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R. Tomás, M. Giovannozzi and R. de Maria, CERN, Geneva, Switzerland.
Abstract

The Phase 1 LHC Interaction Region (IR) upgrade aims
at increasing the machine luminosity essentially by reduc-
ing the beam size at the Interaction Point (IP). This requires
a total redesign of the full IR. A large set of options have
been proposed with conceptually different designs. This
paper reports on a general approach for the compensation
of the multipolar errors of the IR magnets in the design
phase. The goal is to use the same correction approach for
the different designs. The correction algorithm is based on
the minimization of the differences between the IR trans-
fer map with errors and the design IR transfer map. Its
performance is tested using the dynamic aperture as fig-
ure of merit. The relation between map coefficients and
resonance terms is also given as a way to target particular
resonances by selecting the right map coefficients.

The dynamic aperture is studied versus magnet aperture
using recently established relations between magnetic er-
rors and magnet aperture.

MATHEMATICAL BACKGROUND

A general introduction to this subject is given in [1]. The
transfer map between two locations of a beam line is ex-
pressed in the form

~xf =
∑

jklmn

~Xjklmn x
j
0 pk

x0 yl
0 pm

y0 δn
0 , (1)

where ~xf represents the vector of final coordinates
(xf , pxf , yf , pyf , δf ), the initial coordinates being repre-
sented with the zero subindex, and ~Xjklmn is the vector
containing the map coefficients for the four phase-space
coordinates and the momentum deviation δ, considered as
a parameter. The MAD-X [2] program together with the
Polymorphic Tracking Code (PTC) [3] provide the compu-
tation of the quantities ~Xjklmn up to any desired order.

To assess how much two maps, X and X ′ deviate from
each other, the following quantity is defined:

χ2 =
∑

jklmn

|| ~Xjklmn − ~X ′

jklmn|| (2)

where || · || stands for the quadratic norm of the vector.
To disentangle the contribution of the various orders to the
global quantity χ2, the partial sum χ2

q over the map coeffi-
cients of order q is defined, namely

χ2
q =

∑

j+k+l+m+n=q

|| ~Xjklmn − ~X ′

jklmn|| (3)

so that
χ2 =

∑

q

χ2
q . (4)

In principle, this definition could be used to introduce a
weighting of the various orders, using a well-defined am-
plitude in phase space. This option is not considered in the
applications described in this paper.

Furthermore, χ2
q is split into a chromatic χ2

q,c and achro-
matic χ2

q,a contribution, corresponding to

χ2
q,a =

∑

j+k+l+m=q

|| ~Xjklm0 − ~X ′

jklm0||. (5)

It is immediate to verify that χ2
q = χ2

q,c + χ2
q,a.

As shown in [1] the relation between map coefficients
and resonance terms follows,

Xx
p0000 = −ie−i∆φx

√

βxf

β
p
x

p+1
∑

q=1

qhq(p−q+1)00 + c.c. (6)

This expression already captures the most important fea-
tures of the relation between map coefficients and res-
onance terms. For example the sextupolar map coeffi-
cient Xx

20000 depends linearly on h3000 and h1200, or the
(3,0) and (1,0) resonances respectively. It can be proved
that the coefficient Xx

pq000 depends on the same terms as
Xx

(p+q)0000. The number of resonances involved in the re-
lation increases linearly with the order of the map coeffi-
cient. Therefore minimizing local map coefficients implies
a minimization of a collection of resonances. Therefore
this approach might be useful when the knowledge of the
full accelerator is limited.

CORRECTION OF MULTIPOLAR
ERRORS

Algorithm

The basic assumption is that the multipolar field errors of
the IR magnets are available as the results of magnetic mea-
surements. The ideal IR map X without errors is computed
using MAD-X and PTC to the desired order and stored for
later computations. Including the magnetic errors to the IR
elements perturbs the ideal map. To cancel or compensate
this perturbation, distributed multipolar correctors need to
be located in the IR. The map including both the errors and
the effect of the correctors will be indicated with X ′. The
corrector strength is determined by simply minimising χ2

q

for these two maps. For efficiency, the minimisation is ac-
complished order-by-order (see, e.g., Ref. [4] for a descrip-
tion of the dependence of the various orders of the non-
linear transfer map on the non-linear multipoles). In such
an approach the sextupolar correctors are used to act on χ2

2,
the octupolar ones on χ2

3, and so on.
The code MAPCLASS [5] already used in [6] has been



extended to compute χ2
q from MAD-X output. The correc-

tion is achieved by the numerical minimisation of χ2
q using

any of the existing algorithms in MAD-X for this purpose.

Performance evaluation

The evaluation of the performance of the method previ-
ously described is carried out using two of the three lay-
outs proposed for the upgrade of the LHC insertions (see,
e.g., Ref. [7]). The field quality of the low-beta triplets is
considered to follow the assumption reported in Ref. [8],
which implies that large-bore quadrupoles feature a bet-
ter field quality than smaller aperture ones. An example
of the order-by-order correction is shown in Fig. 1 for the
so-called low βmax configuration [7]. A total of sixty re-
alisations of the LHC lattice are used in the computations.
Non-zero systematic errors are included in the simulations.
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Figure 1: Evaluation of the various orders of χ2
q (upper

plot) before (blue markers) and after (red markers) correc-
tion. Sixty realisations of the random magnetic errors are
used. The layout is the low βmax, whose optics is also re-
ported (lower plot).

One corrector per IR side and per type (normal or skew
component) are used. Different locations of the non-linear
correctors can be used for the minimisation of χ2

q . The
configuration having the lowest χ2

q after correction is se-
lected for additional studies (see next section). The dif-
ference between a non-optimised positioning and the best

possible one is illustrated in Fig. 2. There, the results of
the proposed correction scheme in the case of a symmetric
configuration (see Ref. [7]) are shown. The configuration
corresponding to the grey dots achieves slightly better cor-
rections over the ensemble of realisations and therefore is
selected for further studies.
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Figure 2: Evaluation of the various orders of χ2
q (upper

plot) before (blue markers) and after (grey and red markers)
correction. The red markers represent a non-optimised (in
terms of correctors location) compensation scheme. Sixty
realisations of the random magnetic errors are used. The
layout is the symmetric one, whose optics is also reported
(lower plot).

DYNAMIC APERTURE COMPUTATION

Assessment of the non-linear correction algo-
rithm

The main goal of the error compensation is to increase
the Dynamic Aperture (DA), defined as the minimum ini-
tial transverse amplitude becoming unstable after N turns.
Details of the DA computation are given in [1]. In Fig. 3
the DA for the two LHC upgrade options, low βmax and
symmetric, as a function of phase space angle is plotted
with and without non-linear corrections schemes.

The correction algorithm proved to be particularly suc-
cessful in the case of the symmetric layout. Indeed, for this
configuration about 2.5 σ are recovered thanks to the cor-
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Figure 3: Comparison of the dynamic aperture for the so-
called LHC upgrade layouts low βmax and symmetric with
and without correction of the non-linear magnetic errors in
the low-beta quadrupoles.

rection of the non-linear b3 and b6 errors.
The compensation in the case of the low βmax layout

is less dramatic, allowing to recover 2.5 σ for small an-
gles, only. It is also important to stress that the baseline
DA is not the same for the two layouts, as the low βmax

is already well above 14.5 σ without any correction. Fur-
thermore, not only the optics is different for the options,
but also the triplets’ aperture. The first implies a differ-
ent enhancement of the harmful effects of the triplets field
quality, while the latter has a direct impact on the actual
field quality because of the scaling law [8]. It is clear that
the DA for the low βmax is already well beyond the targets
used for the design of the nominal LHC even without non-
linear correctors. The situation for the symmetric option is
slightly worse and a correction scheme might be envisaged.

Digression: Dynamic aperture vs. low-beta
triplet aperture

A third layout proposed as a candidate for the LHC IR
upgrade is the so-called compact [7]. It features very large
aperture triplet quadrupoles (150 mm diameter for Q1 and
220 mm for Q2 and Q3). Thanks to the proposed scal-
ing law, the field quality is excellent and the result DA
is beyond 16 σ and hence does not require any correction
scheme. Nevertheless, a detailed study of the dependence
of the dynamic aperture on the magnets aperture is carried
out. The DA is computed versus the aperture of Q1 and
simultaneously over the apertures of Q2 and Q3. The op-
tics is assumed to be constant. The results are shown in
Fig. 4. The minimum, average, and maximum (over the
realisations) DA are shown for the two type of scans. The
horizontal lines represent the asymptotic value. The depen-
dence on the aperture of Q1 is rather mild, because of the
not too high value of the beta-function, and there exists a
rather wide range of apertures for which the DA is almost
constant. In particular for φ > 110 mm the asymptotic
value of the DA is reached. A constant drop of DA is ob-
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Figure 4: DA as a function of the low-beta quadrupoles
aperture. The scan over the aperture of Q1 is shown
in the upper plot (nominal aperture 150 mm), while Q2

and Q3 are considered in the lower plot (nominal aperture
220 mm). The layout is the so-called compact one.

served for φ < 100 mm and, in general, the three curves
behave the same.

The dependence of DA on the Q2 and Q3 aperture
is somewhat different. The asymptotic value is hardly
reached for apertures larger than 250 mm and the DA drop
with aperture is monotonic and smooth. The spread be-
tween the asymptotic values for minimum, average, and
maximum DA is smaller than for the case of the scan over
the aperture of Q1. As mentioned above the DA scales with
a power law of the magnet aperture.
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