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With in view the design of the CLIC long transfer lines, we develop a formal approach for the optimisation
of a straight FODO line. Optimum phase advance and cell length depending on beam parameters are
derived for power consumption, overall cost and sensitivity to quadrupole misalignment.
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Optimisation of a beam transfer FODO line

J.B. Jeanneret and H.H. Braun, CERN, Geneva, Switzerland

Abstract
With in view the design of the CLIC long transfer lines, we de-

velop a formal approach for the optimisation of a straight FODO
line. Optimum phase advance and cell length depending on beam
parameters are derived for power consumption, overall cost and
sensitivity to quadrupole misalignment.

INTRODUCTION

In the CLIC project, the drive beam and the main beam
will travel from their central production sites towards the
head of the main linacs over a straight distance L > 20 km
[1]. With such long lines, a systematic approach must be
used in order to optimize many parameters. This includes
optics, beam dynamics, operational issues like reliability,
diagnostics and safety with respect to beam losses. Finally,
the cost of the equipment and the power consumption are
major issues. In this paper, an attempt to optimize a long
line is presented. We consider a line made of FODO cells
and search for the minimum of a few figure of merits which
depend on optics functions. We identified the sensitivity
of the beam emittance to quadrupoles misalignment, the
number of cells and the electrical power which supply the
magnets. We briefly discuss further steps of optimization
which require a study of parameters which are beyond pure
optics studies. We finally discuss some choices of parame-
ters which are partly specific to the CLIC transfer lines.

FODO BASICS

We consider a symmetric FODO cell of lengthLc, which
starts and ends in the middle of focussing quadrupoles
(QF). A de-focussing quadrupole (QD) is located at the
center of the cell. The gradient of the quadrupoles are equal
in magnitude, i.e k = kQF = −kQD. We further consider a
thin length approximation, with the focal length f = 1/kl.
QF and QD are separated by a drift (D) of length Lc/2.
The cell contains no dipoles, because we consider a straight
beam line. A derivation of several formulae can be found
in [2] and a summary in [3], with in both cases slightly
different notations than here. The length of the line is L..
The transfer matrix of the horizontal plane through the cell
is obtained with M = Mqf/2MdMqdMdMqf/2 which ex-
pands to

MFF =

(
m11 m12

m21 m22

)
=

(
1− L2

c
8f2 Lc(1 + Lc

4f
)

− Lc
4f2 (1− Lc

4f
) 1− L2

c
8f2

)
(1)

The right side of Eq. (1) is then identified with the
parametrization of Courant-Snyder for a periodic and sym-

metric structure (α = 0)

MFF =
(

cosµ β sinµ
sinµ
β cosµ

)
(2)

With Eqs. (1) and (2), cosµ = 1− L2
c

8f2 and

sin
µ

2
=
Lc
4f

. (3)

The β-functions reaches its maximum at the extremities of
the cell. We write β = β̂ and identify m12 in Eqs. (1) and
(2) using Eq. (3). We get

β̂ = Lc
1 + sin µ

2

sinµ
. (4)

Considering the transfer matrix from QD to QD,

β̌ = Lc
1− sin µ

2

sinµ
. (5)

At this point, we note that Eq. 2 contains two free param-
eters, namely β and µ. While other choices might be con-
sidered, optimization shall preferably be made with using
optic functions proper, here β and µ, instead of say, Lc and
f . We will see below that this choice is indeed good. It
allows to express all the useful quantities and our figures of
merit with functions which allow to separate the variables,
i.e. A(β, µ) = const× F (β)G(µ).

The focal length is expressed as a function of β̂ and µ
with Eqs. (3) and (4) :

f =
β̂

2
cos µ2

1 + sin µ
2

(6)

and the number of cells is

N =
L

Lc
=
L

β̂

1 + sin µ
2

sinµ
. (7)

The chromaticity of a cell is Ccell = − tan µ
2 /π [2, 3]. The

chromaticity of the line is C = NCcell. With Eq. (7), we
obtain

C = − L

2πβ̂

1 + sin µ
2

cos2 µ
2

(8)

OPTIMIZATION
In order to preserve the emittance at best, the displace-

ment ∆ of the beam at the end of the line must be min-
imized. The main source of displacement comes from
quadrupole displacement (’parasitic kicks’). If the momen-
tum width ±δ̂p of the beam is not negligible, a parasitic



dispersion D̃ is associated to ∆ and smears the beam. A
large chromaticity aggravates the smearing by filamenting
the beam. The effect of parasitic kicks is computed be-
low, while the chromaticity C(β̂, µ) is given by Eq. 8. The
number of cells N is given by Eq. 7. We do not explore
explicitely the cost optimization of the vacuum system, be-
cause it is quite case specific. If the need for beam aperture
is small, the radius of the vacuum chamber may be fixed
to a larger value for adequate conductance. In other cases,
the radius is fixed by collective effect issues. We therefore
limit our evaluation to different hypothesis for the choice
of the radius, see below the section on magnet power.

Parasitic Kicks
The displacement ∆ of the beam at the end of the line

(β(L) = β̂), which results from random kicks δx′ =
(kl)δx = δx/f associated to a r.m.s. displacement δxrms

of the quadrupoles is

∆ =
2N∑
i=1

√
β̂βi sinφi δx′i with φi = i

µ

2
(9)

The average quadratic sum ∆2
rms =< ∆2 > of ∆ is

∆2
rms =

2N∑
i

< ∆2
i >=

1

f2

2N∑
i

β̂βi sin2 φiδx
2
rms . (10)

With alternating QF (β = β̂) and QD (β = β̌) and with
< sin2 φi >' 1/2,

∑2N
i βi < sin2 φi >' (β̂ + β̌)N/2. It

follows ∆2
rms = β̂(β̂ + β̌)N/2f2 × δx2

rms. Using N from
Eq. 7, f from Eq. (6), β̂+β̌ = 2Lc/ sinµ from Eqs. 4 and 5
and using the trigonometric relation sinµ = 2 sin µ

2 cos µ2 ,
we get

∆rms =

√
4L

β̂

1 + sin µ
2√

sinµ cos µ2
δxrms (11)

The figure of merit is Ak = ∆ε/(εδxrms), with ε =
σβσ

′
β = σ2

β/β̂, its derivative ∆ε = 2σβ∆σβ/β̂ and
∆σβ = ∆rms :

Ak =
2∆rms√
εβ̂δxrms

=
4

β̂

√
L

ε

1 + sin µ
2√

sinµ cos µ2
(12)

Parasitic Dispersion
A estimator of the parasitic dispersion is obtained by

modifying the phase advance for chromatic error in Eq. 9,
i.e. with φ = iµ/2 − iπCδp/N , with C the chromaticity
of the line, see Eq. 8. We then write

< ∆(δp)2 >=
β̂(β̂ + β̌)

2f2

2N∑
i

< sin2(iµ/2− iπCδp/N) >

With the condition πCδp � 1,

2N∑
i

< ... >= N +
π2C2δ2p

2N2

2N∑
i

i2 = N +
4π2C2δ2pN

3
(13)

Then by definition of D̃, we get from the second term

D̃2δ2p =
β̂(β̂ + β̌)

2f2
× 4π2C2N

3
δ2p (14)

With the relations used to get Eq. 12 and C from Eq. 8, we
finally obtain in the limit of validity πCδp � 1

D̃rms '
(
L

β̂

)3/2 (1 + sin µ
2 )2

√
3 sinµ cos3 µ

2

< δx2 >1/2 (15)

Its relative dependence with µ (Fig. 1) fits rather well with a
MadX code simulation, but it underestimates it by a factor
∼ 25%. This requires further refinement. Following the
similar case of parasitic kicks, the figure of merit is here

AD =
2D̃rms√

εβ̂

∼ 1

β̂2
(16)

Overall Magnet Power
The current I of a resistive quadrupole scales with I ∼

(kl)a2 = a2/f , where a is the coil radius. With 2N
quadrupoles, the total power P of the line is proportional
to P ∼ 2Na4/f2. With Eq. 7 for N , Eq. 6 for f and
disregarding constant factors, we get the figure of merit

Ap(β̂, µ) =
La4

β̂3

(1 + sin µ
2 )3

4 sinµ cos2 µ
2

. (17)

As for the radius a and writing Ap = F (β̂, a)G(µ), we
may consider different cases, namely
- Radius fixed by beam size, or a ∼ σ̂β ⇒ a4 ∼ β̂2. Then,
F1(β̂, a) = F1(β̂) ∼ 1/β̂.
- Radius fixed by external criterion , e.g. vacuum conduc-
tance. Here, a = const, such that F2(β̂, a) = F2(β̂) ∼
1/β̂3.
- A CLIC case : multi-bunch resistive wall instability. This
case is discussed in [4]. The trajectory error grows across
the line with δxn ∼ β̂1/2/a3. Keeping δx = const, we get
a ∼ β̂1/6 and F3(β̂, a) = F3(β̂) ∼ 1/β̂7/3.

Results
The figures of merit Ak, D̃, C, Ap and N are given in

Figs. 1, 2, 3 and 4 as a function of the phase advance.
A summary of the F and G functions is found in Ta-
ble 1. As for parasitic kicks (Fig. 1), a minimum is reached
near µ = π/4, while the parasitic dispersion D̃ is mini-
mized near µ = π/8. The power is also minimized near
µ = π/4, see Fig. 3. The number of cells is not minimized
at µ = π/4, but N(π/4)/Nmin = 1.18 is acceptable. On
the other hand N(π/8)/Nmin = 1.86, somewhat conflict-
ing with a minimization of D̃. It seems therefore quite ob-
vious to choose a phase advance of µ = π/4, which is also
useful for being a half of the often mandatory µ = π/2 for
some correction systems. Then quite obviously, with all the
functions varying with 1/β̂n, with 1 < n < 3, the largest
possible value of β̂ must be preferred.
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Figure 1: The beam displacement ∆ (red) and the parasitic dis-
persion D̃ (blue) as a function of the phase advance of the cell µ
[◦] and at the end of the line, resulting from trajectory errors in
the quadrupoles. Both functions are normalized to their respective
minmum value r.m.s. quadrupole displacement.
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Figure 2: The Chromaticity C in a.u. as a function of µ.
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Figure 3: The overall magnet power (a.u.) as a function of µ.

0 10 20 30 40 50 60 70 80 900

100

200

300

400

500

600

700

800

mu =  76.3

Figure 4: The number of cells (a.u.) as a function of µ.

Table 1: The figures of merit split in their dependence with β̂
and µ, and disregarding constant factors.

Case F (β̂) G(µ)
N cells 1

β̂7/3

1+sin µ
2

sinµ

Paras. kicks 1
β̂

1+sin µ
2√

sinµ cos µ2

D̃/

√
β̂ 1

β̂2

(1+sin µ
2 )2√

3 sinµ cos3 µ
2

Power :

a ∼ σ̂β 1
β̂

(1+sin µ
2 )3

4 sinµ cos2 µ
2

a = cst. 1
β̂3 ”

n-bunch res. 1
β̂7/3 ”

THE CASE OF THE CLIC MAIN BEAM
TRANSFER LINE

The transfer line of CLIC Main Beam is constrained only
at the extremities of the line, where β̂ must be matched to
synchronous curved lines. With L = 21 km, it is there-
fore economical to foresee a matching section at each ex-
tremity. The radius of the vacuum chamber will be fixed
to a large value in order to limit multi-bunch resistive wall
instabilities[4]. Therefore a large β̂ = 860 m is consid-
ered. With µ = π/4 the cell length is Lc = 438 m which
is half of the sectorization length of the tunnel. But with
so long cells, some parasitic effects must be further worked
out, like the impact of the earth magnetic field. With these
value, the chromaticity is C = −5.3. The phase error
at the edge of the momentum band δ̂p = 0.01 is δφ =
2πδ̂pC = −18◦ and the chromatic error δβ/β < 1%.
The vertical emmitance of the main beam is εn = 10 nm
[1]. At 9 GeV, the beam size is σ̂β = 15 µm. With
µ = π/4, D̃ ' 0.02 m, such that the chromatic smear
is D̃δ̂ = 200 µm with δxQ = 100 µm. With a ratio
D̃δ̂p/σ̂β = 13.5, a beam based alignment remains neces-
sary even with the optimized line.
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