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Recent analyses of the WMAP 5-year data constrain possible nonadiabatic contributions to the initial

conditions of cosmic microwave background anisotropies. Depending upon the early dynamics of the

plasma, the amplitude of the entropic modes can experience a different suppression by the time of photon

decoupling. Explicit examples of the latter observation are presented both analytically and numerically

when the post-inflationary dynamics is dominated by a stiff contribution.
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The initial conditions of the Boltzmann hierarchy can be
usefully classified into adiabatic and nonadiabatic (i.e.
entropic). The thermodynamic origin of this classification
resides in the observation that the relative fluctuations of
the specific entropy Sij do not necessarily vanish (as in the

case of the adiabatic mode). The relative fluctuations of the
specific entropy &ij can be written, in gauge-invariant

terms, as

S ij ¼
�&ij

&ij
� �3ð�i � �jÞ; �i ¼ ��þ �i

wi þ 1
; (1)

where wi is the barotropic index of the ith species; in
Eq. (1)� represents the gauge-invariant Bardeen potential
and �i is the gauge-invariant density contrast. In the
�CDM model (where � stands for the dark-energy com-
ponent and CDM stands for the cold dark matter contribu-
tion) the indices i and j of Eq. (1) run over the four species
of the plasma so that, in general, the initial conditions will
contemplate one adiabatic mode and four nonadiabatic
modes (see, for instance, [1,2]). The initial conditions of
the Boltzmann hierarchy can be set either by choosing only
the adiabatic mode or by selecting a combination of the
adiabatic mode with one (or more) nonadiabatic modes.
The obtained angular power spectra (both for temperature
and polarization) can then be compared with the experi-
mental data and interesting bounds can be set on the
various combinations of the initial conditions1 [3,4] (see
also [1,2]).

Are there simple dynamical recipes able to suppress the
entropic contributions? This is the basic question ad-
dressed in this paper. In the current framework, after
inflation, the plasma was suddenly dominated by radiation.
Absent the latter assumption, the nonadiabatic contribution
to the predecoupling fluctuations of the spatial curvature

will have a different relation to the entropic modes origi-
nally present right after inflation. While it is not mandatory
to postulate different dynamical evolutions, it is useful to
be aware of different possibilities which can help more
dedicated scrutiny of the observational data.
Prior to the radiation epoch, the plasma might have been

expanding at a slower rate. This perspective was also
invoked by Zeldovich who suggested that, prior to radia-
tion dominance, the Universe was indeed quite stiff and
characterized by a sound speed even comparable with the
speed of light [5]. Post-inflationary phases stiffer than
radiation can even lead to relic gravitons whose spectral
energy density increases as a function of the comoving
frequency [6]. If the inflaton field is identified with the
quintessence field a stiff post-inflationary phase arises
naturally [7] and this is what happens in the context of
the so-called quintessential inflationary models [8] as well
as in related contexts [9,10].
Consider, for the sake of simplicity, a post-inflationary

plasma characterized by three distinct components so that
the total energy density and the various pressures can be
written as

�t ¼ �m þ �r þ �S; pS ¼ w�S; (2)

where �r and �m denote, respectively, the radiation and the
matter energy densities while pr and pm indicate the
corresponding pressures. In Eq. (2) �S and pS are the
energy density and pressure of a supplementary component
whose generic barotropic index will simply be denoted by
w. From the pertinent Friedmann-Lemaı̂tre equations2

H 2 ¼ 8�Ga2

3
�t; H 2 �H 0 ¼ 4�Ga2ðpt þ �tÞ;

(3)

it can be easily argued that, for w> 1=3, �S dominates (at
early times) in comparison with �m and �r. In Eqs. (3),
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1According to the present data, the adiabatic mode will have to

be dominant in comparison with the remaining (or more) en-
tropic contributions. In the opposite case the (observed) anti-
correlation peak in the temperature/polarization would not be
correctly reproduced.

2A conformally flat metric g�� ¼ a2ð�Þ��� will be assumed
throughout. The prime denotes a derivation with respect to the
conformal time coordinate �. Furthermore we will define H ¼
a0=a.
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�S ’ a�3ðwþ1Þ while �r ’ a�4; ergo �S will decrease faster
than �r and this is the reason why the backreaction of the
radiation can be important [6–8].

For the present purposes, it is practical to separate the
adiabatic and the entropic fluctuations composing the
gauge-invariant perturbation of the total pressure i.e.

�pt ¼ c2st��t þ �pnad; (4)

c2st ¼
�
�pt

��t

�
&ij

¼ X
i

�0
i

�0
t

c2si; �pnad ¼
�
�pt

�&ij

�
�t

�&ij;

(5)

where �&ij are the fluctuations in the specific entropy

already introduced in Eq. (1). In Eq. (5) the subscripts in
the round brackets remind that the variation must be taken,
respectively, for �&ij ¼ 0 and for ��t ¼ 0. Since, accord-

ing to Eq. (2), the plasma is composed by three species
there will be, in general, three entropic contributions.
Equation (5) allows, indeed, for a more explicit form of
�pnad:

�pnad ¼ 1

6H�0
t

X
ij

�0
i�

0
jðc2si � c2sjÞSij; c2si ¼

p0
i

�0
i

; (6)

where the summation indices run over the three (or more)
species of the fluid mixture. Equation (6) directly follows
from Eqs. (4) and (5) by considering a generic pair of fluids
and by summing over all the components. Using Eq. (2)
into Eq. (6), �pnad can be explicitly obtained:

�pnad ¼ � 1

9H�0
t

½�0
m�

0
rSmr

þ 3w�0
m�

0
SSmS � ð3w� 1Þ�0

S�
0
rSSr�; (7)

where Smr, SmS, and SSr are, respectively, the three inde-
pendent entropic fluctuations which can arise in the prob-
lem. To pass correctly from Eq. (6) to (7) it should be borne
in mind that Sij ¼ �Sji. In a democratic perspective all the

entropic contributions in Eq. (7) can be present and with
comparable amplitude. In the complementary situation one
of the terms (e.g. Smr) is much larger than the remaining
two.

The fate of the nonadiabatic contributions given in
Eq. (7) can be determined from the gauge-invariant evolu-
tion equations of the curvature and metric inhomogene-
ities. The gauge-invariant form of the Hamiltonian and the
momentum constraints is

r2� ¼ 4�Ga2�t	t;

r2ðH�þ�0Þ ¼ �4�Ga2ðpt þ �tÞ
t;
(8)

where 
t is the three-divergence of the (total) velocity field
and 	t is the gauge-invariant density contrast which corre-
sponds to the total density contrasts in the comoving
orthogonal gauge [11–13]. In terms of 	t the momentum

constraint (i.e. first relation of Eq. (8)) takes a form which
is reminiscent of the (nonrelativistic) Poisson equation. It
turns out that 	t is proportional to the difference of other
two useful gauge-invariant quantities:

	t ¼ 3ð�t þ ptÞ
�t

ð� �RÞ; (9)

where � ¼ P
i
�0
i

�0
t
�i � ��� ��tH

�0
t

, and where

R ¼ ��� H ðH�þ�0Þ
4�Ga2ðpt þ �tÞ

: (10)

The gauge-invariant variable � can be interpreted either as
the curvature perturbation in the uniform density gauge or
as the density contrast in the uniform curvature gauge [11–
13] (see also [14,15]). The variable R represents the
(gauge-invariant) curvature perturbations which effec-
tively correspond to the fluctuations of the spatial curvature
on comoving orthogonal hypersurfaces. The evolution of �
can be easily obtained from the equation for the total
density fluctuation derived from the perturbation of the
covariant conservation of the (total) energy-momentum
tensor, i.e.

��0
t � 3�0ðptþ�tÞþ ðpt þ�tÞ
t þ 3H ð�pt þ��tÞ ¼ 0:

(11)

From Eq. (10) it can be easily deduced that ��t ¼ 3ðpt þ
�tÞð� þ�Þ. Using the latter relation inside Eq. (11) the
evolution of � is simply

� 0 ¼ � H
pt þ �t

�pnad � 
t
3
; (12)

where Eqs. (3) and (4) have been used. Recalling Eqs. (9)
and (10) the evolution equation for R can be directly
obtained and it is

R0 ¼ � H
pt þ �t

�pnad þ H
12�Ga2ðpt þ �tÞ

r2ð���Þ

� H c2st
4�Ga2ðpt þ �tÞ

r2�: (13)

The dynamical content of Eqs. (12) and (13) is clearly the
same, i.e. the two equations coincide exactly in the long
wavelength limit (i.e. k� � 1). Since �S � 0 in Eq. (2),
from Eqs. (7) and (13) the evolution for the curvature
perturbations becomes then, to leading order in k�,

R0
k ¼ FRð�; w; fS; fMÞ;

�0
k ¼ �G1ð�; w; fS; fMÞ�k � G2ð�; w; fS; fMÞRk:

(14)

In Eq. (14) the function FRð�; w; fS; fMÞ is given by

H fðwþ 1Þ½4ð3w� 1ÞfSSrS�
3w�1 � 9wfmfSSmS�

3w� � 4fmSmr�
6w�1g

½4�3w�1 þ 3�3wfm þ 3ðwþ 1ÞfS�2
; (15)
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while the remaining two functions are

G 1ð�;w;fS; fMÞ ¼H
½6�w�1 þð3wþ 5ÞfS þ 5fm�

3w�
2�½�3w�1 þ fSþ fm�

3w� ;

(16)

G 2ð�;w;fS; fMÞ ¼H
½3fm�3w þ 4�3w�1 þ 3ðwþ 1ÞfS�

2�½�3w�1 þ fS þ fm�
3w� ;

(17)

having introduced the following rescalings: � ¼ a
a�
, fm ¼

�mða�Þ
�rða�Þ , fS ¼

�Sða�Þ
�rða�Þ , as well as a� ¼ að��Þ. In what follows

we will always take fS ¼ 1 and set initial conditions for
the numerical integration for �i ¼ ai=a� � 1. It is worth
stressing that the condition fS ¼ 1 implies that �Sða�Þ ¼
�rða�Þ. The value of fm < 1 specifies the fraction of non-
relativistic matter eventually present for ��. The results of
the numerical integration are reported in Figs. 1 and 2 for
some illustrative sets of parameters. With the full line (plot
at the left in Fig. 1) we have the result for the case SrS ¼
SmS ¼ 0. In this case it is well known that the nonadiabatic
solution to jRkð�Þj goes as Smr=3 (units Smr ¼ 1 will be
adopted throughout). This is exactly the result of the full
line reported in Fig. 1 (plot at the left) where, asymptoti-
cally for � � 1, logjRkj ’ �0:477. In the limit fS ! 0,
the equation for Rk [see Eq. (14)] can be written as

R0
k ¼ �4

fmSmr

ð4þ 3fm�Þ þOðk2�2Þ;

Rkð�Þ ’ R�ðkÞ � SmrðkÞ
3

þOðk2�2Þ;
(18)

whereR�ðkÞ parametrizes the adiabatic solution which has
been added for completeness but which will be left un-
touched by the present considerations. Equation (18) gives
the value of the curvature perturbations induced by the
nonadiabatic CDM-radiation mode when, right after infla-
tion, the Universe is dominated by a radiative equation of
state. Recalling the form of (ordinary) Sachs-Wolfe con-
tribution to the temperature anisotropies we will then have
that, in the sudden decoupling approximation, �ðSWÞ

T ’

�R�ðkÞ=5þ 2S�ðkÞ=5. If the fluids do not exchange en-
ergy and momentum, as customarily assumed in the sim-
plest situation and as verified in our case, then S0

ij ¼ 0 in
the long wavelength limit. Indeed, it can be easily shown
that �0

i ¼ 3ðwi þ 1Þ�0 � ðwi þ 1Þ
i where 
i ¼ ~r � ~vi.
Equation (1) then implies S0

ij ¼ ð
i � 
jÞ, i.e. S0
ij ¼ 0 up

to corrections Oðk2�2Þ.
When �S � 0, in the generic situation all the Sij are

nonvanishing. Absent any specific knowledge of the initial
conditions, the various entropic fluctuations can be ex-
pected to be comparable, i.e. SrSðkÞ ’ SmSðkÞ ’ SmR. If
we take, for instance, fm ¼ 10�2 (dashed line in the left
plot) Rkð�Þ gets first to 1=3 (as implied by Eq. (18) in the
absence of �S) and then decreases by reaching, subse-
quently, a constant value which is between two and three
orders of magnitude smaller than the putative asymptotic
value which characterizes the case SrS ¼ SmS ¼ 0 (i.e.
1=3). As fm decreases the intermediate plateau get larger
and the asymptotic value gets progressively reduced. In the
left plot of Fig. 1 it has been assumed that w ¼ 1. In the
plot at the right Rkð�Þ is reported for a fixed value of �
(i.e., more specifically, �M ¼ 109) but as a function of w.
As w ! 1 the suppression can even be, depending on the
parameters Oð10�5Þ. Of course the specific figure depends
upon the other parameters. At the same time it is clear that
the amount of suppression depends upon the degree of
stiffness, i.e. upon jw� 1=3j.
The occurrence that, for a while,Rk ’ Oð1=3Þ in Figs. 1

and 2 just means that, depending upon fm, the terms
containing fS can be neglected for intermediate values of
�. The decrease in Rkð�Þ can be also explained. The
analytical estimate can be separated into two steps, i.e.
between �i and �X > 1 and between �X and �M � 1. In
the first transition the terms proportional to fm can be
neglected. The approximate result will then be

R kð�XÞ ’ R�ðkÞ þ
�
4SSr

3fS

�
�3w�1
X

4�3w�1
X þ 3ðwþ 1ÞfS

’
�
SSr

3fS

�
þOð��1

X Þ: (19)
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FIG. 1 (color online). The evolution of the curvature perturbations as a function of the scale factor and for various fixed values of w
(plot at the left); the evolution of curvature perturbations for fixed � � 1 and as a function of the sound speed of the stiff component
(plot at the right).
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For the second transition the relevant term will be the one
proportional to Smr since the other terms can be neglected
for �> 1 and for w> 1=3. By fixing the integration
constant from Eq. (19) the asymptotic result (valid in the
limit � � 1)

R kð�MÞ ’
�
SSr

3fS
� Smr

3

�
þ 4Smr

9�Mfm
: (20)

If we do not assume a large hierarchy between SSr and Smr

the first term in the second equality of Eq. (20) will
approximately vanish and the second term will lead to a
decrease of Rkð�Þ. This is the effect observed in Fig. 1. If
the values of the entropic fluctuations are drastically differ-
ent (e.g. Smr dominates against the others) then the results
of Eq. (18) will be approximately true, at least asymptoti-
cally. This aspect is illustrated in Fig. 2 (plot at the right)
for few cases where Smr is ten times larger than the other
entropic contributions. Always in Fig. 2 (plot at the left)
the evolution of�k is reported. The full line in Fig. 2 (plot
at the left) corresponds to the case �S ¼ 0 where, follow-
ing the same considerations of Eq. (18), �kð�Þ ’ Smr=5,

i.e. logj�kð�Þj ’ �0:698 in units Smr ¼ 1. The same pat-
terns of suppressions discussed in the case ofRk also arise,
as expected for�k. Note that, finally, onceRk and�k are
known to a given order in k�, the constraints of Eqs. (8) and
(9) can be used to derive 	t, � , and 
t.
The examples presented in this paper suggest that the

entropic fluctuations can be dynamically suppressed if,
after inflation, there is a stiff contribution to the primeval
plasma. The rationale for the obtained result depends both
on a modification of the dynamics (at early time the stiff
contribution dominates) and upon an interference effect
between the various entropic contributions. In fine, the
exercise presented here suggests that the bounds on the
nonadiabatic contribution obtained from the cosmic mi-
crowave background data analysis do depend upon a num-
ber of specific assumptions on the early thermal history of
the background geometry. In different terms, the entropy
fluctuations used to set initial conditions of the Boltzmann
hierarchy prior to equality might be already suppressed as a
consequence of the preceding dynamical evolution.
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FIG. 2 (color online). The evolutions of �k (plot at the left) and of Rk (plot at the right) are illustrated. In the right plot the cases
SmS ¼ Smr and SmS � Smr are compared.
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