event, defined as a track consisting of both Pixel, SCT and TRT
hits.



11.3 Efficiency and Time over Threshold comparison between data and MC 109

Figure 11.3.1:Coordinate system for the track fitting. Thez axis is defined by the beam andx is the vertical
direction.

• Precisely one TRT segment built from at least 9 TRT hits.

• Precisely one LAr calorimeter cluster.

• Well defined particle identification (PID) from̌Cerenkov detectors using the method presented
in [MP07].

Based on a global track passing the above requirements, a linear refit is made using the TRT straws
belonging to the track. The straw positions entering in the fit are determined by a calibration using
selected test-beam data, see [MP07] for details. Assuming straight tracks in thezx−plane, theχ2 of a
track fit to theN measurements defining the TRT segment can be expressed as:

χ2 =
N

∑
i=1

(xi −xtrack)
2

σ2
i

=
N

∑
i=1

(xi − (x0 +α (zi−z0)))
2

σ2
i

(11.3.1)

wherei runs over theN measurements defining the TRT segment of the track andσi represents the
measurement error. The coordinate system is explained in figure 11.3.1. As can be seen in this figure,
a track is defined from one set of coordinates:(z0,x0) and a slopeα . Assuming equal errors for all
measurements, theχ2 minimum conditions read:

∂ χ2

∂x0
= 0 =⇒

N

∑
i=1

(xi − (x0 +α (zi−z0))) = 0 =⇒

x0 =
1
N

N

∑
i=1

(xi −α (zi−z0))

(11.3.2)

∂ χ2

∂α
= 0 =⇒

N

∑
i=1

(xi − (x0 +α (zi−z0)))(zi −z0) = 0 =⇒

N

∑
i=1

(zi −z0) =
N

∑
i=1

x0(zi −z0)+α
N

∑
i=1

(zi −z0)
2

(11.3.3)

Combining equations 11.3.2 and 11.3.3 leads to the following closed expression forα :

α =
∑N

i=1 xi(zi −z0)− 1
N

(

∑N
i=1xi

)(

∑N
i=1(zi −z0)

)

∑N
i=1(zi −z0)2− 1

N

(

∑N
i=1(zi −z0)

)2 (11.3.4)
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From the track defined byα , a new track is formed using the nominal straw positions plusor minus
the drift radius depending on which gives the lesser contribution to theχ2 sum. In case the track has
a kink, or has outliers (hits which by mistake are assigned tothe track), it could dilute the efficiency
analysis, and to reject such tracks, an effectiveχ2 is formed:

χ2 =
1
N

N

∑
i=1

(xhit −xtrack)

1000µm2

2

(11.3.5)

where the denominator is chosen arbitrarily for normalization only.

Problematic tracks are identified by their largeχ2 with respect to straight tracks or conversely a lowχ2

probability - see figure 11.3.2. As indicated, tracks with aχ2 probability less than 0.025 are omitted
from the following analysis.

11.3.2 Efficiency in data

The straw positions are evaluated using all useful CTB data (as described in [MP07]) and are thus
known with high precision (uncertainty is negligible). Having also firm tracks, the hit efficiency can
be investigated. In order to make detailed comparison with simulations, the efficiency dependence on
the impact parameter of the track to the anode wire is of special interest, since this distribution allows
one to indirectly test the validity of the Garfield simulations of gain and reattachment probability,
presented in the previous chapter, on which the TRT digitization software is based. The efficiency as
a function of the impact parameter of the track to the anode,r, is calculated by forming the distance
ratio, between distributions ofdistance from anode wires corresponding to track-hits to the trackand
distance from all anode wires to the track.

ε(r) =
Σhitsontrackdist(wire, track)
Σallstrawsdist(wire, track)

, (11.3.6)

where theΣ’s indicate the fact that the efficiency is formed by a ratio ofdistributionsof distances
(i.e. they do not represent actual summations). As illustrated in figure 11.3.3, the numerator of
equation 11.3.6 is formed from all the shaded straws, meaning that it includes hits which do not
belong to the original track but are within the nominal strawradius of it. The reason for including
these hits, is to try, as much as possible, to reduce effects of ineffective tracking (i.e. to be, as much as
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Figure 11.3.3:Efficiency is calculated by forming the ratio of distances,dist, from anode wires corresponding
to hits on the track, to distance to the track for all anode wires. Only the shaded straws enter in the numerator of
equation 11.3.6 whereas all straws enter in the denominator(note that the inclusion of additional straws missed
by the track in the denominator has no effect - cf. equation 11.3.6 with zero numerator).
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Figure 11.3.4:Left: Number of TRT hits on 100 GeV pion tracks. Right: Numberof hits added to the track -
based on interception between track and straw volume.

possible, tracking independent). In principle this approach introduces a bias to the track parameters
(which are determined by the hits defining the original global track), but given the large average
number of TRT hits on each track (≈ 40), combined with the fact that only on average 1.5 hits are
added by this procedure, the modification of the track-parameters from a including the additional hits
is insignificant - see figure 11.3.4.

In addition, an unavoidable bias is introduced by the tracking algorithm defining the input track, since
it is required that tracks have at least 9 TRT hits. As the beamenters the TRT modules approximately
along the straw layers, the impact parameters, of a track to the anodes it passes can be significantly
correlated, as can be realized considering the beam profile shown in figure 11.3.5. Thus the require-
ment of a minimum number of TRT hits per track, can influence the individual tracks differently.
However, taking into account figure 11.3.4(left), the tail of rejected tracks with less than 9 TRT hits is
expected to be negligible, and thus this bias insignificant.
By the above approach, the track-parameters are determinedmore or less independent of ther − t
relationship on which normal tracks depend and the straw positions are precisely known, so resolu-
tion effects only play a minor role. Before the summations are performed, all non-functioning straws
are removed. Although this is trivially done in the simulation, it is not always the case for data due
to possible non-constant detector performance (i.e. the situation where a given channel changes its
properties over time). Potentially this means, that occasionally some straws are included in the de-
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Figure 11.3.5:Occupancy map (i.e. occupancy as a function of (z,x) position) for the 2 GeV pion run.
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Figure 11.3.6:Left: Efficiency as a function of the impact parameter of the track to the anode wire (2 GeV
run). Care is taken in order to get the bin error correct when dividing the two statistically dependent histograms
on which the plot is based. Right: Time-over-threshold for the same data sample.

nominator sum, although they were temporarily non-functioning. Consider the occupancy map shown
in figure 11.3.5. The beam profile is clearly seen, but a few straws in the beam region exhibit suspi-
ciously low efficiency which could indicate non-constant running conditions, but could also simply
mean that some straws have a constantly low efficiency (an example is indicated by an arrow). To
make firm conclusions, however, requires a detailed investigation of the running conditions of the
individual straws over time.
Moreover, as will be discussed in chapters 15 and 16, the TRT modules chosen for the test-beam
setup were known to have stability problems. Due to time constraints, it was decided not to pursue
this issue and instead cope with the fact that the normalization used for the efficiency could be slightly
off. This implies, that the apparent derived efficiency is reduced with respect to a realistic ATLAS
efficiency. When running the full experiment, all straws will be monitored constantly and the instan-
taneous efficiency will be accessible, hereby eliminating the problem. From figure 11.3.5 one could
also gain knowledge of the detector noise, however this issue is postponed till chapters 16 and 17
where separate noise studies are presented.

In figure 11.3.6 the efficiency of all particles of a 2 GeV run isplotted as a function of the impact
parameter (i.e. no PID requirements). At the straw edge,r = 2 mm, the efficiency falls off. Also
shown is the corresponding time-over-threshold distribution. The left-hand plot in this figure is the
basis of the discussion which follows below.

11.3.3 Features of a simple efficiency parametrization

It is difficult to construct a well defined and unambiguous measure for the efficiency, and the present
approach does not claim to results in such a measure. Since resolution effects are not considered in
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Figure 11.3.7:Notation used in equation 11.3.7. Note that this expressionconcerns integration in half a straw
only (disregarding the shaded region) which explains the factor of 2 in the exponent.

the below parametrization, it can, however, serve as an upper limit of the efficiency which can be
expected.

The fit shown in figure 11.3.6(left), is based on the followingexpression:

ε(r) = 1−e
−2a
√

R2−r2·
∫

√
R2−r2

0 (1−α
√

r2−y2)dy

∫

√
R2−r2

0 dy = 1−e
−2a

(√
R2−r2− α

2 [ln( R+
√

R2−r2
|r| )r2+R

√
R2−r2 ]

)

(11.3.7)

I.e. the efficiency is approximated by a Poisson distribution of electron clusters along the track, times
a constant reattachment probability per unit length of the electron drift. The various parameters of
equation 11.3.7 are explained in figure 11.3.7.

By this, the fit parameters can be interpreted as:

• α : Reattachment probability per unit length.

• a: The number of produced electrons per unit length, that would give rise to a signal ifα = 0.

In the full MC model, the reattachment probability is described by the polynomial shown in figure
10.5.2, whereas in the present simple model it is approximated simply by a straight line. However,
from figure 10.5.2 it is realized that the deviations from a straight line are not too significant, and if
the measurements are approximated by a straight line the corresponding slope would be 0.3 mm−1

which is roughly the size ofα in the above fit (see figure 11.3.6(left)).

The value of the fit parametera suggests that only: 1.2 mm−1 ·4 mm≈ 5 surviving electron clusters
are created along a track passing through the center of a straw. This number seems rather low, espe-
cially when comparing to the number of created electron clusters for such a track - see figure 11.3.8.
However, there is no saying that one electron cluster reaching the anode wire is actually sufficient to
produce a signal; one can beforehand not know whether a better fit is obtainable by including more
terms from the Poisson expansion:P(x) = e−<x> ·(1+c1 < x> +1

2c2 < x>2 + · · · ). Including one or
two terms improves the fit quality somewhat (see Appendix B.2, figure B.2.2) without major changes
in the fit-parameters. However the price to pay by this, is that the model gains complexity by the
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Figure 11.3.8:Number of electron clusters produced by a track passing a wire with vanishing impact parameter
according to Garfield simulations. Additional plots showing various distributions of electric charge can be found
in Appendix B.1.

additional constants and it implies that the interpretation of the parametera must be revised. For this
reason, only the simplest model is considered below - i.e. equation 11.3.7. The mere fact that the
observed efficiency in data can be described using a very simple model based on the same ideas as
the MC model is reassuring for its further development and illustrates that the simple model seems to
catch the main features of the data.
Note that the good agreement is obtained despite the fact that the expression in equation 11.3.6 does
not have terms describing the spread caused by the varying avalanche effects nor does it take into
account the finite resolution introduced by the track resolution.

The fit-function does not attempt to describe the tails (i.e.events at|r| > 2 mm) which, apart from a
(small) contribution induced by the finite resolution, are thought to be due toδ-rays. The latter should
of course not enter into efficiency calculation, but to some extent it inevitably will. Also, the presence
of δ-rays implies that the integrated efficiency depends on the limits to which the fit is performed. The
dependence is shown in figure 11.3.9. Due to the presence ofδ-rays, combined with the non-constant
detector performance, is not trivial to obtain a single unambiguous value for the efficiency. However
for the given 2 GeV run, one can with some certainty claim thatthe observed efficiency is above 92%
which is the value obtained from integrating figure 11.3.6(left) in the range|r| < 2 mm. Note that
the presence ofδ-rays lower the value with respect to the true efficiency, which could be significantly
higher.

Efficiency dependence on particle type and energy

In order to investigate a possible dependence of the efficiency on the particle type, efficiency distri-
butions for electrons and pions are compared for run 2118 andthe resulting distributions are shown
in figure 11.3.10. The PID requirement reduces significantlythe statistics, but no differences can be
found. Since the fits of figure 11.3.10 are compatible, not only with each-other, but also with the
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Figure 11.3.9:Integrated efficiency for the 2 GeV pion run of figure 11.3.6. For r = 2 mm the efficiency is
92%.

corresponding fit when no PID requirement is implemented (figure 11.3.6), the latter approach will be
utilized in the following due to the higher statistics.

Figure 11.3.11 shows the efficiency ratio between the selected runs as a function of impact parameter.
Despite the apparent structure, the ratios are compatible with a constant fit. Again, the questionable
statistics makes is difficult to make firm conclusions. Also,the beams differ in composition, and
although it was argued above, that possible efficiency differences between particle types are small,
they still can influence this study, since the statistics is improved compared to figure 11.3.10.

Based on figures 11.3.10 and 11.3.11 it seems plausible that efficiency could differ somewhat accord-
ing to particle type and energy. To quantify would require a more detailed study and increased data
samples. Although interesting in its own right, such study lies outside the realm of the TRT simulation
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Figure 11.3.10:Efficiency as a function ofr for electrons (a) and pions (b) for run 2118. Corresponding
figures without PID requirement for runs 2106 and 2118 can be found in Appendix B.2.
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Figure 11.3.11:Ratios between efficiency as a function ofr for runs: 2106/2107 (a) and runs: 2106/2118 (b)
without PID requirement.

validation and will therefore not be performed here.

It has been shown that the difference in efficiency due to particle type or energy can only be minor,
and it will not be taken into consideration in the following comparison between data and MC which
is based solely on run 2118, without PID requirements.

11.4 Efficiency and time-over-threshold distributions in MC

The above discussion concerned the test-beam data only, butof course the method is usable for sim-
ulated data as well and this section provides correspondingfits to the MC efficiency in order to tune
the simulation to resemble data.
Since the only free parameter in the simulation is the low threshold setting, LT, the task of tuning
the MC reduces to comparing efficiency fits produced with various LT settings, to the corresponding
distribution in data (i.e. figure 11.3.6).

Note that this approach simultaneously tests all aspects ofthe full digitization model, including all the
updates. The main results are shown in figures 11.4.1 and 11.4.2 containing efficiency- and time-over-
threshold distributions for various LT settings, superimposed with the corresponding distributions for
data. A Kolmogorov test of the efficiency distributions reveals that the best match is found for the MC
with a low threshold value of 300 eV. Incidentally, this value is the same as the hardware setting used
for the data taking. It should be emphasized that the tuning parameter of the MC and the hardware
setting have somewhat different meanings and therefore could have different values: The hardware
setting is actually an “electron count”, which is interpreted as a signal height, whereas in MC, LT is a
tuning parameter, influenced in essence by all aspects of theunderlying simulation.

No fine-tuning of the MC efficiency distribution is performeddue to the fact, that the time-over-
threshold or resolution distribution could equally well bechosen as tuning distribution. For this rea-
son, it is sufficient to state with respect to efficiency, LT=300 eV matches data well, and LT=250 and
LT=350 are clearly excluded. For time over threshold, the situation is less clear, but figure 11.4.2
suggests that LT=250 eV is preferred.
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Figure 11.4.1:Efficiency for various LT settings for a 2 GeV pion run (run 2118). Data is black and MC red.
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Figure 11.5.1:Event showing a typical number and distribution of electronclusters (4 clusters) which survive
the drift and result in a signal large enough to exceed the threshold.

11.5 Comparison between simple physics model andr− t relationship

Since the measured averager− t relation (e.g. figure 11.2.1) concerns the distance of closest approach
from the track to the anode wire (corresponding tor in figure 11.3.7), while the drift time versus drift
distance distribution of figure 10.3.3 shows the drift time of single electrons along their trajectories
(corresponding tor ′ in figure 11.5.1) comparison is not straight-forward. The reason is mainly that the
parametera is small. Sincea is interpreted as the mean number of electrons produced per millimeter,
its small value implies that the probability that an electron is produced close to the minimum distance
from a track to the wire is low - see figure 11.5.1. Another reason is, that a typical cluster does not
contain a sufficient number of electrons to give rise to a signal on its own1.

As a consequence, the electron drift distance,r ′, generally differs quite significantly from the distance
of closest approach form the track to the wire:r. In an attempt to understand the observedr − t
relations, a small toy MC routine was developed from the following principle:

• Assume that the number of electron clusters produced alonga track of impact parameterr is
Poisson distributed with a mean of: 2a

√
R2− r2, whereR refers to the straw radius.

• Since some electrons do not reach the wire, the relevant Poisson mean must be scaled by the

inverse of the mean fraction of recaptured electrons atr = 0:
∫ R

0 (1−α r ′)dr′
∫ R

0 1dr′
= 1−α [mm] since

R= 2 mm. By this, the mean of the Poisson distribution becomes:2a
√

4 mm2−r2

1−α .

• Once the number of electron clusters has been determined, they are distributed randomly and
independently along the trajectory. Hereby ther ′ distribution is obtained.

• For each electron, compare a random number to 1−α r ′ (actually compared to the full fit func-
tion of figure 10.5.2) and reject if the number falls above thecurve.

• In the list of surviving electrons, store the one with the smallest value ofr ′: This electron is the
one which gives rise to the signal in this simplified model (i.e. LT→ 0).

• For eachr ′, calculate the corresponding drift time,t, using equation 10.3.9, thus ignoring dif-
fusion and spread. By this, histograms ofr can be filled for each time interval of 3.125 ns
corresponding to the time bins of the read-out electronics.

1This can be the case despite the fact, that the more complicated fits discussed in section 11.3.3 were not able to quantify
this issue.
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Figure 11.5.2:Relation betweenr andr ′.
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Figure 11.5.3:Fits to r in three different bins oft. The upper figures are the results of the simplified model,
whereas the lower ones are default results from the CombinedTest-Beam, where the tails have been cut away.

In figure 11.5.2 the relation betweenr andr ′ is shown, and the spread is clearly seen to be significant.
In order to make a reasonable comparison with the ’default’r − t relation used for tracking (i.e. the
relation found using the standard procedures of the ATLAS offline software), the central part of the
peak in histograms ofr for the varioust bins, is fitted with a Gaussian. The fit limits are defined to
resemble the default fits as used in the standard ATLAS offlinesoftware. A few examples of the fits are
presented in figure 11.5.3 where also the corresponding default examples are found. Corresponding
histograms for all time bins are found in Appendix B.2.

Obviously the model above underestimates the width of the distributions. This is perhaps not so
surprising given the simplicity of the model - it only attempts to account for effects caused by the
low average number of electron clusters produced along a track, and the spread due to e.g. avalanche,
cluster energy spread, diffusion and LT fluctuations is not included. For this reason the error calculated
from the spread inr ′ is expected to be considerably less than the error in ther − t relation. Overall,
however, the model does seem to describe the main features asshown in figure 11.5.4.

Although it remains to be seen whether the full MC simulation(i.e. the TRT digitization in the offline
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Figure 11.5.4:Distribution of mean and errors for toy MC (left) and defaultr− t relations (right).

software) succeeds in describing the data resolution, the good resemblance between the simple model
and ther− t relation combined with the fact that the toy MC is built on thesame principle as the TRT
digitization package suggests, that the physics model underlying the TRT digitization is indeed valid
and indicates that most important physics features are captured in the simulation.

11.6 Resolution in data and MC

The outline and methods used in this section are based on [Kit07], where the reader is referred for an
in depth discussion of the TRT resolution2.
To check the resemblance between the data and MC tracking resolution, a study is performed based on
a 100 GeV pion sample. Using the full simulation scheme described in chapter 10, the passage of 2M
particles through a TRT straw is simulated with a flat distribution of the impact parameter and using
the optimal low threshold setting found in the previous section (LT=300 eV). For each simulation, the
impact parameter,r, and the output digit is stored, so that in the following dataanalysis,r is fitted in
bins corresponding to which time bit contains the leading edge - i.e. the first ”1” when reading the
digit from left to right (i.e. from smaller to larger times).The central part of the distributions obtained
in this way are fitted with Gaussians as in the case for the toy MC study of the previous section.
Some results are shown in figure 11.6.1, whereas the remaining are found in Appendix B.2. From
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Figure 11.6.1:r in three binst for the full digitization model.

2Note, that the work presented in [Kit07] is prior to the presented updates in the TRT digitization software, hereby
complicating a direct comparison between these results, and the results presented in this thesis.



11.6 Resolution in data and MC 121

 [mm]track-RlocalR
-1 -0.5 0 0.5 1

E
ve

nt
s 

/ 2
0 

m
ic

ro
n

0

2000

4000

6000

8000

10000

12000

14000

16000

Test Beam Data

Simulation

Time over Threshold [bits]
0 5 10 15 200

10000

20000

30000

40000

Test Beam Data

Simulation

Figure 11.6.2:Track residuals (left) and time-over-threshold (right) distributions for data and simulation using
100 GeV pions.

these distributions the effect discussed in section 11.5 ofthe low number of initial clusters causing the
tail on the left-hand side of the peak is clearly observed. Inorder to make a reasonable comparison
of resolution with the test-beam data,r − t relations are formed based on the fits of figure 11.6.1.
Since the data, as opposed to the simulation used here, suffers slightly from the fact that neither the
track nor the straw positions are known precisely, the corresponding uncertainty contributions need
to be added to the simulation results before making any comparison. The estimated uncertainty of
the individual wire positions is: 33µm as determined from track residuals between SCT- and TRT
segments [Han08]. The uncertainty introduced by the tracking is∼ 130 µm/

√
33.5−2, since the

average number of TRT hits per track in the used data is 33.5 and the track resolution is 130µm.
Assuming that the effects are of Gaussian nature, these two contributions are added randomly to the
residual. Finally a 4σ cut is performed on both data and MC, by which the resolution and time-over-
threshold distributions of figure 11.6.2 are obtained.

The resemblance between data and MC is very good - a Kolmogorov test reveals a probability of
6% for the two residual histograms to follow the same distribution. Repeating the above exercise
for different LT settings yields the distributions found inAppendix B.2. The optimal LT value as
determined from Kolmogorov tests to the residual plots is 338 eV with a corresponding probability of
52%. Recalling that LT=300 eV is optimal according to the efficiency study presented in section 11.4,
and that the time-over-threshold distribution suggests a value∼ 250 eV (in both studies) it is concluded
that all three methods of optimization results in compatible LT settings. Given that different aspects of
the TRT digitization model are probed using the three methods some inconsistency between the results
are expected and the fact that they all arrive at similar values is a significant accomplishment. The
default software setting is LT=300 eV, which can therefore be retained; with the present knowledge
and simulation model there is no strong argument for changing this value. When the LHC goes into
operation, a much more detailed optimization is possible and it is likely that this statement will be
revisited.



Chapter 12

Transition radiation

The previous chapter focused on the TRT abilities as a tracking detector. In this chapter emphasis will
be put its the particle identification capabilities.

12.1 Theory of transition radiation

Transition radiation (TR) arises when ultra-relativisticcharged particles cross a boundary between
media with different dielectric constants, i.e. a charged particle in a non-uniform electric field. This
process is analogous to bremsstrahlung, which arises due toa particle moving in a electromagnetic
field.

As shown below, the probability of a given particle to emit transition radiation is determined solely by
theγ-factor (apart from material properties). The TRT is build to exploit this for particle identification
purposes - in particular to distinguish electrons from pions. Electrons tend to have largeγ-factors
and thus are likely to emit TR photons which makes them separable from the abundant low energy
background of mainly pions. The theory of transition radiation is treated in detail in [Dol86, Ege98]
and the references therein. Only a few results important forthe TRT will be summarized here.

In the case of a single regular foil, the total energy radiated by a charged particle when passing from
vacuum to the foil is:

Erad =
1
3

αγh̄ωp (12.1.1)

whereωp is plasma frequency of the foil and is given by:

h̄ωp =

√

4πNer3
emec2

α
(12.1.2)

whereNe is the electron density,re is the classical electron radius,me is the electron mass andα is the
fine-structure constant.

Strictly speaking, this result is only valid in case the plasma frequency of the surrounding medium,
ωgas, is zero, which is the case for a transition from vacuum. However, the result holds approximately
in the limit: ωf oil ≫ωgas as is the case for the relevant materials of the TRT:h̄ωpolypropylene≈ 20 eV
and h̄ωair = 0.70 eV. For practical usage, not all transition radiation photons are useful, since some
minimum energy,Ecuto f f must be required for detection (due to the absorption spectrum in the detec-
tion gas). The number of photons created at a single boundaryfulfilling this requirement is Poisson
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distributed with a mean of:

Nγ =
α
π

(

ln
ωγ

Ecuto f f
(ln

ωγ
Ecuto f f

−2)+
π2

12
+1

)

(12.1.3)

Assuming a detector sensitive to photons with energies above 1 keV thus implies that an electron
of 100 GeV on the average produces≈ 0.12 photons with sufficient energy. For detector usage the
low single-foil emission probability is compensated by using many foil layers. In the TRT end-
cap each straw-layer is interleaved with about 15 uniform regular 15µm thick polyethylene foils
separated by 200µm gas gaps (300µm in some regions). Studies show (see figure 12.1.1(left)) that
this composition is optimal (due to constructive interference of the radiation, regular foils are better
than non-regular foils, foam and fibers). The thickness and number of foil layers are optimized with
respect to PID performance, subject to constraints from thematerial budget and space limitations.
The geometry and modular design of the TRT barrel prevents usage of regular foil radiators and
an assessment shows that fibers oriented perpendicular to the expected particle trajectory is the best
practical option given these constraints - see figure 12.1.1(left). At nominal threshold (5-7 keV), the
probability for exceeding threshold is here about 15% belowthat of a regular foil.

Figure 12.1.1:Left: HT probabilities as a function of threshold for different radiator types. Right: Photon
absorption length in high Z noble gases. Source [Cwe06].

Upon creation, the TR photons, which are not reabsorbed in the foils or in the intermediate gas, enter
the straws of the TRT and are subsequently absorbed in the Xenon gas flushed through the straws of
the TRT detector. Xenon is chosen based on its low photon absorption length at the relevant photon
energies (see figure 12.1.1 (right)) while other gases are added for stability, drift velocity and detector
safety reasons. The final composition is XeCO2O2 (70:27:3).
The TR photons are emitted highly collinear to the particle trajectory (opening angleθ ≈ 1/γ) prevent-
ing ambiguities when assigning HT hits to tracks in the offline reconstruction. By this, the fraction
of hits along the trajectory of a given particle which contain HT can be easily interpreted as a HT
probability and be used in a straight-forward manner for particle identification.

Figure 12.1.2 shows the TR spectrum from a polyethylene surface. This plot, along with the ones
shown in figure 12.1.1 suggest that the HT value giving the optimal electron identification is of the in
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Figure 12.1.2:The radiated TR spectrum from a polyethylene surface. Source [Dol86].

the neighborhood of 6 keV - the ’final’ tuning of the hardware setting of course awaits LHC collisions.

12.2 Simulating transition radiation

The simulation of transition radiation is based on the modelpresented in the previous section and the
references therein. In this section the tuning of the TR model to match CTB data is discussed.

Figure 12.2.1 shows the HT probability from a study of the CTB, as a function ofγ-factor [MP07].
The plot is the result of a careful track selection and strictrequirements ensuring reliable and high
separation between the particle species. The contamination is estimated to be below 1h in all con-
figurations, and in most samples considerably lower than that. As would be expected from the above
considerations, the HT probability curve resulting from the selection (figure 12.2.1) shows no depen-
dence on the particle species, only on theγ-factor - i.e. there is no discontinuity in the curve in the
regions between different particle species. The function used for the fit (as well as for the correspond-
ing fits to simulations discussed in the following sections)is a generic onset function:

pHT(γ) = p0 + p1log10(γ)+
p2

1+exp(−(log10(γ)− p3)/p4)
(12.2.1)

The various components of this function are discussed in thenext sections.

To reduce ambiguities in track-selection from e.g.:e− → e−γ→ e−e+e− or pion decays, the MC
study is based entirely on muons. The muon energies are selected in such a way that theirγ-factors
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Figure 12.2.1:HT probabilities for different particles as a function ofγ-factor from test-beam.
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Figure 12.2.2:MC HT probabilities as a function ofγ-factor (full curves). Each point represents an average
of 10000 tracks. On the left is shown the result obtained using the default setting: HT=6 keV whereas the
right-hand figure shows the result after tunning the low energy plateau to data: HT=6.25 keV. Note that in both
plots, the TR efficiency is set to the somewhat arbitrary default setting: 0.8. The dotted curves shown in both
plots is the data fit as described by the parameters in figure 12.2.1.

match those of the Combined Test Beam - i.e. a muon run corresponding to each point in figure 12.2.1.

The tuning of the transition radiation model proceeds in three steps: First the low energydE/dx tail
is tuned, then the TR onset part is tuned and finally the high energy plateau.

12.2.1 Step 1: Tuning thedE/dx tail

Figure 12.2.2(left) shows the default MC HT probability corresponding to the test-beam data of figure
12.2.1. Low energy ionization has been subject to intense study during a period of many years. Most
of the important results are implemented in the PAI model which in this domain is very trustworthy.
It is therefore considered safe, to tune the lowγ tail of figure 12.2.2(left) to data using as tuning
parameter the HT setting. Switching off the TR model in the simulation gives the puredE/dx curve
shown in figure 12.2.3(left).

In the combined test-beam study, a dependence of the specificmodule on the HT probability was
found, but never fully understood [Pet07]. Due to this, the curve in figure 12.2.1 can be fitted only by
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Figure 12.2.3:Left: MC dE/dx curve in the full range after tuning the low energy tail to data. Obtained by
switching off the TR creation. Right:dE/dxof MC with different settings, and various fits to data as explained
in the text.

artificially scaling the low- and high-energy plateau. Obviously, this causes some uncertainty in the
fit, since the scaling to a large extent is arbitrary. In figure12.2.3(right) the purple lines show the result
of different fit approaches, and due to their spread a precisefine-tuning of the high threshold setting
is premature, and 6.25 keV is chosen since it is sufficiently close to all data fits. Incidentally, this HT
setting is not to deviant from the nominal value of HT= 7.0 keV which is the CTB hardware setting.
Note, that corresponding to the case of the LT setting, the meaning of the software and hardware
definitions differ, and some discrepancy can be expected. The resulting TR onset curve is shown in
figure 12.2.2(right).
When compared to the corresponding distribution measured in the test-beam (the dotted curve in the
same figure) it is clear that there are differences which cannot be explained by an inaccurate HT setting
- instead it seems that the transition radiation model as implemented in the software is inaccurate.

12.2.2 Step 2: The transition radiation onset

As mentioned earlier, the transition radiation simulationin the ATLAS experiment is based on a
custom implementation of the model presented above, and nottheGEANT4 default which was poorly
suited for the transition radiation simulation needed by inthe TRT software, since it does not take into
account interference between radiation produced at different gas-foil transitions.

A study of the details of the transition radiation model implementation in the ATLAS software, reveals
a potential problem for the barrels modules. The foam responsible for creating the TR photons is in
lack of a better model approximated by the same foil as for theend-cap. Differences in the transition
radiation production are introduced only via a constant factor whose effect is to disregard a certain
fraction of the created TR photons in the barrel with respectto the end-caps (named TR efficiency
in the following). Taking figure 12.1.1 into consideration it seems plausible that this could not only
result in a wrong overall high threshold probability in theγ→ ∞ limit, but also the details of the TR
onset curve could be inaccurate.

In order to force the onset curve of the MC to match that of data, the number of created MC transition
radiation photons is modified according to the ratio betweenthe fits to the HT probability curves for
data and MC after subtracting thedE/dx curve shown in figure 12.2.3(left). The ratio of the fits of
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Figure 12.2.4:Fudge function scaling the number of photons in MC to give theTR onset curve of data. The
maximal allowed value of the fudge function is 2.

figures 12.2.1 and 12.2.2 has the functional form:

Nγ→ Nγ ·
1+e−(logγ−3.008)/0.1284

1+e−(logγ−3.299)/0.2703
(12.2.2)

whereNγ is a Poisson number with mean as given by equation 12.1.3. Thefunction is shown in figure
12.2.4 - including a cutoff, implemented so that the correction do not exceed a factor of 2. The cutoff
is needed in order not to wrongly interpret, and artificiallyscale, small differences between the low
energy tails of the data and MC curves, as being due to transition radiation. The reason to subtract
thedE/dx curve is that only the TR model is to be modified - not thedE/dx part underneath which
is assumed valid.

The resulting HT probability curve is shown in figure 12.2.5(left) along with the CTB curve. Clearly,
the main features of the TR onset is now effectively reproduced in the simulation, the only remaining
issue is to tune the high energy plateau which is done below.

12.2.3 Step 3: The saturation level

Since the number of transitions between gas and fibers is finite and since some fraction of the TR
photons are reabsorbed in the foam, the HT probability saturates at a certainγ-factor. The final tuning
concerns the simple matching of the saturation plateau in data and MC. In the simulation (actually
in the digitization) this is done by tuning the overall TR efficiency. The final result of the tuning is
shown in figure 12.2.5(right). The corresponding TR efficiency is 95%.

12.3 Conclusion

The method and results described in this chapter are implemented in the ATLAS simulation software
and used per default. In the present situation, where the HT probability curve of MC matches data
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Figure 12.2.5:Modified MC (full curves) and data (dotted curves). Left: TR efficiency 100%, Right: TR
efficiency 95%.

well, it is clear that PID information can be extracted in data as well as in reconstructed MC solely
based on the HT probability curve. An advantaged approach isbeing developed, where not only
HT probability, but also time-over-threshold and single track χ2 are combined to a common PID
probability.

Note that the present analysis concerns barrel tuning only,since no recent test-beam data exist for the
end-caps. In principle future cosmics data, using a Xenon based active gas rather than the Argon based
which has been used so far, could be used at least for a rough tuning. However, theη dependence
of the HT probability which is expected for collision data, cannot be probed using cosmics. For this
reason the corresponding tuning of the end-caps will await ATLAS collision data.



Chapter 13

Late conversions

Having now described both hardware and software aspects of the TRT, this chapter presents an exam-
ple of the usage of the detector; namely to reconstruct photon conversions taking place in the detector.
As will be argued below, such reconstruction has multiple applications ranging from material mapping
capabilities to reconstruction of Higgs events in theγγ channel.

13.1 Introduction

In chapter 9, the material budget of the TRT is discussed. Table 9.1.1 summarizes the most precise
knowledge presently available as obtained from surveys, aswell as the corresponding values from the
TRT GeoModel. From the discrepancy between the values of thesurvey and the GeoModel one can
estimate the uncertainty to be at the level of a few percent and the geometry is presumably known to
similar precision. When the experiment goes into operationit is anticipated that the uncertainty on
the position of the active detector elements, will be highlyimproved due to the individual sub-system
alignment as well as the global alignment. For the TRT, it is planned to use large pion samples to
continuously monitor the position of each straw. Preliminary analysis [Boc08, BH07] suggests, that
the individual straw positions in the barrel can be determined to within∼ 0.3 µm in φ and∼ 0.3 µm in
the radial direction. However, the alignment is not able to directly measure the location of non-active
material, and for certain precision measurements this distribution is of importance. An example is the
W mass measurement in theW→ eν channel, where the relative precision is aimed at less than half
a permille. As discussed in Part II, the dependence on the simulation with respect to the momentum
scale determination, and thus the detector material, is avoided by in situ calibration using theZ events,
differentially in η and pT . However, other systematic errors, like the systematic error introduced by
final state radiation, do depend on the ability of the simulation to accurately resemble data, and in
general, of course, it is desirable to have accurate simulations. In order for this to be possible, all parts
of the ATLAS detector must be minutely accounted for in the detector description of the simulation,
both with respect to position, shape and nuclear composition. Unless special techniques are employed,
table 9.1.1 (or more precisely the full underlying GeoModel) represents the most exact knowledge of
the non-active material at the present stage, and is not expected to be significantly improved during
the detector operation.
However once data taking starts, photons will be among the produced particles. In figure 13.1.1, the
expected photon statistics after triggering is shown as a function ofET corresponding to one year of
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low luminosity running. Clealy, the sample size is large enough to allow for a detailed mapping of the
detector from the reconstruction of the conversion vertexes as will be explained below.

Figure 13.1.1:PhotonpT spectra after triggering corresponding to one year of running with low luminosity.
Only selected channels are shown - note that the photons fromπ0’s are not included. The main contribution
is due to photon-jet events (labelled gJ1-J6), whereas the signal events studied: Gravition to photon-photon
(two different samples labelled Ggg) and Higgs to two photons (Hgg) constitute small pertubations on this
’background’. The trigger efficiencies (according to various trigger menus referred to in the legend) are shown
on the right-hand scale, and indicated in the figure using thecolor-coded dotted lines. Source: [And07].

13.2 Theory of photon conversions

As explained in chapter 3, one of the important design parameters of the LAr calorimeter, is its ability
to distinguish photons from electrons. In order for the calorimeter to find a photon produced in the
interaction region, the photon must pass through the entireInner Detector. In vacuum, of course, the
photon range is infinite, but in presence of matter, a photon can scatter on free electrons or atoms in
the material and more importantly: A photon can undergo pairproduction, since momentum can be
transfered from a close-by nucleus to a passing photon, hereby satisfying energy/momentum conser-
vation in the conversion vertex (which is impossible in vacuum). The leading order diagrams for this
process are shown in figure 13.2.1(left).

Other processes like Compton scattering of a photon on a freeelectron, and Raleigh scattering of a
photon on an atom are strongly suppressed with cross-sections orders of magnitudes below the pair
production cross-section [Leo87].

Within the energy reach of LHC, the cross-section for photonconversion is approximately constant:
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Figure 13.2.1:Left: Leading-order Feynman diagrams for photon conversions following from interaction with
a nucleus [ega08]. Right: Equation 13.2.3 (up till normalization factors). The dashed areas, corresponding to
24% of the total integral, illustrate the fraction of eventswhere one of the electrons haspe

T < 500 MeV for
Eγ

T = 5 GeV.

σ(γ→ e+e−) =
7A

9λ NA
, (13.2.1)

whereA is the atomic mass measured in g/mol andλ is the radiation length of the matter traversed by
the photon. Except for the very lightest gasses, the radiation length can be approximated by:

λ =
716.4 gcm−2A

Z(Z+1) ln(287
√

Z)
, (13.2.2)

whereZ is the atomic number. Although energy and momentum conservation is ensured due to the
interaction with the material, the electrons need not to share the photon energy equally as can be
inferred from the below differential cross-section with respect to the electron energy fractionx =
Ee−/Eγ [ega08]:

dσ
dx

=
A

λ NA

(

1− 4
3

x(1−x)

)

(13.2.3)

As expected, this expression is unchanged under charge conjugation - i.e. under interchange ofx and
(1−x). Since the electron energy fraction in a given event can takeany value between zero and one,
either one of the electrons is likely to fall below the minimal requirement of transverse momentum
pe

T & 500 MeV as defined by the tracking algorithms, even in cases ofwhere the converting photon
is considerably more energetic (see figure 13.2.1(right)).Thus the conversion reconstruction is not
entirely trivial. However, reconstruction algorithms cantake advantage of the facts, that the invariant
mass of the decaying particle should be vanishing and the reconstructed tracks should be parallel at
the vertex as required by momentum conservation (due to the zero invariant mass of the photon).

13.3 Motivations for studieng late conversions

As discussed below, finding conversions has multiple applications, but in addition to the actual usage
of the conversion vertices for analysis, it should be emphasized that the pure fact of tagging hits as
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Figure 13.3.1:Radial distribution of conversions at CDF. The various detector layers are easily distinguishable.
Source [CDF01].

originating from electrons due to a photon conversion reduces the uncertainty in the event and thus to
some extent ease the remaining of the event reconstruction.

It is clear that many conversions will occur in the dense silicon layers of the Pixel and SCT as well
as in service regions of these sub-detecotors. Due to the large amount of material in and around the
TRT (despite all efforts to reduce it), a significant percentage will convert within this volume. An
estimate of this is can be obtained from figure 9.1.8. This plot shows, that the TRT constitutes roughly
1
2 radiation length, implying that∼ 1

3 of the photons entering the TRT will convert within this volume.

Below it is studied to which extent one could gain knowledge of the position of e.g. the TRT barrel
shells from reconstructing the conversion vertexes. That indeed this should be possible is illustrated
by the CDF example in figure 13.3.1, where a radial resolutionof reconstructed vertexes of about
4 mm is obtained. As opposed to the in situ calibration of the momentum scale using leptons fromZ
decays for theW mass measurement of ATLAS (cf. Part II), CDF use conversions(in essence figure
13.3.1) andJ/ψ andϒ decays to correct the momemtum scale. The main reason for choosing this
approach is (presumably) the highly reducedZ statistics with respect to the ATLAS expectations.

Figure 13.3.2 shows the conversion radius in the Inner Detector according MC truth as observed in
a singe photon run withEγ

T = 5 GeV,η = 0 and vertex located at(x,y,z) = (0,0,550) mm (the dis-
placement from(0,0,0) mm is chosen to avoid the central non-active region of the innermost TRT
barrel straw-layers). In this figure, the SCT layers and TRT barrel shells can clearly be identified.
Note that the figure cannot be directly translated to a density map due to the dependence of the photon
conversion cross-section on the atomic number of the interacting material as described by equations
13.2.1 and 13.2.2. For such translation to be possible, the material composition of the various parts as
discriebed by the GeoModel most be taken into properly account.

In addition to the above use of reconstructed conversions tomap the detector material, there are appli-
cations which are more directly related to physics. Most notably is the Higgs decay into two photons,
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where atleast one of the highpT photons converts. Regardless of whether the decay photon(s) con-
vert or not, the corresponding electromagnetic cluster is reconstructed. However, in case the photon
is tagged as such, this information in itself provides a useful handle to be used by the clustering
algorithms.
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Figure 13.3.2:Conversion radius of photons from a single-photonEγ
T = 5 GeV run according to MC truth.

The high density SCT layers and TRT barrel module shells are clearly visible (cf. figure 3.2.3), whereas this par-
ticular single photon run configuration totally avoids the Pixel layers. The red histogram refers to the selection
discussed in section 13.4.3.

13.4 Late conversions and the TRT Conversion Finder

Reconstructing conversions is by no means a new exercise within ATLAS software. Numerous efforts
have been made, and for decay configurations with SCT and/or Pixel hits, existing software is able to
fit the vertex with a satisfactory precision [ega08]. The late conversions, taking place after the silicon
layers, constitute a special problem for standard fitters, since the information inz is limited in the
TRT barrel and similarly is the precision ofr in the end-caps. Figure 13.4.1 shows examples of radial
residuals obtained using existing fitters for different photon conversion configurations: Both tracks
have silicon hits, one of the tracks has silicon hits and the case where both tracks consist of TRT hits
only. Clearly the latter two lies outside the scope of the standards fitters calling for an specialized TRT
conversion fitter.
Below, the develupment of a fitter is described, and the resulting conversion finder tool is tested against
the latter catagory of events where both conversion tracks consist of TRT only hits.

The developed method is based upon kinematic fitting [Ave00,Ave08], where the knowledge of the
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Figure 13.4.1:Radial residuals for Kalman (left) and Chi2 (right) fitters for different inputs using single
photons atEγ = 20GeV. Figures are provided by T. Koffas.

physics governing the photon decay, is exploited to improvethe actual measurements. The implica-
tions of the physical laws are expressed in terms of constraint equations, and theχ2 minimization
proceeds by the use of a Lagrange multiplier principle [lgs08]. The method of Lagrange multipliers
has the advantage of being able to handle constraints (e.g.Mγ = 0), and in the case of vertex fitting,
the correlation between the participating tracks can be correctly included.
The minimization thus attempts to satisfy the constraints defined by the physical principles under the
limitations provided by the measurement precision - i.e. the covariance matrix is not to be violated by
changing measurements more than their uncertainty can account for.

One complication encountered by choosing this approach is,that the constraints are most easily ex-
pressed in position / momentum space rather than the perigeerepresentation usually used for tracking
within ATLAS reconstruction software. In order to resolve,a transformation between the two coordi-
nate spaces is required.

13.4.1 Coordinate transformations

The usual ATLAS perigee representation:β track = (φ,θ,d0,z0,
q
p) is substituted to the position/momentum

representation:α track = (px, py, pz,E,x,y,x) via the following relations:

px = sin(θ)cos(φ)/|q
p
|

py = sin(θ)sin(φ)/|q
p
|

pz = cos(θ)/|q
p
|

E =

√

(

q
p

)−2

+m2
e

x =−d0sin(φ)

y = d0cos(φ)

z= z0

(13.4.1)
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where the reference point of the perigee representation is assumed to be(0,0,0).

This set of variables is not mutually independent, but has the advantage that constraints can be ex-
pressed in a straightforward way.

Although principally trivial, the complexity of the algebra increases significantly when expressing
the covariance matrix in the position/momentum representation. For each entry(i, j) the covariance
matrix takes the form:

Cov(α track
i ,α track

j ) = ∑
k,l

(∂α track
i /∂β track

k )(∂α track
j /∂β track

l )Cov(β track
k ,β track

l ) (13.4.2)

13.4.2 Lagrange multipliers

The details of the fitting technique can be found in [Ave00, Ave08], for the present purposes it is
sufficient to state the general results, adopted to cover thespecial case of conversion fitting.

The parameters describing the tracks combined in a single column vector,α , of length 2×7 :

α T = (px,1, py,1, pz,1,E1,x1,y1,z1, px,2, py,2, pz,2,E2,x2,y2,z2) (13.4.3)

There are two constraints:

• The invariant mass of the decaying particle is zero. Equivalently: At the vertex, the two tracks
are parallel.

• At the points on the tracks, where the tracks are parallel, they should occupy the same point in
space.

This gives 2×3 constraints, since both constraints give rise to an equation for each spatial(/momentum)
dimension.

To apply the formalism, the constraints must be expressed inequations of the form:H(α ) = 0. Ex-
panding around an approximate solution,αA, yields the linearized equations:

0 = [∂H(αA)/∂α ](α −αA)+H(αA)≡Dδα +d (13.4.4)
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δα = α −αA (13.4.7)

By this, the equation to be minimized can be written:

χ2 = (α −α0)
TV−1

α0
(α −α0)+2λ T(Dδα +d), (13.4.8)

whereVα0 is the(14×14) covariance matrix, with ’0’ representing the result of the previous iteration.
At the minimum the following relations hold:

α = α0−Vα0D
Tλ

λ = VD(Dδα0 +d)

VD = (DVα0D
T)−1

Vα = Vα0−Vα0D
TVDDVα0

χ2 = λ TV−1
D λ

(13.4.9)

13.4.3 Implementation and preselection

The kinematic fitter, which is named TRT Conversion Finder, is merged into the standard ATLAS
conversion finding software, where it is used in case of TRT only track segments. Based on truth
information, the following preselection is performed: Each photon is required to convert within the
TRT, resulting in two reconstructed and oppositely chargedtracks, each withpe,truth

T > 500 MeV
non of which are subject to a bremsstrahlung loss above 10% ofthe track momentum according to
MC truth. The combined reconstruction and selection efficiency is illustrated in figure 13.3.2 as the
ratio between the histograms. Ultimately, the use of truth information must be abondoned, but for
the develupment of the algorithm, it provides a useful handle. Note in this respect that the particle
identification efforts from notably HT probability studiesas discussed on several occations in this
thesis, provide a useful information in the track preselection.

After successful vertex fitting, the resulting tracks and corresponding covariance matricies are trans-
lated back into perigee space, so that the conversion vertexand the updated tracks can be returned to
the standard ATLAS offline reconstruction framework. Note,that not only is the vertex found, but
also, are the tracks updated using the constraints, so that in principle, more accurate track-parameters
is a side-effect of the vertex fit. The extent to which the tracks are improved will be shown in the next
section (figure 13.4.2(a,c)).
The TRT Conversion Finder is presently being implemented tobe part of the standard conversion
reconstruction software of ATLAS.

13.4.4 Results and preliminary optimization

As starting point (α0) for the fitter is chosen the geometrical mean between the innermost hits on the
two tracks and the corresponding track-parameters. Figure13.4.2 shows the performance with respect
to pT and the opening angle,ψ, between the tracks at the vertex. As argued in section 13.2,this
angle should be vanishing from a theoretical point of view, and it is one of the quantities which the
fitter seeks to minimize, while subject to the constraints ofnot changing track-parameters more that
allowed by the covariance matrix.
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Figure 13.4.2:Performance with respect toψ(a) andpe
T (b,c) for theEγ

T = 5 GeV single photon run discussed
in the text (section 13.3). Black full histograms representthe starting point and red histograms show the results
after fitting, whereas the black dashed histogram in figure (b) represents MC truth.

For algorithm optimization, the performance of the algorithm with respect to the radial resolution,
rconv, depending on the number of iterations is shown in figure 13.4.3. Practically no dependence is
observed, and the default setting is for this reason set to 1 iteration only.
The energy dependence on the conversion finder performance is shown in figure 13.4.4 forEγ

T =
2 GeV andEγ

T = 10 GeV single photon runs. As would be expected from trackingperformance
considerations, the vertex resolution is significantly worse in theEγ

T = 2 GeV run with respect to the
Eγ

T = 10 GeV andEγ
T = 5 GeV runs (cf. figure 13.4.3).
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T = 5 GeV single photon

run discussed in the text.
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13.4.5 Full ATLAS events

To assess the performance of the develuped conversion finderin more realistic event topologies, the
fitter is tested ontt̄ events which are some of the most complicated events expected during ATLAS
operation. Figure 13.4.5 shows the corresponding performance of the TRT Conversion Finder. The
result shows no obvious signs of degrading. Note, that the integrals of the two histograms are similar
in the left-hand part of this figure, showing that the efficiency to reconstruct conversions is high. In
the right-hand side, the efficiency falls off as expected, due to the low number of hits on the tracks,
causing the tracking algorithms to fail the track reconstruction. It is emphasized that figure 13.4.5 is
merely an example, and further studies are needed to validate the fitter with respect to performance in
full ATLAS events.
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Figure 13.4.5:Reconstructed (red) and true (black) conversions as a function of rconv for tt̄ events.

13.5 Applications of the TRT Conversion Finder

13.5.1 Material mapping

In figure 13.5.1(left) is shown the results of a fit to about 15000 conversions of theEγ
T = 5 GeV

sample. The resolution obtained is about 4 mm. To make a sensible estimate of the expected precision
achievable in real data, by using the expected photon statistics shown in figure 13.1.1, one would need
to understand and remove the bias observed in figure 13.5.1(left). However, it is clear that once this is
understood and removed, the location of high density volumes in the TRT, such as module shells, can
be reconstructed to a high degree of accuracy.
By this, a number of ATLAS analyzes can indirecty benefit fromthe conversion finder, due to the
improvements in the description of the detector material itfacilitates. One example of this is the
W mass analysis which depends on accurate detector description to minimize the systematic error
inflicted by final state radiation. However, there are numerous other applications which depend on
precise material maps; for example to account accurately for multible scattering, or to estimate photon
background in various analyzes.
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Figure 13.5.1:Left: Fit to the radial conversion resolution of theEγ
T = 5 GeV sample using a Landau function.

Right: rconv resolution for aEγ
T = 60GeV single photon run.

13.5.2 Higgs search

In figure 13.5.1(right) the radial vertex resolution is shown for a 60 GeV single photon sample, gen-
erated using the same settings as theEγ

T = 5 GeV run, except for the increased energy.

This energy is chosen in order to assess the performance of the algorithm in the energy range relevant
for a Higgs search in theH → γγ channel. From the results, it seems plausible that the present
fitter will add to the mass resolution of Higgs signal in this decay channel, if for nothing else, then
simply due to the fact that the electrons are identified as such, and this is valuable information when
reconstructing the energy in the LAr calorimeter. However,it is emphasized that an in depth study is
needed to quantify this issue in detail.

13.6 Conclusion

A method for fitting conversions taking place within the TRT has been established. Although not final
in terms of understanding and correcting for the observed bias in therconv resolution, the results in
terms of mapping of non-active material are promising. Withrespect to the possible usage forH→ γγ
reconstruction, additional studies are needed to assess the impact of the conversion fitter on the mass
resolution.

With respect to material mapping capabilities, the initialperformance assessment presented is en-
couranging, suggesting that radial resolutions of about 4 mm of the conversion vertexes in the TRT
barrel should be achievable. Furthermore, improvements are likely to arise from outside, in terms of
improved tracking of low momenta electrons. As most photonsare expected to be produced with low
energy (π0→ γγ), and since the precision in geometry determination will bedominated by the statis-
tical error as determined by the number of photons and the track reconstruction efficiency, improving
low pT tracking would imply significant improvements in the geometry mapping capabilities of the
TRT Conversion Finder.

I order for the fitter to be usefull, even in the case where one electron is lost due to thepT requirement
in the tracking algorithms, the fitter is being updated to allow for single track conversions.
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Introduction to Part IV

On the verge of data taking, a number of issues emerge which need studying; some are mostly of
practical character, while others are more closely relatedto physics. This last part of the thesis de-
scribes work which has been done to ensure that the detector and the software is well-understood and
ready for LHC startup. Again, focus is put on the TRT sub-system which is where the author has
contributed, but important results from other sub-systemswill be summarized in chapter 18.

Commissioning of the TRT has been a continuous effort in several years. Without grasping too far
back in history, one can argue that commissioning started atin 2001-2005 where the modules and
wheels of the TRT barrel and end-caps arrived at CERN after production at US universities and Rus-
sia institutes respectively. Chapter 14 describes the initial tests and repairs performed at this stage,
focusing on the barrel modules.
Later on, in the summer of 2004, a subset of the barrel moduleswere placed in a test-beam delivered
by the SPS. The test-beam setup falls in two categories: The TRT stand-alone test-beam, from which
results are presented in chapter 16 originate, and the Combined Test Beam on which chapter 11 is
based. During the period: 2001-2005 the barrel and end-cap detectors were assembled (separately)
in a building called SR-1 close to the entrance of the ATLAS pit. In parts of this period a fraction
of the sub-detectors were equipped with read-out electronics, enabling them to record cosmic muons
passing through the detector. A selection of results from this running period is presented in chapter
18. In 2007 the barrel and end-cap detectors were lowered to the ATLAS cavern and assembled into
in the Inner Detector. Presently, increasing parts of the TRT and the other sub-detectors are equipped
with read-out electronics and connected to data acquisition system. Data is collected in series of ded-
icated running periods called M-runs (i.e. M1, M2,...). Results from the M runs are reported, partly
in chapter in chapter 17, but mainly in chapter 18 along with adescription of the simulation setup
developed to resemble interactions of cosmic muons.



Chapter 14

Acceptance testing of barrel modules

Once the TRT barrel modules and end-cap wheels arrive at CERNthey are subject to a number of tests
to ensure performance and detector safety1. Problems due to improper construction or shipment are
repaired if possible or, if necessary, concealed, in order not to affect other detector parts or interfere
with the running of the experiment.

14.1 TRT Barrel acceptance tests

Before a barrel module is approved for installation in ATLASit must pass the following tests:

• Dimension: The geometry and weight of each module is measured and crosschecked against
specifications.

• Wire tension:By the means of a tone generator each wire is set into oscillations, and the wire
tension inferred from the resonance spectrum. Wires outside a specified wire tension range (in
gram equivalents: [47-100] g) are removed and re-strung. See figure 14.1.1(left) for an example.

• Gas Leak Test:Gas is flushed through the modules, while the amount flowing inand out each
module is closely monitored. Modules with abnormal leak (> 0.1 mbar

bar·min) are examined in detail
to locate and repair leaks.

• Gain Mapping:Using an X-ray probe, the gain of each wire is monitored alongthe wire length,
see figure 14.1.1(right). In case of bend straws, the electric field in the wire is asymmetric and
thus non-optimal for charge collection. Such straws, whichhave low gains, are repaired when
possible.

• High voltage tests:High voltage is applied to each wire, to ensure electrical stability and that
the current leakage is sufficiently low.

The high voltage tests are described in detail below, whereas more information on the other tests can
be found in [TRT08b].

1For example: A module with an abnormal power consumption is potentially dangerous, since the module would heat
up and thus risk damaging neighboring sub-systems which must be operated under cool conditions.



144 Acceptance testing of barrel modules

Figure 14.1.1:Left: Wire tension in gram equivalents. Right: Gain map for front side (channels corresponding
to one end of the straws) - summary of results from scans alongthe length of the individual straws. Both plots
are based on tests of module 1.1. Source [Gag05].

14.2 High voltage tests

The objective of the high voltage tests is to study any anomalous behavior of modules when subject
to high voltage. Of particular relevance is to locate and repair current leaks. The reason for its
importance, is that in case substantial leakage would buildup while ATLAS is operating, the power
consumption might exceed its specifications and the responsible sub-system must be shot down for
detector safety reasons. In the TRT, this proceeds by burning the relevant fuse, but unfortunately
fuses are installed only at an eight straw granularity, so incase a current leakage builds up during the
operation of the experiment, one would have to take out eightneighboring straws, hereby creating a
dead region in the detector.

In order to stress test the modules and to provoke problems tooccur on a short timescale, the applied
voltage between the anode wire and the straw is−1575 V which exceeds the expected nominal value
of about−1480 V. While subject to high voltage, ArCO2 is flushed through the straws (and CO2 is
flushed through the radiator) and the leakage current is monitored (see figure 14.2.1(left)). In case
the leakage exceeds 2µA the module is said totrip and an investigation is launched to find the exact
location of the problem. Most trips are caused by electrically unstable anode wires, but occasionally
a high voltage supply is the source (determined from the signof the coherent voltage sack). Since
the high voltage is supplied from a number of monitored connections, it is trivial to locate which high
voltage connection, called high voltage pad (see figure 14.2.1(right)), a given trip occurred - except
for ambiguities caused by the fact that the measurement equipment did not allow to monitor all pads
individually, but only group-wise. In case of only one (or a few) tripping wire(s) the responsible
pad(s) can be identified rather straightforwardly by redistributing the connections in the monitored
groups and await the occurrence of another trip. Following this, probes are put on the individual wires
to find which of the≈ 8 2 wires on the pad causes tripping. Once located, the module issent the
re-work, where the tripping wire(s) is repaired or removed and the high voltage test continues. For
reasons unknown, some modules were dirty inside upon arriving at the test station. When subject
to high voltage, the foreign objects caused electrical connections between the anode wire and the
straw, resulting in frequent high voltage trips. It was found that a successful method for cleaning such
modules is to apply the opposite voltage, causing electronsto move toward the straw tube and in the
process burning electrical bridges between wires and straws, hereby drastically reducing the trip rate.

2Some pads have only 7 straws connected - see figure 14.2.1(right).
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Figure 14.2.1:Left: High voltage test station showing the monitored high voltage connections. Right: Layout
of the high voltage connections of a type 1 barrel module. Theindividual pads connecting∼ 8 straws are shown
in red. Also visible are the gas connections (lower left and upper right corner ).

Once the trip rate is sufficiently low, the modules are long term tested (∼ 4 weeks) without monitoring
individual pads. In case the trip rate exceeds specifications (∼ 1 per day per module, where a trip
corresponds to a current above 20µA in at least 5 s), the module is returned to the high voltage test
station and the above scenario is repeated.

Apart from locating current leaks and shortened wires, it istested whether shell, high voltage plate or
tension plate is shortened (cf. figure 3.2.4). On a number of occasions, such problems were found and
repaired.

When a given module has successfully passed all the tests listed in section 14.1, it is reviewed. Prob-
lematic modules which have, e.g. manydeadstraws, non-constant high voltage behavior etc. can be
marked “spare” and are to be used only in test-beam, or in caseanother module breaks down. Ap-
proved modules are moved to the assembly hall where they are mounted in the TRT support structure.
Care is taking when distributing the modules in the TRT support rack, in order not place modules
which have many dead straws in the sameφ section.

A summary of the results in terms of dead channels can be foundin table 14.2.1.

All test results are written to a database, where each moduleis given a “passport” in which all results,
comments etc. for the specific module is stored for future reference [Gag05].

Problem Fraction [%]

Dead at arrival 19.7
HV problems 28.6
Gain mapping 4.8
Bent straws 44.9
Broken sockets 1.8
Tension 0.3

Table 14.2.1:Breakdown of the causes for dead straws. In total 1031 straws, corresponding to 2% of all barrel
channels are listed as dead, whereas 1055 straws were successfully repaired.

The end-cap wheels were subject to a similar series of tests [Cwe06]. Altogether 1354 end-cap straws
are declared dead corresponding to less than 4h.



Chapter 15

TRT Conditions and Calibration tools

In order to make optimal use of the TRT detector, it is important that the status of the individual
channels is known at all times - i.e. which detector parts arefunctioning? (is a given channel dead?),
and how are they functioning? (is a given channel noisy? Whatis its r − t relationship? etc.). This
chapter describes the development of software necessary toanswer these and other questions, once
the experiment goes into operation.

15.1 TRT Conditions
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Figure 15.1.1:Occupancy (left) and dead straws (right) ofφ sector 10, negative end-cap wheel 13.

Figure 15.1.1 shows an example of two maps of the same end-capwheel in the sameφ sector. The
left-hand plot shows the occupancy in a M4 run, whereas the right-hand plot shows the channels
which are declared dead (for example due to failing acceptance tests as described in the previous
chapter). Clearly there is a correlation between the channels of zero occupancy and the dead channels,
illustrating that the conversion from the hardware numbering scheme to the one used in the offline



15.1 TRT Conditions 147

software is correct. However, one channel which is declareddead has a nonzero noise level1. In
fact, this is normal behavior of dead channels, and it occurseven when the wire is removed, which is
standard procedure when a channel is declared dead. The explanation comes from the fact, that even in
the case where the anode wire is removed, a voltage is appliedto the straw tube and since the individual
channel socket is not removed, a shortened or electrically unstable straw tube can give rise to a signal.
In chapter 17 it is shown, that there is an enhanced probability that noise signals occur in the vicinity
of a trajectory of a particle. For this reason, it is important to reject such noise signals in order not
to introduce a bias to the passing track due to a fake measurement. To cope with this requirement,
a tool (TRT StrawStatusSummaryTool), is written enabling to mask out dead channels in the offline
reconstruction software. The tool can be used on a channel tochannel basis, by means of the so called
identifier - a unique label assigned to each straw. In data (i.e. cosmics so far) this tool can be invoked
at the creation each of TRT measurement (called a TRT driftcircle2), so that measurements originating
from dead straws are not created. Likewise, the tool is used in the simulation at the digitization stage
in order for MC to resemble data with respect to the dead strawfraction and distribution. Needless
to say, performance is of utmost importance for this tool, explaining why the choice of data container
fell on the nested container of so called expanded identifiers (aC++ structure), in which the data can
be retrieved by direct access, hereby avoiding a potentially time consuming search.

During ATLAS operation, the number of dead straws is expected to increase - if for nothing else,
then simply due to the fact that the fuses have a limited lifetime3. Apart from an increasing dead
straw fraction, it plausible that groups of straws are temporarily non-functioning due to for example
high voltage or read-out problems. The latter underlines the fact, that the dead straw map is indeed
a conditions quantity and therefore, the tool is initialized by a folder in the Conditions Database
holding the information of dead straws, based on a review of the passports of the all modules and
wheels as discussed in chapter 14. In case of temporary problems, the dead straw list in memory (i.e.
the one based on the Conditions Database folder) is easily enlarged for a given run, based on user
requirements.

An example of the usage of the tool, is from the M runs where increasing parts of the detector was
connected to data stream. Simple calls to the tool allow in the simulation to switch off relevant parts
of the detector in the software chain as shown in figure 15.1.2.

In order to take advantage of the software setup, the tool functionality is expanded to foresee additional
usage. In particular, the fundamental data-word in which itis stored whether or not a given straw is
dead, is enlarged in such a way that it is capable of holding information on:

• LT occupancy level. For low luminosity, this approximately equals the noise level of individual
straws, but has the advantage that it can be set for each run from the on-line monitoring - i.e.
before the track reconstruction, making it usable at that stage.

• HT occupancy level. In case of severe problems with a straw or read-out electronics, this could
differ significantly from zero (discussed in section 16.2.2, in particular figure 16.2.5). As the
LT occupancy, the HT occupancy is set in each run by the on-line monitoring.

1Also, there is a channel with zero occupancy which is not declared dead. This can be due either to an abnormal low
noise level, simply that the channel is dead, but not (yet) declared so.

2In the initial processing, before the track reconstruction, it is not known at which side of a given straw a given track
passed. What is known, is the time at which a signal occurred and from that a corresponding drift-radius is calculated.
Therefore the objects are named driftcircles.

3An assessment by L. Rossi showed, that only one in 15000 fusesbroke during one year [Ros06]. The rate at which
fuses break down is expected to increase during detector operation.
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Figure 15.1.2:Example of the usage of the TRT StrawStatusSummaryTool. Detector parts which are not read
out (i.e. the dark noise-free area) is masked using the TRT StrawStatusSummaryTool in a simulated cosmic
event.

• Particle identification flag. Set by the reconstruction.

• Tracking flag. Set by the reconstruction.

In order to reduce memory usage, the information is encoded in the individual bits of a 16-bit data-
word as shown in figure 15.1.3.

Figure 15.1.3:Data-word used in the TRT StrawStatusSummaryTool.

7 bits are used to store the LT occupancy,OLT , and 6 bits are used for the HT occupancy,OHT . Most
straws are expected to have LT noise levelsO (1%) (cf. chapter 16). As an example of this, consider
figure 15.1.1 which is based on 10092 events, the individual straw occupancy ranging[0;1]%. For this
reason it is advantagerous to use dynamical binning. The following binning is chosen:

• 6 equal size bins forOLT ∈ [0,5]%

• 1 bin for OLT ∈ [5,100]%

• 6 equal size bins forOHT ∈ [0,100]%

Since the occupancy information is to be filled already by theon-line monitoring, the information is
available at the stage where the reconstruction algorithmsenter the software chain, and thus noisy or
problematic straws can here be rejected by a simple cut.
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15.2 TRT Calibration

Related to the map of dead and noisy straws, is the mapping of the individual straw to its various
hardware groupings. For a number of applications, it is useful to know to which high voltage connec-
tion or read-out electronics chip a given straw belongs. Equally important is the knowledge of which
other straws belong to the same grouping. To facilitate thisneed, a tool (TRT StrawNeighbourTool)
has been developed, which maps barrel and end-cap channels according to:

• DTMROC read-out chip, connecting 16 straws (some have only15 straws).

• High voltage connection, connecting 8 straws (some have only 7 straws).

• Electronics board, connecting∼ 16 straws (some have only 15 straws).

As the TRT StrawStatusSummaryTool, the TRT StrawNeighbourTool uses expanded identifier tech-
nology for direct access. Both tools are public available within the ATLAS software repository and
are used throughout the community.

An example of the usage of the TRT StrawNeighbourTool is within the framework of the TRT cali-
bration. Based on large track samples, the TRT calibration is responsible thatt0’s andr− t’s relations
are up to date and adequate for each straw at all times. Duringthe running of the experiment, it can
be required to calibrate the TRT more often than the track statistics allows. With the tool developed,
one can take advantage of the fact that straws belonging to the same chip are expected to have roughly
equalt0, since a reasonable assumption would be, that the individual t0 can differ only between chips,
and if the length of the read-out wires differ (and they do). This implies, that straws belonging to
the same chip, are expected to have approximately the samet0, whereas there could be significant
variations between chips. The same is not necessarily true for ther− t relation, since for instance a
bend straw is expected to have differentr− t relation than a straight straw. On the other hand:r− t
relations are presumably more stable than thet0 offsets and therefore it is expected for the defaultr− t
calibration to use module-level granularity, supplemented by time independent channel to channel
variations (taking into account e.g. bend straws). In orderto test the validity of the assumption, figure
15.2.1 shows two examples of chip-wiset0. The results are as expected: The variation between chips
(i.e. the mean values of the histograms in figure 15.2.1) is much larger (up to 4 ns) than the variation
within chips (RMS< 1 ns).
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Figure 15.2.1:t0 distributions for straws belonging to two different chips.

Calibratingt0 per chip rather than per straw would, in the limit of infinite statistics, make the resolution
worse by no more than maximum:∼ 50 µm(= RMS· vdri f t ≈ 1 ns·50 µm/ns). Here it is assumed,
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that the variations int0 seen in figure 15.2.1 are due to real physical differences - i.e. the individual
straws are assumed to be perfectly calibrated which of course is an idealization. In the realistic case,
t0 is subject to uncertainty which could very well explain the spread observed in figure 15.2.1. In
this case, the chip based method works equally well as the straw based calibration, even in the high
statistics limit. In the converse case, where that statistics is limited, the gain in statistical uncertainty
by using a chip-based approach is simply

√

Nstraws prchip≈ 4. Here it is assumed that variations int0 -
i.e. the spread in figure 15.2.1 is due purely to statistical representations ofonetruet0. In the converse
case, wheret0 differs between straws belonging to the same chip, a systematic error of < 50 µm is
introduced using the chip-wiset0 determination.

The chip-wise calibration is implemented as one of the default calibration schemes of the TRT. In
addition, a similar approach exist, based on the board grouping rather than chip grouping. Additional
examples of the usage of the TRT StrawNeighbourTool are presented in chapter 17.



Chapter 16

A study of TRT noise in 2004 stand-alone
Test Beam data

In this chapter noise in the TRT is analyzed using data from selected runs from the June 2004 TRT
stand-alone test-beam. A procedure which reliably extracts noise hits is presented and the main fea-
tures of those are examined. Finally, channel to channel correlations in noise levels are examined and
the distribution of dead channels is compared results from the acceptance tests described in chapter
14. This chapter is based on [KK06] which is written in collaboration with T. Kittelmann.

16.1 Introduction

Even though the noise level in the TRT is known to be quite low,O (1%), noise is still a relevant
effect and as such ought to be both simulated along with the rest of the electronics response in the
digitization phase as well as accounted for in reconstruction algorithms.

The purpose of the present study is to provide a basis for suchan inclusion in the simulation algorithms
by analyzing data from the 2004 TRT standalone test-beam [LR04]. It is demonstrated in section 16.2
how genuine noise hits are reliably extracted from the test-beam data and the general characteristics
of those are shown. Finally in section 16.3 correlations between noise levels in different channels are
investigated.

16.2 2004 Test Beam data

In July 2004 6 functional and tested TRT barrel modules, corresponding to 2 out of 32 phi sectors,
were placed at CERN Prévessin at the end of a test-beam delivered by the SPS. Using various targets
and magnet field selectors, beams of either pions, electronsor muons were delivered.

As explained in chapter 11, this was the first test-beam with the front-end electronics (including the
ASDBLR chips) essentially of the final design, while the readout chain and data acquisition system
were final prototypes, very similar to the ones that will be used in ATLAS.

In figure 16.2.1(a) the setup is shown, with the beam enteringfrom the left. Before and after passing
the TRT barrel the beam goes through various detectors with abilities to do high quality particle
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Figure 16.2.1:Basic setup of the 2004 TRT standalone test-beam (a), and example pion event from run 3183
(b). Hits with a high threshold bit set are shown in red.

Run number Beam Energy Electrons Number of events
3183 80 GeV no 90K
3240 20 GeV yes 60K
3241 20 GeV yes 80K

Table 16.2.1:Beam types and number of events for the three runs of data taking used in this section. All of
the runs were taken using low threshold values of approximately 300 eV, high threshold values around 7 keV
and with the beam passing at “position 9” – the meaning of which can be inferred from figure 16.2.1(b). Note
that the beams were not pure electron or pion beams in the strict sense, but contaminated to some extent – see
figure 16.2.2.

identification, tracking and shower vetoing: ǍCerenkov detector (Ch1), beam chambers (BC1-2) and
silicon microstrip detectors (Si1-2). After the TRT the beam enters a multiplicity counter (M) and a
lead-glass calorimeter. In the offline analysis, the multiplicity counter was used to reject events with
multiple particles while the beam counter drift-chambers were used to seed the tracking algorithms
– working dominantly on the high precision silicon measurements. The details of the setup and its
performance are described in more details in e.g. [Tik04].

The setup thus provides events where the identity of the passing particle is well known and with good
external knowledge of the parameters of the passing track, thus making them suitable for detailed
studies of detector performance.

For the present noise studies the type of beam should in principle not matter, but for crosschecking
purposes three runs with different beam compositions and energies are selected as summarized in
table 16.2.1 and table 16.2.2.

16.2.1 Initial selection of noise hits

The goal of present study is to understand the rate and composition of the noise digits, i.e. the digits
in figure 16.2.1(b) whose appearance are clearly not due to the passing track. Since the number of
such noise digits over an entire run is rather high, quite safe cuts can be afforded.
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Figure 16.2.2:Beam compositions for the three investigated runs. The electron and pion identification was
performed using external detectors and the remaining impurities are thought to be at a negligible level. The
central column markedmixedsimply refers to the events that were not identified as eitherelectrons or pions
under the given cuts.
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Figure 16.2.3:Illustration of the cut used to disregard digits from strawstoo close to the track.

The first and primary cut is to only consider digits originating from straws with wires located at a cer-
tain minimum distance away from the passing track. In addition to removing hits on the reconstructed
track this cut must also ensure a high rejection of digits caused by secondary particles and “crosstalk”
– i.e. wire currents induced through conductive couplings to a genuine large current in a neighboring
wire. Finally some events will have more than one beam particle, and since the typical vertical spread
of the beam was around 3 cm, the cut must be much larger than this. The final value is found by
looking at the actual distribution of the distance between the wires of the digits and the reconstructed
track as shown in figure 16.2.3. A cut of 8 cm is chosen as the tails from the track peak at zero seems
negligible after this distance.

Another way to ensure that the single track in the event is indeed single and well reconstructed, is to
require the number of hits on the track not to be too deviant from the expected number. As indicated
by the grayed out regions in figure 16.2.4 the reconstructed track is required to have at least 33 and
a maximum of 43 hits on track. In particular the distributionin the 80 GeV pion run exhibits a small
secondary peak around 48 which is probably due to multiple beam particles, and something the chosen
cut avoids.

In addition one should note that some digits have already been disregarded by the requirement that
it should be possible to identify at least one leading edge inthe LT bit pattern. This simply means
that bit patterns where the first LT bit is already on, e.g.111111000000000000000000 are discarded
as they do not allow one to identify the leading edge time since it could have occurred before the
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Figure 16.2.4:Distribution of number of hits that are classified as being “on track”. The utilized cuts are
indicated in gray.

considered 75 ns interval. The exception to the rule is wherea second leading edge is present like in111100000001111110000000.

Finally, straws with a noise level higher than 15% (corresponding to a noise frequency of 0.15/75 ns=
2 MHz) have been masked out. This is reasonable since such noisy channels will certainly be masked
out in the final setup of the detector in ATLAS.

16.2.2 Removal of hits in abnormal straws

The vast majority of noise digits are thought somehow to originate from Gaussian fluctuations in
thresholds and potentials in the various channels, occasionally exceeding the low threshold and pro-
ducing said noise. However, looking at the data one notices afew noise digits that clearly have another
origin. This could for instance be digits such as,0 01111111 0 11111111 0 11111111 [a]1 00000000 1 00000000 1 00000000 [b]0 00000001 1 00000000 0 00000000 [c]

Here digit [a] is from a straw where the LT is almost always exceeded indicating a major problem in
that particular straw or front-end electronics. Such a straw will probably be masked in any case in the
long run. Digit [b] shows a similar structure but here the problem is in the high threshold. Finally digit
[c] shows an otherwise innocent noise digit with a high threshold in the second 25 ns time-slice where
somewhat mysteriously the low threshold was never exceeded. A possible explanation is that the noise
digit was in reality0 00000011 0 00000000 0 00000000, but that the readout driver (ROD) was
somehow off by one bit – a problem known to have occurred occasionally.

While these problems are real and present in the test-beam data, there is no reason to believe that
they will be sufficiently similar to the ones encountered in the full ATLAS running to make a detailed
study sensible. Furthermore they represent a relatively small fraction of the total number of noise hits.
For these reasons the present studies will only try to understand and model the intrinsic noise of the
apparatus and will not deal with these kinds of noise. Therefore an attempt will be done to exclude
straws producing such “abnormal” digits.

In the following it will therefore be described how straws producing abnormal digits can be identified
and removed based on a statistical analysis of the digits they produce. To be meaningful this of course
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Figure 16.2.5:Average high threshold fractions straw by straw. Around 10 straws even had an observed HT
fraction of exactly 1.0, but they are outside the scale.

requires a minimum number of digits from each straw, and noise hits originating from straws from
which there are accumulated less than a total of 20 hits are therefore a priori ignored. This of course
systematically throws away noise hits from the least noisy straws, but the alternative is to keep a few
straws around with e.g. quite abnormal electronics. Given the low number of hits from these straws,
neither choice is likely to affect our conclusions, as long as the overall noise level is not taken too
literally. For simplicity the plots shown in this section will all be based on the 20 GeV electron run,
although all runs have of course been examined.

The first thing to do is to consider, on a straw-to-straw basis, the fraction of noise hits having at least
one high threshold bit turned on. The high threshold is typically much higher than the low threshold
(e.g. 7 keV versus 0.3 keV) and the frequency with which the low threshold is being exceeded by
noise is low (O (1%)). This means, given the naïve expectation of noise being generated by Gaussian
fluctuations in electronics voltages and thresholds, that it is very unlikely that high thresholds will
appear in noise hits, apart from those really caused by abnormal electronics and possibly stray tracks.

In figure 16.2.5(a) the average high threshold fraction is shown for each of the remaining relevant
straws. It is clear that not all straws give noise hits with negligible HT fractions, and that there is
some structure caused by systematic differences between the straws and their electronics (although
the straw numbering is somewhat arbitrary, it is still such that straws with numbers close to each other
are usually placed close to each other in the detector). In figure 16.2.5(b) the distribution of those
same fractions is shown. As expected there is a huge peak around zero with a tail toward higher
values which could be due to secondaries. However at values around 0.4 there is again a peak, which
is hard to interpret as anything else than straws with some sort of abnormal behavior. One might be
tempted to put in an aggressive cut just around the peak at zero, on the other hand, one could fear that
such a cut would simply remove a genuine “non-abnormal” effect (“throwing the baby out with the
bathwater”). Consequently it is chosen to place the cut justbefore the peak, eliminating any straw with
an average HT fraction above 0.028. Not surprisingly this gets rid of almost all of straws producing
digits consisting almost entirely of 1’s (which really is a sign of seriously flawed electronics).

Another indication that a straw is “abnormal” is if it often produces noise digits with a relatively large
number of LT bits set. In figure 16.2.6(a) is shown the distribution of the average number of set LT bits
in the selected noise digits for each straw. The gray regionsshow how the straws with a HT fraction
higher than respectively 6% and 2.8% are distributed. It shows that there is clear correlation between
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Figure 16.2.6:Average number of low threshold bits that are set for each straw. Note that 24 set LT bits is
impossible due to the requirement of a leading edge as discussed in the text. In (a) the distributions of straws
with a high HT content are also indicated. In (b), only the straws with HT fraction < 0.028 are shown.
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Figure 16.2.7:Observed noise levels versus straw number (a) and the distribution of those numbers (b).

straws with a relatively large number of LT bits set and straws with a large HT fraction. This supports
the claim that the source of noise in these straws is somehow “abnormal”, if not simply contamination
due to remaining real passing particles. Based on this knowledge, straws with an average of more than
3.0 set LT bits are discarded.

Finally the distribution of noise levels of the individual remaining straws is shown in figure 16.2.7.
Note that the removal of straws with less than 20 hits earlierhas removed entries at the lowest values.

16.2.3 Noise digit features

Having thus selected a number of noise digits, and excluded contributions from “abnormal” sources,
features of the noise can be extracted. Regardless of the considered feature, its distribution ought to
be independent of beam type and run.

First one can gain an insight into the time structure of the noise by plotting the mean occupancy of
the 24 LT bits in noise digits as is done in figure 16.2.8. If there were indeed no time structure to the
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Figure 16.2.8:Solid histograms show the observed mean low threshold bit occupancy in selected noise digits
for the three different runs. The dashed histograms show thecontribution from digits with a high threshold –
scaled up by a factor of 10 for better visibility.

noise one would expect a totally flat distribution, but this is obviously not what is seen. First of all
there is a large dip in the early bins, but that is easily understood as an artificial effect caused by the
requirement of a leading edge as discussed in section 16.2.1.

Apart from the dip, there does seem to be some sort of plateau around 8-10% with a 8 bit (25 ns)
periodic structure on top of it. This should not be too surprising since the front-end electronics is
influenced by an externally driven 25 ns clock cycle. Also shown in the figure is the contribution
which is due to digits with a HT. First of all the very low number of HT digits means that their
contribution is too small to be of significance. Secondly it is clear that they have a different and
in-time shape, not too different (if a little broader) from that of beam particles. This could support
the hypothesis that the noise digits with HT content are due somehow to stray beam particles or
secondaries.

Perhaps the most striking feature of figure 16.2.8 is how robust the distributions seem to be across the
three runs, which underlines the consistency of the entire procedure. Furthermore, it shows the sta-
bility of the detector conditions which means that e.g. reconstruction and digitization can in principle
reliably use appropriate calibration data to improve performance.

Figure 16.2.9 shows another extracted quantity, namely thedistribution of the number of set low
threshold bits. Figure 16.2.9(a) shows that, in the selected noise digits, about 99% of the entries have
4 bits or less set, and the three runs agree completely regarding the distribution in those bins. Looking
at the distribution for digits with a HT bit, it once more seems to agree with the hypothesis that there
is a small and negligible contamination of stray particles and secondaries, thus explaining the present
tail. If instead, for instance, the presence of set HT bits were caused by ROD off-by-one problems,
one would expect the distribution of digits with HT to followthe overall distribution, apart from being
shifted left by one.

The mean of the distribution corresponds to an average time above threshold around 1.96·3.125 ns≈
6 ns, which is quite low compared to the time over threshold due to pulses from traversing particles
that are usually around 15-35 ns, as shown in figure 16.2.9(b). This is certainly a feature that could be
used for reducing the impact of noise at just a small cost in tracking efficiency.
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Figure 16.2.9:The solid histograms in (a) show the distribution of the number of low threshold bits set in the
selected noise digits, with the hashed histograms showing the small contribution of digits with a HT. In (b) the
same distribution is shown for on-track digits.
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Figure 16.2.10:Distributions of the number of LT bit “islands” (or “trains”) in the selected noise digits.
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Finally, figure 16.2.10 shows the distribution of the relative fractions of number of LT bit “islands”
(also known as “trains”). An island is simply a group of set LTbits surrounded by unset bits
(000000011000100000000000 thus contains two islands while001110000000000000000000 con-
tains only one). One notices that the relative suppression of the fraction of 2-island digits compared
to 1-island digits is roughly equal to the one between 3 vs. 2 islands and 4 vs. 3 islands respectively,
and that the suppression is comparable to the overall noise level of around 2%. This shows that the
appearance of noise at different times happens independently.

16.3 Channel to channel correlations in noise levels

The distributions studied in the previous sections have allbeen based on the entire pool of (usable)
channels. For a more complete understanding it is also necessary to study the channel to channel
correlations caused by their various mechanical and electrical groupings. Channels are connected to
different high voltage supplies, belong to different chipsand are connected to wires in different barrel
modules. More detailed, the obvious relevant groupings are:

• Groups of eight neighboring wires are connected to the sameASDBLR chip, responsible for the
analog treatment and digitization of the potential fluctuations in the wires. The threshold values
can not be tuned independently for each channel, but only overall for each ASDBLR chip.

• Two ASDBLR chips are connected to a DTMROC, responsible forcollecting and, given a level
1 trigger, reading out the digitized results from the ASDBLRchips to the ROD’s as well as
keeping the clock synchronized with the overall ATLAS clockthrough interaction with the
TTC (Trigger Timing Control) boards.

• Groups of∼8 wires share a single high voltage connection and are denoted as “HV pad’s”.
Note that the high voltage is supplied to the straw tube whichthen supplies high voltage to the
two channels within the given straw - i.e. each straw end.

• Several hundreds of straws and corresponding electronicsare mechanically assembled into three
types of barrel modules. Such barrel modules contain either329, 520 or 793 straws and are
accordingly denoted as type I, II or III (with type I modules closest to the beam axis)1.

In the next sections (and in the next chapter), correlationsand non-uniformities in the straw noise
levels will be investigated at several levels. First the module to module differences will be discussed
in section 16.3.1. Next, in section 16.3.2, it is investigated how the straw noise levels are correlated
with their groupings into sets of∼8 wires connected to the same HV pad. Finally the distribution
of straw noise levels within each HV pad is examined in section 16.3.3, and in section 16.3.4 it is
checked whether noise in one channel could give rise to noisein neighboring channels. A study of the
noise correlations on the chip level will await the next chapter.

For the analysis here, several runs of test-beam data were used in addition to the three considered in
section 16.2. This was done because the beam position (cf. figure 16.2.1(b)) was the same in all of
the three runs considered so far, meaning that a large group of straws was excluded in every event

1While end-cap elements were not present in the test-beam it should be noted that the situation for those is not entirely
the same, as each mechanical grouping of straws (into “wheels”) contains a much larger number of straws and many more
electronics boards.
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Figure 16.3.1:Straws illuminated by the beam (i.e. containing on-track hits) in any of the runs considered for
the channel to channel noise level variation studies.

solely by the distance to track cut. The inclusion of other runs with different beam positions alleviates
this problem and allows for a more detailed understanding ofthe noise, but of course care should be
taken not to add samples which differ significantly in some way or another. A number of crosschecks
showed no major deviations between the runs, and the addition of different runs is considered safe.
The difference in beam positions for all of the considered runs is illustrated by the beam illumination
map shown in figure 16.3.1. Finally the studies are complicated by the fact that some channels are
excluded by the quality cuts discussed in section 16.2.2. This means in particular that not all HV pads
will contain data from all its channels, but rather some subset instead. Care must therefore be taken
to ensure that artifacts from this varying number of channels in each grouping are not mistaken from
genuine statistical effects.

16.3.1 Module to module variations

In the full ATLAS setup there will be installed 96 barrel modules, whereas only 6 modules were
present in the 2004 test-beam setup. Furthermore the modules used for the test-beam were, each in its
own way, classified as “abnormal” based on the results from tests described in the chapter 14.

In table 16.3.1 is shown the mean of the individual channel noise levels in each of the six modules. It
is clear that there are significant module to module differences which is perhaps not very surprising
considering that the six modules for various reasons are labeled asrejectedor sparebased on results
from the barrel test station. Also, one should note that the low thresholds in the test-beam setup
were set to the same value across all ASDBLR chips, whereas the plan for the configuration in the
final ATLAS setup is to adjust the threshold for each chip suchthat the noise level averaged over its
eight channels will be fixed at e.g. 2.25%2. This future configuration scheme will obviously limit

2Corresponding to a noise frequency of 300 kHz.
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Module Type
I II III

Upper Sector 1.6% 0.5% 1.9%
Lower Sector 0.3% 0.3% 0.3%

Table 16.3.1:Mean noise levels of the individual channels within each of the six modules.

the module to module variations in noise levels considerably, but the variation will then instead occur
in the effective channel to channel low threshold. Despite the module to module variations, the data
from all of the six test-beam modules is still useful for studying other channel to channel variations as
will be done in the following sections.

16.3.2 The HV pad level

In order to investigate whether straw noise levels are significantly correlated with their groupings into
pads, the distribution of the normalized mean noise levels of the pads, i.e. the mean of the noise levels
of the (usable) straws within each pad, is normalized to the mean straw noise level of the containing
module, as shown in figure 16.3.2(a). As one of the straw quality cuts (explained in section 16.2) is
a requirement of a minimum number of noise hits, one might worry that errors are introduced when
perfectly well-functioning straws with extremely low noise levels are discarded. As a cross check,
two different distributions are shown in figure 16.3.2(a): One where only the straws considered for
the pad noise studies are used to calculate the mean value, and one where in addition all the remaining
straws are used with an assumed noise level of 0%. Apart from an expected enhancement in the first
bin, the two methods seem to give compatible results. One should also note that the mean values
of the distributions in figure 16.3.2(a) are not equal to 1 as one might expect, since the straw noise
levels have been normalized to the average straw noise levels of the containing modules. This is not
so surprising however, as the different pads do not contain the same number of (usable) straws, so the
individual straws will contribute to the mean with a different weight depending on which pad they
belong to. Hypothesizing that straws with a high noise levelwill more often belong to pads where all
straws are used than those with low noise level, one would indeed expect a mean value lower than 1.

It is difficult, however, to tell directly from the distributions in figure 16.3.2(a) whether they indicate
a significant correlation between straw noise level and pad groupings. In order to test this further, a
similar distribution is made in figure 16.3.2(b), but this time using randomized straw to pad groupings
instead of the actual ones. It is indeed seen that the mean value of the distribution approaches one,
while the root-mean-square of the distribution decreases,which is exactly what one would expect
to happen when the pad groupings are randomized, effectively making the pads more similar on
average. To test the significance of the results, the mean value and root-mean-square the distributions
for a hundred different randomized pad groupings are shown in figure 16.3.3. They show with high
significance that a random pad grouping could never reproduce the distributions in figure 16.3.2(a).

16.3.3 The straw level

In figure 16.3.4 is shown the distribution of noise in straws normalized to the average noise in the pad
to which the straw belongs. The distribution is peaked around unity with most entries within[0.4;1.5],
which shows that the noise level of most straws is approximately the noise level of their corresponding
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Figure 16.3.2:In (a) is shown the distribution of the mean straw noise levelwithin each pad, normalized to
the average noise level of the containing module. Both the actual average of the used straws within each pad as
well as the average after assuming all unused straws to be straws with a noise level of0% are plotted. Figure
(b) shows the same distribution, but the straw to pad assignment has been randomized.
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Figure 16.3.3:In (a) and (b) respectively are shown the distribution of themeans and root-mean-squares of
100 randomized straw to pad mappings such as the example shown in figure 16.3.2.(b).
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Figure 16.3.4:Distribution of noise level in straws normalized to the average level in the pad to which the
straw belongs for all pads (left) and for pads where all eightstraws contribute (right).

pad, although of course the mean is guaranteed to be one by construction and the tail toward high
values is not negligible. For use in the simulation it is noted that the distribution is well described
when fitted by a Gaussian plus an exponential. To check that nosignificant biased introduced due to
the fact that the number of considered straws within a given pad is not always 8 (since some pads
contain only 7 straws and some straws are disregarded by cuts) the same distribution is also plotted
solely for pads with 8 surviving straws. The distribution seems to be relatively unaffected by this
requirement, with the most striking difference being the disappearance of the artificial peak at exactly
1.0 caused by pads for which only one channel were consideredusable.

16.3.4 Noise induced channel to channel crosstalk

An effect one should be aware of is the possibility of crosstalk between straws, i.e.: The signal in
one channel induces a signal in another. This is potentiallydangerous for track reconstruction as a
signal due to a passing particle could give rise to a fake signal in a nearby straw. These issues are
investigated in [TRT04] and in chapter 17. Here it will instead be investigated whether anoisehit in
one straw is likely to induce noise hits in nearby straws.

To estimate the magnitude of this effect from noise one can look at the number of noise hits within a
given pad in a given event, of course using the fact that straws connected to a given pad are located
neighboring each other. The distribution is shown in figure 16.3.5, but only for pads where all eight
straws are deemed usable. Assuming no crosstalk the ratio,r10, between the content of the′1′ and′0′

bins given the probability for a noise hit in a given straw,pnl, and the number of channels per pad,
Nch = 8, should follow from binomial distributions:

r10 =
Nchpnl (1− pnl)

Nch−1

(1− pnl)
Nch

=
Nchpnl

1− pnl
⇒ pnl =

r10

r10+Nch
(16.3.1)

Likewise the expected ratio of the′2′ and′0′ bins is found to be:

r20 =

(

Nch

2

)

p2
nl (1− pnl)

Nch−2

(1− pnl)
Nch

=

(

Nch

2

)
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2 (16.3.2)
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Figure 16.3.5:Number of noise hits in a given pad in a given event.

If the assumption of truly independent channel noise is valid a direct calculation ofr20 from the
bin content in figure 16.3.5 should give the same result as first calculatingpnl via equation 16.3.1
and inserting the result in equation 16.3.2. Inserting numbers the two methods turns out to result in
robs
20 = 6.1% andr indep

20 = 4.2% respectively. This thus reveals a slightly enhanced tendency to get
two noise hits in the same pad which could to some extent be explained by noise induced channel to
channel crosstalk. However it is still true thatrobs

10 ≫ robs
20 , meaning both that the effect is relatively

rare and it is difficult to conclude with any certainty that itis not simply caused by e.g. a small
contamination of the noise hit samples from real particle induced hits. From a slightly different
perspective, namely using hits close to tracks in cosmic events, this issue is studied further in the next
chapter.

16.3.5 Dead channels

Another method of studying detector inhomogeneities is examination of the distribution of non-
sensitive, or “dead”, channels in the test-beam setup. One would expect two major sources of such
channels. The first being problems with individual channelsand the second being possible problems
in a chip connecting 8 channels.

Already at the barrel test facilityO (1%) of all assembled straws were found to have serious and unre-
pairable problems, as discussed in chapter 14. The causes were numerous: Gas leaks, bend straws or
abnormal wire tension, gain or high voltage behavior. Consequently their anode wires were (usually)
removed to avoid e.g. voltage problems affecting other nearby channels. Investigating whether or not
those straws can still give rise to noise hits in the test-beam can tell something about the nature of the
noise as was already done in an example for the end-cap in chapter 15, see figure 15.1.1. In figure
16.3.6 the channels of the test-beam are shown and, in addition to pointing out the problematic chan-
nels known from the acceptance tests, color codes differentiate between the channels that are entirely
without noise hits in the test-beam, those with a very low rate of noise and the rest. The larger col-
lection of straws entirely without hits are indeed seen to correspond to non-functioning ASDBLR or
DTMROC chips. There is a clear correlation between the channels disconnected at the test bench and
the straws that hardly (if ever) produce noise hit. However,the main part of themdoproduce noise hits
to some degree, meaning that part of the noise is produced in the front-end electronics itself. This fact
underlines the usefulness of the TRT StrawStatusSummaryTool as discussed in the previous chapter.
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Figure 16.3.6:End view of the straws in the test-beam setup. Black straws have no hits in the test-beam, green
straws have a noise level below0.01%. Blue straws correspond to those declared dead at the test bench, and
which had a noise level below0.01% in the considered test-beam runs, whereas red straws are theones which
were declared dead at the test bench, but which had a noise level above0.01%.

By using this tool in the offline reconstruction in both data and simulation, the problematic channels
can be rejected altogether, hereby protecting the trackingalgorithms of potential problems with fake
hits (although, of course, such hits are relatively rare andthus can only influence the tracking to a
limited extent).

16.4 Conclusions

Data from several runs of the summer 2004 TRT standalone test-beam has been analyzed. After
having selected and removed a smaller number of channels with decidedly “abnormal” behavior, the
appearance and composition of the noise hits in the remaining channels have been studied and can
to a large degree be said to be understood. It is shown that thecomposition of noise digits is very
stable across the different runs and the channel to channel correlations between noise levels have been
investigated. To further understand the nature of the TRT noise, a different data sample is needed. To
accommodate, a study presented in the next chapter is performed using cosmic events, but ultimately,
of course, the issue must be addressed using real ATLAS collision data.



Chapter 17

TRT noise in cosmic events from the
ATLAS pit

In the previous chapter the correlations of noise levels forstraws belonging to the same high volt-
age pad was established in a pure noise environment - i.e. in the absence of close by tracks. This
chapter focuses on possible crosstalk phenomena; where a signal in one channel induces a signal in a
secondary channel. Potentially this effect can occur if thechannels are not totally isolated from each
other, and in this case one would expect the effect to be largest in case a large signal is produced in
the primary channel. Since, in general, signals due to the passage of a particle through a straw are
larger than the average noise signal, crosstalk, if any, is expected to be more pronounced in regions
close to tracks. This region coincides with the region wheretracking is potentially most sensitive to
noise hits which, by mistake, could be assigned to a track. For this reason, the extent of the problem
is important to assess.

The data used is from the M4 cosmic run, the setup of which willbe briefly described in chapter 18.
For the present study the details of the setup are of less importance. What matters is that the data is
collected using 13 barrelφ-sectors. On side A 11 sectors were read out, whereas only 9 side C sectors
were read out.

The data consists mainly of noise, with an occasional track -in general only one track per event,
originating from a cosmic muon. The low track rate implies that it is unlikely that an additional track
is missed by the reconstruction software (unless a cosmic muon causes a shower in the vicinity of the
TRT). This setup is therefore well suited to expand the noisestudy of the previous chapter, since in
the test-beam the high track rate and relatively low reconstruction efficiency required the noise study
to be based on hits far a way from the beam to prevent the data sample to be contaminated by hits
from unreconstructed tracks. Due to this, track induced noise, could not be studied reliably in the
test-beam. The cosmics setup, however, offers a good testing ground for this kind of study.

In the following, it is studied whether possible correlations exist for noise hits belonging to the same
grouping as a hit on a track. The groupings considered are:

• Channels on the same DTMROC chip as hit(s) on track.

• Channels on the same high voltage pad as hit(s) on track.

• Channels on the same high voltage pad as HT hit(s) on track.
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• Channels situated at the opposite end of a straw which has a hit on track.

All hits which do not belong to a track are selected. The time-over-threshold distribution for hits
on tracks is shown in figure 17.0.1(a). Since noise can be reliably characterized by their low time
over threshold (as discussed chapter 16), one can estimate the contamination in the selected noise hits
from hits on unreconstructed tracks by comparing with the time-over-threshold distribution for hits,
selected from chips without track hits, shown in figure 17.0.1(b). Comparing the distribution shown
in the insert to the corresponding for hits on tracks, it is clear that some contamination due to hits from
unreconstructed tracks is present in the noise selection. However, the majority of the selected noise
hits have low ToT as expected for noise - 8% hits has ToT>10 ns.

The noise occupancy in a number of configurations is summarized in table 17.0.1. Below, the various
configurations are explained, and the results are discussedone by one.

Label Configuration Noise-level[%]
1 Straw noise− level − average o f all straws 2.392±0.002
2 Chip noise− level − chips with track hit(s) 29.771±0.002
3 Pad noise− level − pads with track hit(s) 27.921±0.002
4 − pads with 1 track hit 27.790±0.002
5 − pads with 2 track hits 27.433±0.003
6 − pads with 3 track hits 29.863±0.008
7 − pads with 4 track hits 41.88 ±0.02
8 − pads with track HT hit(s) 49.03 ±0.02
9 Straw noise− level − track hit at the other end 3.976±0.002

Table 17.0.1:Noise levels in various configurations discussed in the text.

The first line in table 17.0.1 (referred to from now on by 17.0.1(1)) shows the average noise for all
selected channels - i.e. numbero f hitsnot ontrack

(numbero f read-out channels×numbero f events) , regardless of grouping.

Although each DTMROC chip has 16 channels only averagely 15.8 correspond to an actual straw, due
to the physical constraints induced by the odd module geometry. Therefore, the expected chip noise
level is:

1− (1−0.02392)15.8−1.7 = (29±2)%, (17.0.1)

since the average number of track hits per chip is 1.7 (for chips with at least one track hit). This means,
that in case the noise is truly random, one expects about 29% of chips crossed by a track would have
one or more noise hits.

Table 17.0.1(2) shows the corresponding measurement. The result: 29.8% is in excellent agreement
with the expectations. However a corresponding calculation for the high voltage pad grouping gives:

1− (1−0.02392)7.9−1.3 = (15±1)%, (17.0.2)

in stark contrast to the result shown table 17.0.1(3).

The corresponding individual channel noise level, for channels belonging to a high voltage pad crossed
by a track, is found by inverting equation 17.0.2 to be(4.84±0.03)% or more than double the average
channel noise level.

Table 17.0.1(4-7) shows the dependence of the pad noise level on the number of hits from a track a
given pad has.
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Figure 17.0.1:Time-over-threshold distributions for various selectionof hits. (a) Hits on track. (b) Noise from
chips without track hits. (c) Noise from pads with track hits. (d) Noise from chips with track hits. Inserts show
the same as the plot in which they reside, but for ToT>10 ns.
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In table 17.0.1(8), the noise level from straws belonging topads which have one or more HT hits from
a track is given. The result: 49% corresponds to a single straw noise probability of 9.8% which is a
factor of 4 above the average noise level.

In case a track caused a signal in a given channel, it is plausible that the other end of the same channel
could have an increased noise level. Note that there are two channels corresponding to each straw:
One in each end of the straw and the anode wire is isolated centrally by a piece of glass. Since,
however, the straw tube (cathode) does not have a corresponding isolation centrally, noise which is
somehow related to the high voltage supply (i.e. which does not originate from the electronics) could
be increased for channels at the other end of a channel crossed by a particle. Table 17.0.1(9) gives
the noise level of these channels. Indeed the level is significantly increased with respect to the 2.4%
(table 17.0.1(1)) expected in the absense of correlation.

As argued in the introduction to this chapter, noise in the vicinity of a track can potentially degrade
the tracking performance. However, as shown in figure 17.0.1, the majority of the problematic hits
can easily be rejected by a simple cut on the time-over-threshold distribution. In most of the track
reconstruction software, a cut on time-over-threshold is applied, by which the majority of the potential
problem is avoided. Nevertheless, such non-random noise should be simulated, and the framework for
this has been developed. Its usage as default in the ATLAS software still awaits tuning from real data
of which there is still too little and what exists is still notsufficiently reliable to achieve the desired
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precision. One reason for the latter is, that the above studyis based on 13 modules only, and the noise
behavior could be different in other modules as was the case in the test-beam (see section 16.3.1).
Moreover the nature of the noise might change once ATLAS is subject to collisions, where tracks
will have a different energy distribution and rate than the cosmic muons on which the present study is
based.

Note also, that the above analysis could be extended to studythe effects ofδ-rays. Sinceδ-rays are
expected to give rise to hits in the vicinity of tracks, the relevant grouping for such study would be
defined by the distance from a given straw to a track. Such study would aim at validating the model
responsible for the simulation ofδ-rays, and since this has little to do with noise or the noise model
implementation in the TRT digitization software, the studyis not performed in the present context.



Chapter 18

Inner Detector Commissioning

A practical approach to accelerate detector commissioningand hereby reduce the number of problems
unavoidably faced at LHC start up, is by the use of cosmic rays. Cosmic rays at the surface consist
mostly of low energy muons (average 2 GeV) produced in the atmosphere. Figure 18.0.1 illustrates
the situation faced in the ATLAS cavern. Although in many aspects different collision data, the
cosmic ray data is useful for locating a number potential problems, which would be otherwise be
encountered at the first collisions. This chapter concerns the efforts of commissioning of the Inner
Detector using cosmics ray muons at the various stages of thedetector assembly and integration. Only
a brief overview of the efforts is presented, based on the work of many people (most figures originate
from people working with Inner Detector commissioning). Integral parts of the outline are based on
proceedings written for the 10th ICATPP conference [Kli07].

Figure 18.0.1:Cosmic muon simulations. Left: Cosmic muons in the ATLAS pitin 0.01 s. Right: Angular
distribution of cosmic muons in the ATLAS pit at different energies. At 10 GeV (and below) muons mainly
reach the cavern through the shaft.

Recently the Inner Detector has been installed at its final position. Various parts of the detector have
been commissioned using cosmic rays both on the ground (building SR-1) and in the ATLAS pit.
Different calibration, alignment and monitoring methods have been tested as well as the handling of
the conditions data. Both real and simulated cosmics eventsare reconstructed using the full ATLAS
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software chain, with modifications to account for the lack ofmagnetic field, the lack of timing of
cosmics events as well as to remove any vertex requirements in the track fitters. Results show that the
Inner Detector generally performs within expectations with respect to noise, hit efficiency and track
resolution. However only parts of the detector have been read out, and the commissioning efforts will
proceed until LHC startup.

18.1 Introduction

Integration of the SCT and TRT barrel took place at the surface, and was followed cosmic runs to
test the individual sub-detectors as well as combined sub-detector performance. Presently the Inner
Detector is installed in its final environment in the ATLAS pit. For practical reasons, the Inner Detector
is installed in several steps beginning at the surface and continuing in the pit, allowing for series of
tests with increasing parts of the Inner Detector connectedto the data stream. Below, results from
measurements at the surface as well as in the ATLAS cavern arepresented, and the software setup
to deal with cosmics is discussed. However, as in the previous chapters, focus will be put on issues
related to the TRT, where the author has contributed. Main results from other sub-detector systems be
shown, as well as recent results from setups where significant parts of the full ATLAS detector have
been integrated into the data acquisition system.

18.2 SR-1 Cosmics: Data

The arrival time of cosmic muons is of course random, and the surface setup for the integrated SCT-
TRT cosmics therefore included scintillator plates used for triggering. These plates were placed above
and below the sub-detectors (see figure 18.2.1 ) in such a way that a coincidence would require a
particle passing near the center of the detector and therefore, to some extent, resemble a particle
produced in a beam collision - at least with respect to which detector parts are passed. With respect

–

–

Figure 18.2.1:Setup for cosmics data taking at the surface. Scintillator plates are placed above and below the
detector. Only the shaded sectors are read out.

to hit efficiencies, both sub-detectors proved well within expectations - see figure 18.2.2. Additional
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tests using a random triggers to record noise levels were also successful - results for the SCT (barrel
and end-caps) and the Pixel (end-caps) are shown in figure 18.2.3. After alignment and calibration the
resolution of the SCT and TRT tracks areσ = 59 µm andσ = 170µm respectively, which is within
expectations for the cosmic setup (see figure 18.2.4). The reason that SCT uncertainty is larger than
the ATLAS expectations (cf. section 3.2) is partly due to thelow momenta of the cosmic rays, and
partly that no magnetic field is applied, and therefore the particle momentum could not be measured
and effects of multiple interactions could not be correctedfor.

Figure 18.2.2:Hit efficiencies of the SCT (left) and TRT (right) as measureddoing tests on the surface.

SCT Pixel

Figure 18.2.3:Noise levels of the Pixel and SCT as measured doing tests on the surface.
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Figure 18.2.4:Left: SCT track residuals before and after alignment. Right: σ of the residual distribution for
the TRT as a function of the unbiasedχ2 for each given hit (i.e. theχ2 of the track removing the contribution
of the hit under evaluation). Both plots stems from tests performed at the surface.

18.3 SR-1 cosmics: Simulation

Simulation of cosmics events for the surface setup proceedsby generating single muons on a plate
high above the detector as shown in figure 18.3.1. The reason for this choice of origin, is to mimic
the effects of the scintillator trigger plates used in the real data taking, without actually building a
software counterpart. In order for the signals to arrive within the 75 ns read-out window of the TRT,
the flight time of100 m

c is subtracted from the global time for all hits. Following, the TRT digitization
proceeds as described in chapter 10, except that a non-active gas is used, and that for straws above
y = 0 the opposite than normal time correction is applied to account for the fact that cosmic muons
originate from outside the detector.

Figure 18.3.1:Setup for surface cosmics. The generation plate is placed ata large distance from the Inner
Detector to mimic the effects of the scintillators used for data taking.

18.4 Pit Cosmic: Data

Recently the Inner Detector has been installed in the ATLAS pit and tests performed with parts of the
SCT and TRT integrated into the ATLAS data acquisition. Figure 18.4.1(left) shows an event from the
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test run. In the lack of the ATLAS clock and scintillators, the muon chambers and tile calorimeter are
used as triggers and this has caused some difficulties: This usage of the tile calorimeter is not part of
the design requirements and the timing of the different muonmodules differs, complicating its usage
as trigger. Simultaneously, a different approach is used inruns later in the commissioning phase (M6
and beyond), where scintillator plates are placed on top of the ATLAS detector as shown in figure
18.4.1(right). For practical reasons, the area covered with scintillators is limited, causing a low event
rate from this cosmic trigger. The results of the M4 cosmic run in terms of TRT noise and resolution
are shown in figure 18.4.2.

ATLAS Atlantis 1994-12-10 09:42:35 CET    Event name: JiveXML_20720_14329  run: 20720  event: 14329    Geometry: <default>

-5 50 X (m) 

-
5

10
0

Y
 (

m
) 

Figure 18.4.1:Left: Event display showing an event from cosmics. Note how the track is formed based on the
information of many sub-detectors. Right: Setup for the M6 run. Apart from the calorimeter and muon triggers
used in the M4 run an additional scintillator trigger is added.

2% noise level

straw number

Figure 18.4.2:Left: TRT track residuals. Right: Noise levels of the various straws in one TRTφ sector. The
noise level is generally below the expected3%. Both plots stems from test performed in the ATLAS cavern
(M4).
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18.5 Pit cosmics: Simulation

The majority of the cosmic data is recorded using the calorimeters for triggering. Since the calorimeter
enclose the Inner Detector, the origin of real data cosmics in unknown (cf. figure 18.0.1(left)). In order
to resemble this with some degree of accuracy in the simulation, the generation plate used in SR-1
cosmics setup (figure 18.3.1) must be enlarged significantlyas shown in figure 18.5.1. To reduce the
required computational effort, a filtering algorithm selects only muons which enter a spherical volume
of 20 m radius around the Inner Detector (see figure 18.5.1(right)). Only selected events are passed to
the full simulation, which apart from simulating interactions with the ATLAS detector also simulates
interaction with air in the ATLAS shaft as well as with the surrounding rock.
Digitization of simulated cosmics pit data constitutes a special problem due the lack of "cosmic bunch
crossing" combined with the unknown source of the particles. One cannot, as in SR-1, assume that
a given muon traveled a certain distance upon arriving in theTRT, since the time difference between
muons can be as large as(

√

(600 m)2 +(100 m)2−100 m)/c = 1120 ns, which is much larger than
the 75 ns TRT read-out window.

Figure 18.5.1:Setup for simulating cosmics in the pit. The difference between the shortest and the longest
path corresponds to more than 1µs.

To make the digitized data resemble real data, would requirea MC simulation of the calorimeter
trigger. Such trigger is not available, instead, the TRT digitization package is updated to cope with
the setup. In the lack of triggering, one can choose between the following two digitization schemes:

• Switch off all time corrections by which all signals start in the first of the 24 time bins (unless
an overall shift is applied).

• Try to steer the TRT digitization to perform slightly more realistic, by including, as much as
possible, the various time corrections, without actually building a software trigger.

Obviously the first approach represents an idealization with respect to data in which the arriving signal
have a wide time spread.

In the second approach the time aty = 0, ty=0, is retrieved and used as a reference point, upon which
time corrections are added. The read-out clock is started at:

thit − ty=0 +12.5 ns· rnd (18.5.1)

wherernd is a flat random numberrnd ∈ [−1;1]. The effect of the latter smearing is to simulate the
lack of bunch-crossing clock. After the above operation, the standard TRT digitization proceeds as
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described in chapter 10. By this approach, the average leading edge is randomly distributed, but the
locations of the leadings edges in the hits of a given event are (somewhat) realistic.
An example of a successful digitization and track reconstruction of a simulated cosmic event is shown
in figure 18.5.2.

The digitization of the Pixel and SCT sub-systems proceeds in a similar way.

Figure 18.5.2:Atlantis event view of a reconstructed cosmic event.

18.6 Conclusions

The ATLAS Inner Detector is being commissioned with cosmic rays. The full data acquisition chain
is in use, and cosmics data as well as simulation is reconstructed with standard ATLAS software.
The results in terms of noise, hit efficiency and track resolution are well within expectations for the
cosmic setup. However the integration of the remaining parts of the Inner Detector into the ATLAS
data acquisition is ongoing and the detector commissioningproceeds until LHC startup. A simulation
setup able to provide MC for cosmic events has been developedand successfully tested.



Chapter 19

Summery and outlook

During the summer of 2008 LHC should provide the first collisions, and in this thesis some of the
preparation efforts are described. Mainly discussed is theTransition Radiation Tracker (TRT). Re-
sults from the hardware testing are presented, but focus is put on the simulation, in particular the
software modeling of the detector response. Based on Garfield simulations and test-beam measure-
ments, a number of updates compared to earlier simulations are presented. Independent tunes of the
simulation with respect to; efficiency, time over thresholdand track resolution yield compatible re-
sults in terms of simulation settings, and a detailed comparison with test-beam data shows, that the
simulation accurately resembles data. In addition, a tune of the transition radiation model to test-beam
data is presented, and it is shown that the simulation accurately describes data also in this aspect.
In order to be able assess the conditions and perform calibration of the TRT during LHC operation,
tools have been written and successfully tested against cosmic data. Concerning the implementation
of the detector description in the software, survey data from the completed TRT detector allowed for
an update of the detector geometry and material, which has been implemented in the simulation. Also
a conversion finder, able to locate photons conversions in the TRT is described, and it is argued how
the fact, that the conversion cross-section depends on the local density will allow the dead material of
the detector (support structures etc.) to be accurately mapped during the first year(s) of data taking.
Many analyzes benefit from an accurate mapping of the detector material, among others theW mass
analyzes as discussed below. Moreover, a considerable effort is invested in understanding the nature
of the noise in the TRT, allowing for accurate modeling in thesimulation.
Finally are the commissioning efforts of the Inner Detectordescribed, including updates in the TRT
simulation implemented to resemble the interactions of cosmic muons.
In general it is concluded, the simulation of the TRT matchesdata well, and it is ready to reproduce
collision data coming from the experiment after LHC startup.
Also discussed are the prospects of an ATLAS measurement of theW mass. Due to Standard Model
constraints, theW mass is linked to the Higgs mass, and measuring preciselyMW allows not only for
a consistency check of the Standard Model, but also might help distinguishing between the various
extensions of the Standard Model, which are characterized by posing different constraints on theW
and Higgs masses.
Non-surprisingly the evaluation of the systematic errors affecting theMW measurement are subject
to some unknowns, which can only be answered after running the ATLAS experiment. For example
is the knowledge of the parton density functions expected toimprove with LHC data, and the cor-
responding error induced in theW mass measurement is consequently difficult to assess accurately
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at the present time. Likewise is the systematic error due to the uncertainty of the QCD background
estimated, basically using qualitative arguments. With respect to final state radiation, the fact that
radiated photons in the electron channel tend to recombine with the electron cluster in the calorime-
ter, as opposed to the muon channel, requires that the traversed material must be accurately known
(i.e. the detector description in the simulation must be accurate) in order not to introduce a significant
systematic error to theW mass measurement.
Nevertheless, in the absent of unforeseen complications, it is argued that a competitiveW mass mea-
surement should be possible with the use of the ATLAS experiment. In an optimistic assessment, the
W mass should be possible to measure to within∼ 6− 7 MeV with 10 fb−1 of data. Note that the
systematics are evaluated by the use of considerably smaller (simulated) datasets, which are scaled to
10 fb−1 assuming no unforeseen difficulties emerging with increased statistics. The superior precision
with respect to earlier measurements is made possible mainly through the largeZ sample expected,
which, when combined with the precise knowledge of theZ properties from earlier experiments, pro-
vides a possibility for precise differential calibration of the energy scale of the experiment. Even in
case the systematic errors turn out of considerably larger than estimated in this thesis, theMW mea-
surement could still be competitive and is thus likely to help resolving the problems of the generation
of mass in the electroweak sector once and for all.
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Konklusion på dansk

I sommeren 2008 foretages de første proton-proton kollisioner ved Large Hadron Collider (LHC) på
CERN, ved en CM energi på 14 TeV. Denne afhandling beskriver nogle af de forberedelser fore-
taget på et af eksperimenterne ved LHC: ATLAS eksperimentet. Fokus ligger på Transition Radiation
Tracker (TRT) - en gas-baseret sub-detektor der udover at fungere som sporfindingsdetektor ved hjælp
af opsamling af ionisation, også er i stand til at identificere elektroner via deres forøgede stråling som
følge ’transition radiation’.
Resultater fra tests af færdigbyggede sub-detektor moduler præsenteres, men fokus ligger på simula-
tion af detektorens virkemåde. Baseret på Garfield simulationer og resultater fra ’test beam’, præsen-
teres en række opdateringer i simuleringen af TRT’en. Resultater sammenlignes med resultater fra
test beam, hvormed man i detaljer kan forstå den observeredeeffektivitet og sporresolution.
Ydermere er støjen i TRT’en undersøgt ved hjælp af test beam studier, og simuleringen er opdateret
såldes at den forventede støj i den rigtige detektor reproduceres i simuleringen.
I afhandlingen diskuteres endvidere muligheden for en kompetitativ måling afW massen. I Stan-
dard Modellen er det muligt ud fra målinger afW og top-kvark masserne at forudsige Higgs massen.
En præcis måling afW massen gør det derfor muligt at teste Standard Modellen til en meget høj
grad af præcision, samt eventuelt at skelne imellem forskellige udvidelser til Standard Modellen, som
kendetegnes ved at give forskellige forudsigelser af sammenhængen imellemW, top-kvark og Higgs
massen. Ikke overraskende er der en del ubekendte størrelser i forbindelse med at estimere med
hvilken præcisionW massen kan forventes målt ved ATLAS eksperimentet. For eksempel antages
det at protons strukturfunktioner bliver bedre kendte efterhånden som dataindsamlingen finder sted,
og den systematiske fejl som skyldes usikkerheden i kendskabet til strukturfunktionerne er derfor
vanskelig at estimere præcist på nuværende tidspunkt. Tilsvarende er den systematiske fejl som følge
af usikkerheden i bestemmelsen af QCD baggrunden estimeretbaseret på kvalitative argumenter.
Ikke desto mindre argumenteres det i denne afhandling, at såfremt der ikke opstår uforudsete komp-
likationer, kanW’ens masse bestemmes ved ATLAS eksperimentet med en hidtil uovertruffen præci-
sion på∼ 6−7 MeV for 10 fb−1 data. Bemærk at de systematiske fejl er evalueret med betragteligt
mindre (simulerede) datasæt, og skaleret til 10 fb−1 under antagelse af at ingen uforudsete proble-
mer bliver målbare som følge af den øgede statistik. Den forventede forbedring i forhold til tidligere
målinger skyldes især den storeZ produktion, samt det faktum atZ’ens egenskaber er præcist målt
ved tidligere eksperimenter. Dette muliggør en meget præcis kalibrering af eksperimentets energiskala
ved brug af leptoner fraZ henfald.
Selv i det tilfælde hvor den systematiske fejl viser sig at være betragteligt større end estimeret i denne
afhandling, er en konkurrencedygtig måling mulig, og det betragtes derfor som sandsynligt at målin-
gen afW massen kan bidrage til at forstå massebegrebet en gang for alle og herved hjælpe med at løse
et af Standard Modellens allerstørste problemer.
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Appendix A

W mass analysis

A.1 Validation of the template method : η and pl
T bins
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Figure A.1.1:Top: Fit to the transverseW mass in theW→ µν channel using bins 7η bins[0;2.5] and 10pl
T

bins[10;60] GeV(plus an overflow bin). Bottom: The same forZ→ µµ

A.2 Validation of the template method: Fits of smearing distributions
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Figure A.1.2: Top: Fit to pl
T in the W → µν channel using bins 7η bins [0;2.5] and 10 pl

T bins
[10;60] GeV(plus an overflow bin). Bottom: The same forZ→ µµ
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Figure A.2.1:Example of the comparison between a fit smearing distribution (left) and a fit to the numbers
actually used (right) - i.e. originating from a distribution described by the fit-parameters on the left-hand plot.
pT bin: [10;20] GeV,η bin [0;0.36].
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Figure A.3.1: /ET residual for parallel (left) and perpendicular (right) when replacing 1 neighbor (top) and 3
neighbors (bottom). As noise, the measurements from cells of the same type but located 90 degrees from the
cluster is chosen.
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Figure A.3.2:/ET residual for various/ET algorithms using (x,y) coordinate (top) and (par,perp) below.
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Figure A.3.3:Dependence of the/ET resolution on the choice of noise algorithm.
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Figure A.3.4:Dependence of the/ET residual on theΣET and transverse lepton momentum.



Appendix B

TRT Digitization

B.1 Garfield distributions

Figure B.1.1: Left: Number of electron/ion pairs per cluster according toGarfield simulations. Middle:
Distribution of initially produced charge in a cluster. Right: Distribution of total collected charge per cluster.

B.2 Comparison of TRT digitization to Combined Test Beam results
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Figure B.2.1:Efficiency as a function ofr for run 2106 (left) and 2118 (right) without requirement on particle
type.
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Figure B.2.2:Efficiency for different orders (0,1,2) of the Poisson expansion described in section 11.3. Run
2118.
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Figure B.2.3:Efficiency as a function ofr for run 2106 in data and MC for various LT settings.
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Figure B.2.4:Efficiency as a function ofr for run 2107 in data and MC for various LT settings.
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Figure B.2.5:Efficiency as a function ofr for run 2399 (100 GeV pion/electron) in data and MC for various
LT settings.
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Figure B.2.6:r in bins oft from toy MC study.
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Figure B.2.7:r in bins oft from default ATLAS calibration.
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Figure B.2.8:Track resolution for various LT settings.
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Figure B.2.9:Time-over-threshold distributions for various LT settings.


