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Abstract 
The stored energy in superconducting magnets is one of 

the main ingredients needed for the quench calculation 
and for designing quench protections. Here we propose an 
analytical formula based on the Fourier transformation of 
the current density flowing within the winding to 
determine the magnetic energy stored in superconducting 
quadrupoles made of sector coils. Two corrective 
coefficients allowing to estimate the energy enhancement 
produced either by current grading or by the presence of 
an unsaturated iron yoke are respectively derived from a 
numerical and an analytical study. This approach is 
applied to a set of real quadrupoles to test the validity 
limits of the scaling law, which are shown to be of ~10%. 

INTRODUCTION 
Analytical computation of the magnetic stored energy 

in superconducting magnets is rather difficult because of 
the complicated geometry of the coil and it is usually 
done with numerical codes (see for instance [1]).  
However, during the conceptual design phase of a magnet 
it can be useful to have a simple approximated expression 
of the magnetic energy as a function of the main features 
of the magnet lay-out. Here we propose such a formula to 
estimate the stored energy in superconducting 
quadrupoles. 

 The study is based on the Fourier transform of the 
current density flowing within the coils. After deriving the 
stored energy formula in case of a quadrupole made of 
pure sector coils, we present a heuristic corrective 
coefficient allowing taking into account the energy 
enhancement due to current grading i.e coils with non-
uniform current density. The impact of an unsaturated 
iron yoke on the stored energy is then calculated 
analytically. A cross-check of the formula with a 
numerical code shows that our approach allows to 
estimate the energy within 10% accuracy in all analysed 
cases. 

PURE SECTOR COIL QUADRUPOLE 
The magnetic stored energy definition used throughout 

this paper is 

∫∫∫
Ω

Ω= dU t jA.
2
1

,                     (1) 

where A is the vector potential defined by B=curlA, j is 
the current density flowing inside the coil, and Ω is the 
winding volume. The energy is in [J], the current density 
is in [A/m2] and the distance in [m].  

Now let us consider a quadrupole magnet made of pure 
sector coils (see for instance Fig. 1). Assuming that there 

is no non-linear magnetic material and that the coils 
length is infinite along the z quadrupole axis, the stored 
energy U per meter along z is given by: 

   θθθ rdrdrjrAU z
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Where S is the cross-sectional area of the magnet.  
To approach the cos2θ design, which produces a pure 

quadrupolar field, quadrupoles magnets are usually made 
of sector coils (see Fig. 1). Their geometry and positions 
are optimized to cancel the first allowed field harmonics. 

 
Figure 1 - Cross-section of a Quadrupole magnet made of 
2 pure sectors.  

Lets assume a constant current density j0 flowing inside 
the winding of a quadrupole made of pure sector coils. 
The current density can be modelled by means of the 
Fourier transform  
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where the an coefficients are given by: 
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For a coil made by a single sector of angular dimension θ1 
the coefficients an read 
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The vector potential produced by a pure current harmonic 
of rank n is given by: 

)()(),(, θθ nnnz jrCrA =                (6) 
Introducing the coil inner and outer radius R1 and R2, the 
Cn coefficient is written for n=2 
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and for n>2, 
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Substituting (3) and (6) in (2), and introducing the coil 
width w=R2-R1, one get an explicit expression for the 
magnetic energy coefficient 
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For a given cross-section layout, the ratio between the 
main harmonic of energy U2 and the total energy U given 
by the sum of all harmonics depends only on w/R1. The 
study of this ratio for several coils layouts shows that the 
stored energy is mainly carried by U2 (see Fig. 2). 
Therefore, a good approximation for the energy stored in 
quadrupoles made of sector coils is: 
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Introducing t=w/R1, the function f2 is 
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Figure 2 - Ratio between the magnetic energy produced 
by the main harmonic (n=2) and the total energy versus 
w/R1 for five different sector coils. 

REAL QUADRUPOLE CROSS-SECTIONS 

No Grading, no Iron Yoke 
Now we aim at comparing the numerical computation 

of the stored energy using the numerical code [1] to the 
analytical estimate (10) for a set of realistic coil-layouts 
based on the cos2θ design. To do that, we introduce the 
coil width equivalent weq corresponding to the width of a 
pure sector coil having the same cross-sectional area S 
and inner radius R1 than the real one: 
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Some of the quadrupoles used for the comparison have 
been already built and successfully tested in particle 
accelerators such as the Intersecting Storage Ring [2], the 
Tevatron [3], the Large Electron Positron [4], HERA [5], 
the Relativistic Ion Collider [6], and the Large Hadron 
Collider [7]. The magnets named MQY 90/100/110 [8] 
and MQXC [9] have been designed in the framework of 
the LHC luminosity upgrade phase I (Nb-Ti), while those 
named HQ1, HQ2 [10], 90mm 2/4 layers [11] and IRQ 
90/100/110 [12] have been designed for the phase II 
(Nb3Sn). The TQ magnet [13] is a Nb3Sn short model 
quadrupole build in the framework of the US LHC 
Accelerator Research Program (LARP). The quadrupole 
lay-outs named AP 50/100/150/200mm have been 
designed for a field quality study in superconducting 
quardrupoles [14].  LHC MQ+1 and LHC MQ+2 denote 
an LHC MQ coil with one or two additional layers, 
sketched to analyse coils with very large w/R1. Grading 
has been removed from all graded magnets. 
Compared to the numerical computation, the stored 
energy determined analytically using (10) and substituting 
w/R1 by (12) agrees within 10% for all quadrupoles and 
within 5% for 2/3 of them (See Fig. 3). 
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Figure 3 - Agreement between numerical estimate of 
magnetic energy and analytical estimate for a 30º sector 
coil based on (10). 

Effect of Grading on the Energy 
The grading method consists in setting a higher current 

density in the outer layer in order to enhance the magnet 
performance. In this section we derive a heuristic 
coefficient to take into account the grading effect on the 
stored energy. Let us call j1 and j2 the current densities 
flowing in the inner and outer layers respectively. The 
grading parameter g is defined by: 

1

2

j
jg =          1>g                       (13) 

The average current density j flowing through the overall 
cross-sectional area S=S1+S2  is 
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where S1 and S2 are the area of the inner and outer layer 
respectively. We express j as a function of g: 

⎥⎦
⎤

⎢⎣
⎡ −+= )1(1 2

1 g
S
Sjj                     (15) 

Since the magnetic energy is proportional to j2, we expect 
that the variation caused by current grading is 
proportional to: 
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In Fig. 4, by means of a numerical study [1], we show that 
it is the case.  
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Figure 4 - Increase of magnetic energy due to grading as a 
function of x as defined in (16).  

The numerical study leading to the Fig. 3 allows us to 
derive the following coefficient 
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Ugrad is the energy stored in the graded quadrupole,U2 is 
the stored energy when the grading is removed (10), and 
d=1.167 is derived from the fit of the line. 

Effect of Iron on the Magnetic Energy 
In this section we aim at estimating the energy 

enhancement produce by the iron yoke through a simple 
analytical formula. To make it possible we assume an 
unsaturated iron yoke so as to use the imaging current 
method applied to the main harmonic of current i.e n=2. 
The additional stored energy Ui due to the yoke is 
obtained by integrating the scalar product between the 
vector potential produced by the yoke and the current 
flowing inside the coils, all over the coil cross-sectional 
area: 
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where Ri is the inner radius of the yoke. Now we express 
the ratio between the total stored energy Utot=Ui+U2 and 
the ironless energy U2 (10) 
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(19) 
In the range of t=w/R1 used on accelerator magnets, one 
fits the previous expression with: 
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with a=8.52, b=-0.80 and c=1.56. 

Total Formula 
The energy stored in a quadrupole magnet graded or 

not, and with or without iron yoke can be estimated 
analytically with: 

2UkkU igall =                           (21) 
where U2 is given by (10), kg by (17) and ki by (20). The 
agreement with numerical codes is within ~10%. 

CONCLUSION 
We used the main harmonic of the Fourier 

decomposition to set up a simple formula allowing to 
estimate the stored energy in superconducting 
quadrupoles made of sector coils as a function of the coil 
width and of the aperture. The equivalent coil width 
allowed us to compare the energy estimate with numerical 
computations in case of real coil layouts. The stored 
energy enhancement due to current grading or due to the 
presence of an iron yoke is taken into account by means 
of a heuristic coefficient and an analytical formula based 
on the imaging current method. A comparison between 
the stored energy computed analytically and numerically 
in case of real coil layout (with grading and real iron 
yoke) showed agreement within 10%. 
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