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OPTICS DESIGN CONSIDERATIONS FOR THE CLIC PRE-DAMPING RINGS

The CLIC pre-damping rings have to accommodate a large emittance beam, coming in particular from the
positron source and reduce its size to low enough values for injection into the main damping rings. Linear
lattice design options based on an analytical approach for theoretical minimum emittance cells are
presented. In particular the parameterisation of the quadrupole strengths and optics functions with respect to
the emittance and drift lengths is derived. Complementary considerations regarding constraints imposed by
positron stacking and input momentum spread are also considered.
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OPTICS DESIGN CONSIDERATIONS FOR THE
CLIC PRE-DAMPING RINGS

F. Antoniou, National Technical University of Athens, Greece
Y. Papaphilippou, CERN, Geneva, Switzerland

Abstract

The CLIC pre-damping rings have to accommodate
a large emittance beam, coming in particular from the
positron source and reduce its size to low enough values
for injection into the main damping rings. Linear lattice
design options based on an analytical approach for theoret-
ical minimum emittance cells are presented. In particular
the parameterisation of the quadrupole strengths and optics
functions with respect to the emittance and drift lengths
is derived. Complementary considerations regarding con-
straints imposed by positron stacking and input momentum
spread are also considered.

CLIC PRE-DAMPING RINGS

The pre-damping rings (PDR) are an essential part of the
CLIC injector complex, as they have to digest a 2.424 GeV
beam with a large input normalized emittance and damp
it down to a few μm emittance for injection to the damp-
ing rings (DR) [1]. The required input and output param-
eters for the PDR are presented in Table 1 Without the
positron ring, the injected normalized emittance of a few
mm coming directly from the source will not fit in the DR.
Other limitations are the large positron momentum spread
of around 1 % which necessitates a large momentum ac-
ceptance in the PDR and for the polarized positron option,
stacking needs a long time to fill the ring with the required
number of positrons per bunch [2]. The electron emittance,
although 3 orders of magnitudes lower, is still 2 orders of
magnitude higher than the required DR input emittance and
5 orders of magnitude higher than the extracted emittance
of around 4 nm. An electron beam from the low energy
linac injected directly to the DR may not encounter aper-
ture restrictions. On the other hand, without an electron
PDR and considering the damping time of around 1.5 ms in
the DR, the large linac emittance will need at least 16.5 ms
to reach equilibrium (without the effect of IBS), reaching
almost the repetition time of 20 ms. In this respect, both
electron and positron PDR are necessary.

ANALYTICAL APPROACH FOR
MINIMUM EMITTANCE CELLS

The Theoretical Minimum Emittance (TME) cell may
be a good structure for the design of the PDR lattice. The
TME condition is achieved, if the horizontal β and the dis-
persion η have a minimum in the center of the bending
magnet and are equal to βcd = Ld

2
√

15
, ηcd = θLd

24 where

Ld is the length of the bending magnet and θ = Ld

ρ = 2π
N

the bending angle, for N bends in the ring. The nor-

Table 1: CLIC PDR required injected and extracted param-
eters.

Parameters
injected

extracted
e− e+

Bunch population [109] 4.7 6.4 4.5
Bunch length [mm] 1 5 10
Energy Spread [%] 0.07 1. 0.5
Long. emittance [keV.m] 1.7 240 121
Hor. Norm. emittance [μm] 100 9.7×103 63
Ver. Norm. emittance [μm] 100 9.7×103 1.5

malized TME is then given by εTME = FCqγ
3θ3 where

Cq = 3.84 × 10−3 m. The scaling factor F for the TME
lattice is F = 1

12
√

15Jx
and the damping partition num-

ber Jx ≈ 1, in the case of isomagnetic, separated function
dipoles [3] . In this respect, a minimum of N = 18 dipoles
with bending angle of 20◦ are needed θ = 2π

N , to achieve
the required normalized emittance, taking a 30 % margin
from the absolute minimum emittance of the TME cell (i.e.
41 μm).

Figure 1: Schematic view of a TME cell.

A schematic view of a TME cell is displayed in Fig. 1.
At the entrance of the cell (i.e. the middle of the dipole),
two independent optics constraints are imposed by the
conditions for minimum emittance, and thus at least two
quadrupole families are needed to achieve them. Whereas
the horizontal optics functions are fully controlled by these
two pairs of quadrupoles, the vertical are defined by the
horizontal plane’s constraints. In order to have an indepen-
dent matching of the vertical plane, additional quadrupoles
are needed. The problem may be solved analytically using
thin lens approximation in order to parameterise the solu-
tions with respect to the drift lengths (for constant emit-
tance) or the emittance (for constant drift lengths). The
general solutions for the focusing strengths f1 = (K1l)−1

and f2 = (K2l)−1 are:

f1 = L2
d−8(l1+l2)Ld(ηcd−ρ)+16(ηcd−ηs)ρ2

l2(L2
d+16ηcd)ρ2+8l1Ld(ρ−ηcd)

f2 = −L2
d+8l1Ld(ηcd−ρ)+16(ηs−ηcd)ρ2

16l2ηsρ2

(1)



where ηs is the dispersion function at the center of the
cell, which has a complicated dependence on the drift
lengths, the initial optics functions and the bending char-
acteristics. There are two solutions for ηs but one results
in focal lengths of the same sign (horizontally focusing
quadrupoles) and can be rejected as it leads to an unstable
vertical plane.

For stability in both planes, as well as reasonable optics
functions, the following conditions have to be satisfied:

• Trace(Mx,y) = 2 cosμx,y < 2, where Mx,y is the
total transfer matrix of the cell and μx,y are the phase
advances per cell.

• f1f2 < 0
• All the optics functions have real values in all the ele-

ments of the cell.
• The beta function maxima should to be below 30 m.

All the optics functions are thus uniquely determined for
both planes and can be optimized by varying the drifts.

Figure 2: Focusing strengths (left) and maximum beta
functions (right) dependance on the drift lengths. The red
triangles represent the dependence on l1, the green circles
on l2 and the blue dots on l3.

We consider, first, a constant emittance (the minimum
one) and seek for the regions of acceptable solutions for the
drift lengths and the focusing strengths. Figure 2 shows the
dependence on the drift lengths, of the focusing strengths
f1, f2, the horizontal βx,f1 and vertical βy,f2 beta functions
on each quadrupole, where they take their maximum val-
ues. The red triangles denote the dependence of the func-
tions on l1, the green circles on l2 and the blue dots on l3.
All three drift lengths are set to vary between 0.5 and 2 m.
The plots show that there is no restriction for l2 and l3,
whereas the values of l1 are bounded between 0.7 and 1.82
m. The upper limit is set by the maximum beta function
requirement and the lower by the requirement for real so-
lutions. The focusing strengths is scaled inversely to l1 and

l2 but there is no clear tendency for the dependence on l 3.
The horizontal beta function on the focusing quadrupole
presents the usual quadratic dependence on the first drift
length l1, but there is no dependence on the downstream
drifts, apart from the delimitation in the bottom left cor-
ner due to the stability requirement. The dependence of the
vertical beta function on the drift lengths is less obvious.
It is interesting though that the maximum beta function is
below 10 m for the range of drift lengths considered.

Figure 3: Emmitance dependance on each drift length.
From top to bottom, one of the drifts takes three distinct
values whereas the other two are kept constant.

In Fig. 3, the dependence of the focusing strength on the
emittance is presented, using the drifts as parameters. From
the top to the bottom plot, one of the drifts takes three dis-
tinct values whereas the other two are kept constant. The
emittance required is the TME one and twice this value.
For the TME, there are unique values in the quadrupole
strengths displayed by dots in the plots, as shown by equa-
tion (1). The relaxed emittance can be achieved by a series
of (ηcd, βcd) pairs, with a quadratic dependence to each
other. In this respect, these solutions will appear as dis-



torted ellipses in the focusing strength plane. From the top
plot, one can conclude that by decreasing l1, the focusing
strength of the first quadrupole is only slightly increased
whereas there is a big impact in the reduction of the sec-
ond quadrupole strength. The dependence on l 2 and l3
is the same for both quadrupoles, i.e longer drifts reduce
their strength. Combining the information from the above,
a good choice for drift values are l1 = 1.5 m, l2 = 2 m and
l3 = 0.5 m, in order to achieve reasonable strengths and
optics parameters for the TME cell.
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Figure 4: The focusing strengths parameterised with dif-
ferent emittance values. Each curve with different colors
corresponds to a certain emittance value, starting from the
TME (red dot) up to 2 times the TME (purple).

For these drift lengths, eqs. (1) are solved for differ-
ent emittances, ranging from the TME up to 2 times this
value with a 0.2 step. The parameterisation of the focus-
ing strengths with the emittance is displayed in Fig. 4. It
is not a surprise that larger emittances can be reached by a
wider range of focusing strenghts . This plot solves com-
pletely the problem of matching the optics for TME cells,
and it can be used for other optics parameters’ optimiza-
tion, such as aperture, phase advances, chromaticity, sex-
tupole strengths, momentum compaction, etc.

Figure 5 shows the dependence of several other radia-
tion parameters on the bending field. A fixed cell achiev-
ing the TME is considered and the bending field is varied
by changing the dipole length, while keeping the bending
angle constant. The dependence of the momentum com-
paction factor αc, is inversely proportional to the bend-
ing field but still of the order of a few 10−3, ten times
bigger than the one of the DR. This is due to the fact
that, for achieving a TME, the momentum compaction is
αc = 12θ3ρ

C , i.e. proportional to the bending radius for
fixed bending angle. In order to increase the momentum
acceptance to the ±1% level, the momentum compaction
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Figure 5: Dependence on the bending field, for a TME cell,
of the energy loss per turn (top left), square of the rms
energy spread (bottom left), momentum compaction (top
right) and damping times (bottom right).

factor has to be further reduced, by decreasing the bending
angle (larger number of cells) and by detuning the lattice
to a higher emittance, and imposing negative dispersion in
the center of the dipole. The energy acceptance can be in-
creased by raising the RF voltage or using harmonic cavi-
ties.

The damping partition number D for a TME is a constant
depending only on the bending angle D = 12θ3

2π , and equal
to around 10−1 for the chosen parameters. This makes Jx

slightly less than 1, which is also reflected in the few % dif-
ference between the horizontal and vertical damping times.
These later are around 13-14 ms, quite long and ten time
higher than the ones in the DR. They are indeed incom-
patible with the long stacking time of 12 ms necessary for
filling the positron ring, with a repetition time of 20 ms. In
order to achieve fast damping times of around 0.8 ms (i.e.
twice faster than in the DR), damping wigglers may not be
enough. An interleaved train injection scheme should be
considered for the positron ring, with at least 4 trains, con-
sidering normal conducting wigglers of the same length,
as the one of the DR. In this respect the lattice design is
not the only chalenge but also the handling of high beam
power, the design of HOM free RF cavities and impact of
other collective effects.
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