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Abstract

Optics correction in the LHC is challenged by the tight
aperture constrains and the demand of a highly perform-
ing BPM system. To guarantee that the LHC optics re-
mains within a maximum allowable beta-beating of 20%
several methods are being investigated through computer
simulations and experiments at existing hadron machines.
A software package to consolidate the implementation of
the various techniques during LHC operation is underway
(or nearing completion).

INTRODUCTION

In [1, 2] it was demonstrated through simulation that
the correction of the β-beating and dispersion beating with
measured magnetic errors [3] in the LHC is achievable by
using the phase advance and normalized dispersion as cal-
ibration independent observables. Two techniques can be
reliably used to measure the phase advance: the standard
FFT and the Closed Orbit Distortion (COD), latter of which
was successfully implemented in KEK-B [4]. β-functions
can be infered from the measured phase advances and the
model transfer matrix.

Dedicated measurements to test the β−beating correc-
tion were carried out at the Relativistic Heavy Ion Col-
lider (RHIC). This paper describes the above techniques
and the results from the RHIC experiments including the
noise characterization of the phase measurement and the
localization of β−beating errors.

β MEASUREMENT FROM PHASE

The beta function in the LHC will be inferred by mea-
suring betatron phases between BPMs as done in LEP [5],
using the following equation,

β1 =

1

tan φ12

− 1

tan φ13

m11

m12

− n11

n12

(1)

where φij are the phase advances from BPM i to j, m and n
are the elements of transfer matrices between BPM 1 to 2,
and between BPM 1 to 3. The design transfer matrices are
employed as an approximation. In the LHC arcs, the phase
advance between neighboring BPMs is about 45 degree,
therefore very appropriate for this measurement.

The measurement error is checked via simulations of 100
LHC machines. Fig. 1 shows the maximum error of the β
measurement in the arcs. The maximum error does not ex-
ceed 5% in arcs and shows a roughly linear dependence on
the model β-beating since we assumed the design transfer

∗This work was partly performed under the auspices of the US DOE
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Figure 1: Maximum error in arc β measurement vs. r.m.s.
model beta-beating. Phase error is assumed σφ = 0.25o.

matrices to find the beta function. The measurement error
reaches few 10% in the IRs due to the phase advances be-
tween BPMs. The large errors are, however, detectable and
reducible in two ways: 1.-by computing the error bars from
Eq.1 and 2.-measuring β2 and β3 with similar equations
to Eq.1 for five successive BPMs will give three different
measurement results for one location, thus averaging three
results, the measurement erros are again assesseed and ef-
fectively reduced.

CLOSED ORBIT BASED MEASUREMENT

The analysis tool for both beta-function and betatron
phase based on the closed orbit response of single dipole
kick are transplanted from the KEKB project. This method
[4] is based on the analytic formula of the first-order per-
turbation theory:

4χ(s) =

√

βχ(s)

2 sinπνχ

4θχ

√

βχ(skick)

cos (|φχ(s) − φχ(skick)| − πνχ). (2)

If the given dipole kicks are small enough to conserve the
optics functions, the unknown variables βχ(s) and φχ(s)
could be determined by fitting the set of the closed orbit
response 4χ(s) using the different dipole magnets.

In order to estimate the error of the reconstructed beta-
function and betatron phase advance, the benchmark test is
achieved on the SAD [6] simulation model. In this bench-
mark, the closed-orbit responses are generated from the
LHCB2 injection optics . As the error source of the closed-
orbit measurement, both the ±4% uniform random calibra-
tion error of the BPM response gain and the Gaussian ran-
dom sampling error of the closed-orbit measurement due
to the BPM resolution are assumed. The ±4% calibration
error makes about ±8% reconstruction error of the beta-
function, because

√

βχ(s) in Eq.2 follows the scaling con-



version of 4χ(s). On the other hand, the reconstruction
error of the betatron phase shown in Fig.2 does not depend
with the BPM calibration. In the tested region, the maxi-
mum error of the betatron phase depends on the BPM res-
olution linearly.
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Figure 2: BPM resolution dependency of the betatron
phase reconstruction error. The red and green points cor-
respond to the simulation results with and without ±4%
BPM calibration error.

DISPERSION MEASUREMENT

The error in the dispersion measurement using closed or-
bit changes with momentum deviation (δp/p) can be upto
a few percent due to BPM calibration error [9]. To avoid
this we measure the normalized dispersion ND = D/

√
β.

Calibration errors cancel if both D and
√

β inferred from
amplitudes of the BPM signals. A “global factor” for mo-
mentum deviation in dispersion measurement and kick am-
plitude for

√
β measurement, common to all BPMs, is de-

fined as
G =

1

〈NDM 〉

〈

∆x

Cβ

〉

(3)

where ∆x is the closed orbit shift, Cβ is the largest coeffi-
cient of FFT analysis of BPM turn-by-turn data, 〈NDM 〉 is
the average D/

√
β in the model. Assuming that 〈NDM 〉

remains unchanged with optics errors [2] the global factor
is inferred. ND at each BPM is given by

ND =
∆x

CβG
. (4)

The measurement of ND is simulated to confirm the
global factor as shown in Fig 3. The maximum error shows
no dependence on r.m.s. β-beating and hence can be as-
sumed to be model independent measurement.

RHIC EXPERIMENTS

Dedicated RHIC expriments were performed with a goal
to demonstrate an online measurement and correction of
the magnetic optics using the same tools developed for the
LHC. The procedure of measurement and correction is de-
tailed in ref [2] which mainly consists using turn-by-turn
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Figure 3: Maximum error in ND measurement vs. rms
β-beating (simulation) for a 100 of LHC machines with
errors.

BPM data to calculate phase advance and apply a linear
RM type correction with the available quadrupole circuits.
The normalized dispersion is always included in the RM to
either keep the dispersion unchanged or perform a disper-
sion correction simultaneously. The effect of chromatic-
ity and tunes on the measurement of the phase advances
were also detailed in [2]. Two experiments were performed
using manually induced quadrupole errors to have a con-
trolled set of data and evaluate the impact of BPM noise.
Due to bad quality of the baseline data (without induced
quadrupole error), two data sets with two different set of 3
quadrupole error settings were used to compute the phase
beat. This phase beat eliminates residual errors already ex-
isting in the lattice as compared to the model, thus provid-
ing a clean source for comparison.

The two sets of three quadrupoles are {bi8-tq4, bo7-tq5,
bo11-tq4} and {bi8-tq6, bo3-tq6, bo11-tq6} by amounts of
±0.005 m−1. The measured phase advance between BPMs
is shown in Fig. 4 together with the model.
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Figure 4: Measured phase advance between RHIC BPMs
after trimming 1st set of three quadrupoles (blue) and the
2nd set (black) compared to the ideal model (red). Vertical
error bars are statistical deviation between three conseque-
tive data sets with the same condition

The phase beat induced by the net change of six
quadrupoles can be obtained from the difference between
the two sets which is shown in Fig. 5. The reconstructed



phase beat from the model RM inversion onto the measured
phase beat is also plotted.
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Figure 5: Measured phase beat between RHIC BPMs after
trimming six quadrupoles by ±0.005 m−1 randomly.

The resulting quadrupole trims predicted by the inver-
sion of the RM to reconstruct the observed phase beat is
shown in Fig. 6. A similar experiment was performed with
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Figure 6: Top: Quadrupole trims predicted by RM in-
version onto the measured phase beat from kicked data
compared to the input trims into the machine. Bottom:
Quadrupole trim predicted by RM inversion onto measured
phase beat using an ac dipole excitation.

a single quadrupole error while using an ac dipole instead
a impulse kick which has an inherent advantage due to res-
onant excitation. It therefore induces coherent betatron os-
cillations, only limited by data acquisition capacity [7]. Al-
though, it has superior signal to noise ratio, the system is
a driven oscillator which is different from the natural be-
tatron frequency. Fig. 6 shows the detection of the single
quadrupole error via RM inversion and ac dipole induced
coherent oscillation.

NOISE

BPM noise studies in simulations have indicated an up-
per limit of 1.0◦ in rms phase noise (σφ) and 10-15% per-
cent BPM failure to ensure a effective β-beat correction
below the 20% level in the LHC [2]. Robust techniques are
also in place to identify and remove faulty BPMs from the
data analysis [8]. shows a histogram of phase noise from
several data sets acquired with RHIC BPMs both for kicked
data and via an ac dipole which indicate that σφ is a factor
of 4 less with the low chromaticity.
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Figure 7: Histogram of the rms phase noise from the all the
BPMs from several data sets both from kicked data and ac
dipole excited data.

However, RHIC measurements also indicate that higher
chromaticity can dramatically increase σφ to several de-
grees [2]. This effect will also be verified in the SPS. Optics
correction is anticipated to be be performed at low intensi-
ties and small chromaticties. If higher chromaticities are
required for beam stability, ac dipole can aid in improving
the optics measurement and correction.

CONCLUSIONS

Phase beat induced via dedicated experiments at RHIC
have been successfully measured and the error sources
are clearly identified using RM techniques developed for
the LHC. Experiments using ac dipole excited data show
promising results and can aid in overcoming deterioation
of phase measurement due to larger chromaticity. A soft-
ware application to automate the beta-beating correction in
the LHC is currently being tested in the SPS.
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