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RESEARCH OBJECTIVES AND SUMMARY OF RESEARCH

The work of our group can be divided into three major areas.

1. Sonar

The central problem is still the development of effective processing techniques for
the output of an array with a large number of sensors. Specific topics of current
interest are the following.

a. In Quarterly Progress Report No. 84 (pages 225-226) we described a state-variable
formulation for the estimation and detection problem when the signal is a sample func-
tion from a nonstationary process that has passed through a dispersive medium. Work
has continued in this area and we are attempting to find effective solution procedures for
the equations that result. The state of current progress is described in A. B. Baggeroer's

doctoral thesis.1

b. Iterative techniques to measure the interference and modify the array processor are
still being studied. The current work includes both the study of fixed and adaptive arrays.

2. Communications

a. Digital Systems

The work on decision feedback systems that was described in Quarterly Progress
Report No. 84 (pages 225-226) has been completed and is summarized in M. E. Austin's

doctoral thesis.2 An algorithm that used the past decisions in order to attempt to
eliminate intersymbol interference caused by the dispersive nature of the channel was
devised. Performance of this system was simulated and its probability of error was
calculated. It was found to be a very effective procedure and, even in the presence of
decision errors, operated reasonably well. Throughout this work perfect measurement
of the channel was assumed. Further studies will include the effect of errors in channel
measurement on the decision feedback system.

We have continued to work on the problem of evaluating the performance in the prob-
lem of detecting Gaussian signals in Gaussian noise. Some of the current results are
summarized in Section XXIX-A. L. D. Collins has also formulated a signal design
problem and is attempting to obtain an effective solution procedure for this. The results
of this investigation will then be applied to a number of design problems in the radar and
sonar field.

The study of digital and analog systems operating when there is a feedback channel

This work was supported in part by the Joint Services Electronics Programs
(U.S. Army, U.S. Navy, and U.S. Air Force) under Contract DA 28-043-AMC-02536(E),
and in part by U. S. Navy Purchasing Office Contract N00140-67-C-0210.
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available from receiver to transmitter continues. The performance of several
suboptimal systems has been computed, and work continues on the design of optimal sys-
tems and related problem design. Some of the current results are summarized in
Section XXIX-B.

b. Analog Systems

(i) Work continues on the problem of estimating continuous waveforms in real time.
We are using a state-variable approach based on Markov processes. Several specific
problems have been studied experimentally. In order to investigate the accuracy obtain-
able and the complexity required in these systems by allowing the state equation to be
nonlinear, we may also include interesting problems such as parameter estimation. This
modification has been included and several parameter estimation problems are being
studied experimentally.

(ii) One of the more significant results in linear estimation theory is the closed-form

error expression developed originally by M. C. Yovits and J. L. Jackson. 3 We have
been able to extend this result to a much larger class of problems. The current state

of this work is described in M. Mohajeri's Master's thesis.4 Research will continue
along these lines.

3. Random Process Theory and Applications

a. State Variable and Continuous Markov Process Techniques

(i) In Quarterly Progress Report No. 84 (pages 226-227) we described an effective
method for obtaining solutions to the Fredholm integral equation. As a part of this tech-
nique we found the Fredholm determinant. Subsequent research has shown that a similar
determinant arises in a number of problems of interest. Specifically, we have been able
to formulate several interesting design problems and carry through the solution.

Baggeroer 5 has studied the problem of designing a signal under an energy and
mean-square bandwidth constraint to combat the effects of non-white additive noise. The
actual solution exhibited a number of interesting phenomena whose implications are now
the subject of further research. Furthermore, the problems of peak-power and hard-
bandwidth constraints have been formulated, but the solution has not yet been carried
out. A related problem is the one of signal design for detection in a discrete resolution

environment. E. C. Wert 6 is studying methods of solution for this problem.

A problem that is apparently dissimilar is that of estimating the parameters of a
Gaussian random process. We have derived a bound on the minimum mean-square error
obtainable by using any estimation scheme. Also, we have been able to express this
bound in terms of the Fredholm determinant. This gives us a convenient computational
procedure for actually evaluating the mean-square error bound.

(ii) Most of the channels of interest and practice are bandpass channels. The value
of complex notation in dealing with problems of this type is well known. We have formu-
lated a complex state-variable representation and have derived a number of the results

needed in order to study problems of this type. 7

b. System Identification Problem

The system identification problem is still an item of research. Applications of
interest include measurement of spatial noise fields, random process statistics, and
linear system functions.
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c. Detection Techniques

Various extentions of the Gaussian detection problem are being studied. A particular
topic of current interest is the detection of non-Gaussian Markov processes.

H. L. Van Trees
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A. ASYMPTOTIC APPROXIMATIONS TO THE ERROR PROBABILITY

FOR DETECTING GAUSSIAN SIGNALS

In Quarterly Progress Report No. 85 (pages 253-265), we discussed the application

of tilted probability distributions to the problem of evaluating the performance of opti-

mum detectors for Gaussian signals received in additive Gaussian noise. The present

report describes further work on this topic. We first present an asymptotic expansion

for the error probabilities. The leading term in this expansion is asymptotically

the same as the approximation postulated in the previous report. Second, we dis-

cuss the calculation of the semi-invariant moment-generating function p(s), with par-

ticular emphasis on the case in which the random processes of interest can be modeled

via state variables. This includes as a subclass all stationary processes with rational

spectra. We conclude with a formulation of a signal design problem.

The problem that we are considering is the general Galussian binary detection

problem.

H: r(t) = s l (t) + m l (t) + w(t)

Ti < t < Tf, (1)
H2 : r(t) = s 2 (t) + m 2 (t) + w(t)
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where sl(t) and s2(t) are sample functions from zero-mean Gaussian random processes

with known covariance functions Kl(t, T) and Kz(t, 7), respectively; ml(t) and m 2(t) are

known waveforms; and w(t) is a sample function of white Gaussian noise with spectral

density N /2.

1. An Asymptotic Expansion for the Probability of Error

We shall now derive an asymptotic expansion for the error probabilities. We have

previously shown that

Pr [E HI] = pI (L) exp[p(s)-sL] dL (2)

Pr p (L) exp[p(s)+(1-s)L] dL. (3)

For simplicity, we shall treat only Pr [E H 1 ]. The derivation for Pr [E IH2] is very

similar.

First, we introduce a normalized, zero-mean random variable

-
z = (4)

Then

00 sPr [EI H1] = exp[s)-s (s)] e Pz (Z) dZ. (5)

Before proceeding from Eq. 5, let us point out the motivation for introducing the tilted

random variable Is (and subsequently zs).

One of the serious practical problems that we encounter in the straightforward

evaluation of the error probability is that we are generally interested in the behavior far

out on the tail of the probability density. Since the test statistic is made up of a large

number of statistically independent components, we would like to apply the Central Limit

theorem. This theorem, however, is of little use when the region of interest is the tail

of the probability density.

But observe that in our alternative error expression, Eqs. 2 and 3, we no longer are

integrating under the tail of a probability density, but rather we start integrating at the

mean of the tilted variables Is . Furthermore, the integrand contains a decaying expo-

nential factor that results in the value of the integral being determined primarily by the

behavior of p, (L) near the mean rather than on the tail. Thus, we expect, at least
s

heuristically, that the Central Limit theorem may be useful in approximating the
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error probabilities.

Unfortunately, in most cases of interest p, (L) does not tend to a Gaussian distribu-

tion in the limit as the number of independent components goes to infinity. This is a

consequence of our covariance functions being positive definite, square integrable func-

tions from which it immediately follows that the variance of Is remains finite as the num-

ber of independent components goes to infinity. In this case, a necessary and sufficient

condition that p, (L) approaches the Gaussian density is that each component random

s 1
variable in the sum be Gaussian, which is not the case except in the known signal-

detection problem. Experience has shown us, however, that the limiting distribution,

while not converging to the Gaussian distribution, does not differ a great deal from the

Gaussian. Therefore, it is fruitful to make an expansion of pz (Z) which is related to
s

the Gaussian distribution. Such an expansion is the Edgeworth expansion, the first few

terms of which are given below. 2

pz (Z) = (Z) - [13 (3)Z)]

4 ) Y3 (6)

2
Y5 (5) 34 (7) 3 (4)
120 (Z) + 144 (Z) + 1296

[ (6) 64 (8) 35 (8)
+ 20 (6) (Z) + 1152 (Z) + 720 (Z)

2 4
Y3 Y4 (10) Y3 (12)(Z )+ 1728 (Z) + 31104 (Z)

(6)

where

4(n)(s)Yn (7)

n [(s)]n / 2 (7)

and

(k)(Z) = d k  
exp Z2 k= 0 1, 2, ... (8)

dZ qI7

This expansion may be obtained from a Hermite expansion of pz (Z) (also sometimes
s
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called a Gram-Charlier series) upon reordering the terms. It has the further advantage,
for our purposes, that the coefficients are expressed in terms of the semi-invariants of

the random variable zs, which are readily computed from [(s).

We now substitute the expansion (8) in the integral

00

p p (Z) exp[-sq ) Z] dZ,
0O s

and interchange orders of integration and summation. We are then faced with the task

of evaluating integrals of the form

Ik(a) = (k)(Z) exp(-aZ) dZ. (9)

Repeated integrations by parts enable us to express these integrals in terms of the

Gaussian error function

1-Z
P (X) = exp dz. (10)

The first few integrals are

Io(a) = #(-a) exp (1la)

1
1 (a) = a 1o(a) - (lib)

2 2
12 (a) = a 2I (a)- (Ic)

3 1 2
13(a) = a Io (a) +- (1-a ) (11d)

4 1 3
I4(a) = a I(a) +-- (a-a ) (lie)

5 1 2415(a) =a I (a) + (-3+a -a ) (1lf)

6 1 35
16 (a) = a I (a) + (-3a+a -a ). (11 g)

Thus we have our approximation to the integral

oo

pz (Z) exp[-s 41s) Z] dZ,
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and therefore also to Pr [E H 1]. We simply evaluate L(s) and its derivatives and then

substitute. This procedure is far too complex to be used analytically, but if we use a

digital computer to obtain (s) - as we must in many problems - then there is no dis-

advantage in having the computer evaluate our error approximation, too.

2. Calculation of L(s) for Gaussian Random Processes

It should be pointed out that we have not used the Gaussian assumption up to this

point. We now make use of this assumption in computing l(s), in which case we have

an explicit closed-form expression. 3

2 s Tf It: dt
Ti

+ 1-s f o f dt

1

1

s(-s)Tf 2 (m 2 (t)-ml(t)) - hTfcomp(t, : s)[m 2 (T)-ml(T)] dT dt

i 1

(12)

Here, 5 , , and o denote the minimum mean-square linear estimation error
s1 s comp

for estimating sl(t), s 2 (t), and scomp(t) = & sl(t) + NI -s s (t), respectively, when

observed over [T i , t] in additive white noise of spectral height No/2; and hcomp(t, T: s)

denotes the minimum mean-square linear estimator for estimating the composite pro-
2

cess s (t). The last term in Eq. 12 can also be interpreted as d (s), the out-
comp comp

put signal-to-noise ratio for the problem of deciding which of the known signals ml(t)

or m 2 (t) was sent when observed in colored Gaussian noise with covariance

N
K(t,T: s) = Kcomp(t , : s) + -6(t-T)n comp 2

N
= sK 1(t, T) + (1-s) K 2 (t, T) + 2 6(t-T). (13)

An important subclass of problems in which we can readily compute the various

terms that comprise [L(s) is composed of problems in which the random processes can
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be modeled as the output of linear state-variable systems that are driven by white

Gaussian noise. This model includes all stationary processes with rational spectra as

one important subclass of interesting problems.

The state-variable model allows us to use the results of the Kalman-Bucy formula-

tion of the optimum linear filtering problem to determine the optimum receiver struc-

ture as well as to calculate i(s).4, 5 The straightforward way to compute the first three

terms in Eq. 12 is to solve the appropriate matrix Ricatti equation and then integrate

the result over the time interval [Ti, Tf] as indicated.

We assume the following state-variable model for the random process generation.

ddxx(t) = F(t) x(t) + G(t) u(t) (14)

y(t) = C(t) x(t) (15)

T
E[u(t)u T ( ) ] = Q(t) 6(t-T) (16)

E[u(t)] = 0. (17)

Then

_ t: = C(t) Z(t) CT (t ) ,  (18)
y (t NI t: Z

where

d T T T -1
t (t) = F(t) E(t) + Z(t) FT (t) + G(t) Q(t) G (t) - __(t) C (t) R (t) C(t) (t), (19)

with

(T i ) =_ .o (20)

A useful computational alternative enables us to express the first three terms in

ji(s) as the solution to sets of linear differential equations evaluated at a point. In par-

ticular, for the important case in which Eqs. 14 through 17 are time-invariant, which

includes all stationary processes with rational spectra, the solution to this linear set

of equations can be obtained in closed form via the appropriate transition matrix.

We use the linear system of equations which is equivalent to Eq. 19.4

d 1(t) =(t) (t) + G(t) Q(t) G (t) 4 2 (t) (21)
dt 1- - F-Q ( 2(t)(2

dt Z(t) = CT(t) Z C(t) _1 (t) - FT(t) _2 (t) (22)
o

1(Ti) = F (23)
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(24)

N
t: p dt

C (t) _ (t) 1 (t) CT (t ) dt

S T 2
T (t) o C (t)

Tr [F(t)] dt

iL

T

1 d[In det _ 2 (t)] +

= fn det _2(Tf) +

JL f

§T
1

Tr [F(t)] dt

YTf Tr [F(t)] dt.
1

In the derivation above we have made use of several properties of the trace operation. 6

The first term in Eq. 25 is readily computed in terms of the transition matrix of the

canonical system

F (t)

T 2
N(t) C (t)

0

.e(T., T ) = I.If we partition the transition matrix

If we partition the transition matrix

(t, T i) = (tT
21(t, T

)

G(t) Q(t) GT(t)

)(t, T)
-F (t)

-1 2 (t, Ti)

_22(t, Td
(28)

(29)2 (Tf) = e 2 1 (Tf Ti) -- o + 2 2 (Tf, Ti).

QPR No. 88
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N O  T1

2
N o

yTf

T.
1

Tf

(25)

d
d O(t, T) = (26)

(27)

then

l(t) 2(t
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In the case of constant-parameter systems, it is particularly easy to compute the tran-

sition matrix in terms of a matrix exponential. 6

It is interesting and useful to observe that L(s:t), where we have explicitly indicated

the dependence on the time t, may be regarded as a state variable of a (realizable)

dynamic system. Straightforward differentiation of Eq. 12 yields

84(s: t) Ntt ): ) N N S)

- -~o_2 N s + 2- N -comp( It:'

s(1-s) t  2

No0 L(m (t)-ml(t)) - d h comp(t3 T: S)(M(T)-m 1() dT. (30)

with the initial condition

t(s:Ti) = 0. (31)

Since we can compute each term on the right-hand side of Eq. 30 in real time, that

is, as the outputs of realizable dynamic systems, L(s: t) can also be computed as the

output of such a system. This naturally leads us to consider optimization problems in

which it is desired to use .L(s: Tf) as a performance index that is to be minimized as a

function of various system parameters, subject to some constraints. We have at our

disposal the techniques of optimal control theory (Pontryagin's minimum principle) which

provide a set of necessary conditions for the minimum. 7 One such problem is formu-

lated below.

3. A Signal Design Problem

We shall formulate a typical problem in optimal signal design. By using

Pontryagin's maximum principle, we obtain a set of differential equations and

boundary conditions which the optimum signal must satisfy. The (numerical) solu-

tion of these equations and the classification of the various solutions is a topic of

current research.

The communication problem of interest is diagrammed in Fig. XXIX-1. This

problem is closely related to the more realistic problem of communicating over a

Rayleigh fading channel. We wish to pick s(t), subject to constraints on its energy

and bandwidth, to maximize the performance of the optimum detector. The perfor-

mance measure that we would like to minimize is the error probability, but the

complexity of the error expressions is not very encouraging. Instead we minimize

p(s) which appears as the dominant term in our error approximations.
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w(t)I
w(t)

OPTIMUM
r(t) DETECTOR

I WHITE GAUSSIAN
NOISE

CHANNEL

Fig. XXIX-1. Communication system model.

Thus we have the cost functional

1- s

N
0

(t t:
a 2 (t t:

T f

T.

N)
It: 02 )

1 T

1

N 0 Y iL

2 dt,2 ( 
t :

N
0

2

N N
0 =

2 /

d (t) = (t) (t ) + E (t) FT(t) + G(t) Q(t) GT(t)

-s2(t) 2 M _ _

d T T
d-T (t) = F(t) _ 2(t) + 2(t) F (t) + (1-s) G(+) Q(t) G (t)d t 2 -~t -2-

-s2 (t) - Z
N -2

0

T
- - -2 (34b)

(35a)

(35b)i (Ti) = (1-s)o.-2 1 -o

By the results of the previous section, this can be rewritten in terms of the solution to
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S(t)

H,

where

(32)

(33a)

(33b)

(34a)

s2(t) C(t) l(t) CT(t)

s2(t) C(t) -Z2(t) CT(t)

z 1(Ti) =
-1 i -O
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a linear system of equations.

J s i n det Xz(Tf) +
2 -

- ~In det X4 (Tf) +2 -4 f

f Tr [F(t)] dt

Tr [F(t)] dt]
T

1

S-s 1 s
2 sin det X2(T f) 2 In det X4(Tf - (36)

T

Tr [F(t) dt].
1

The last term is independent of the modulation and may be ignored. The first two terms

in Eq. 36 are obtained from the solution of the following system of differential equations:

d-X(t) =F(t) X (t) + G(t) Q(t) G (t) X (t)
dt-1 1-

d 2 T 2 T
X 2(t) = s (t) C (t) C(t) X (t ) - F(t) X (t )

d T
dt 3(t) = F(t) X 3 (t) + (1-s) G(t) 9(t) G (t) X 4 (t)

d X(t)= s2 t) cT 2
dX(t) = s (t) C (t) _ C(t) X 3 (t) - FT(t) X4(t),

with the boundary conditions

X (T.) = 0

X 2 (Ti) =I

X 3 (Ti) = (1-s)Zo

X 4 (T.) = I.

Thus we have a fixed-terminal time problem with a terminal cost.

Also, we have the energy and "bandwidth" constraints

E = f s 2 (t) dt

1

B 2  1 lf 2B YT. (s(t)) dt.
T.
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(38b)

(38c)

(38d)

(39)
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We introduce additional state variables to incorporate these constraints. It also is con-

venient to let the control variable u(t) be the derivative of s(t), and to let s(t) be an addi-

tional state variable.

x 5 (t) = s(t) (41)

S5 (t) = s(t) = u(t) (42)

x 6 (t) = s (t) = x 2 5 (t) (43)6 (

x 7 (t) = (s(t))2 = u (t). (44)

Thus the constraints become target values (boundary conditions) for x 6 (t) and x 7 (t). Fur-

thermore, we impose the additional boundary conditions s(Ti) = s(Tf) = 0, in order that

the signal have no jump discontinuities at the ends of the interval. Thus

x 5 (Ti) = x 5 (Tf) = 0 (45)

x 6 (Tf) = E (46)

x 7 (Tf) = EB 2 . (47)

Now we write down the Hamiltonian.

H = Tr X 1 (t) PT(t) + Tr (t)PT

+ Tr X 3(t T(t)] + Tr MX4(tP(t)]

+ x 5 (t) p5 (t) + x 6 (t) P 6 (t) + x 7 (t) P7 (t)

= Tr [ F (t)X 1 (t)+G(t)Q(t)Gt)x2((t)X _T(t) ]

+ Tr F(x()CTt) 2 C(t)X (t)-F (t)2X(t)) (t)

+ Tr r(F(t)X3(t)+(1- s)G(t)Q(t)GT (t)X 4 (t))pT(t)]

+ Tr x(t)cT(t) C(t)X (t)FT(t) j4
2 2

+ u(t) 5(t) + x5 6 (t) + u (t) p7 (t), (48)

where
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P (t), P 2 (t), P 3 (t), P 4 (t), P 5 (t), P 6 (t), and P 7 (t)

are the co-state (Lagrange multiplier) functions. We now obtain the differential equa-

tions for the co-states.

d 8HP (t) axdt 1 ax 2

d M aH
P2(t) = x

dt - ax 3-2
d _aH

tP (t) = -

-3

d 8H
dt 4t aX --4

-F T(t) P (t) - x (t) C (t) C(t) P (t)

T
-G(t) _Q(t)G (t) P 1 (t) + F(t) P 2 (t)

T 2 T 2
-F (t) P (t) - x (t) C (t) C (t) P (t)

t3 - 5 - N - 4o

-(l-s) G(t) Q(t) GT (t) P 3 (t) + F(t) + P 4 (t)

a- 2 x 5 (t) ' Tr Cx5 0

T(t)C(t) X1 )pT(t)+(1-s)X3 (t)PT(t)) ] + P ( (49E

d OH

dt P6(t) ax = 0 p6(t) = constant (49:

d aH
SP7 (t) = x - 0 p 7 (t) = constant. (49

7

Furthermore, we require that the Hamiltonian be minimized.

aH
au - P5 (t) + 2u(t) P 7 = 0

p 5(t)
- u(t) - (5(

2p7

aH-- 2p 7 > 0
au

- P7 > 0 (5

Thus we can eliminate u(t) from our equations (in particular, from Eq. 42), to obtain

p5 (t)
x 5 (t) = p 7

f)

1)

(52)

Finally, there are the boundary conditions on the co-states. Since we have a

terminal cost,
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8J
P 1 (Tf) - = 0 (53a)

1

J - 1 1TP 2 (Tf) =- 2 (1-s) X2 (Tf) (53b)

8J
P (Tf) 8 - 0 (53c)

3

P4(Tf) -  =4 [X(Tf)] (53d)

Therefore, we have obtained a system of 10 coupled nonlinear differential equations

(8 are matrix equations) with 10 boundary conditions. These are Eqs. 37a through 37d,

52, and 49a through 49c with the boundary conditions (38a) through (38d), (45) and (53a)

through (53d). In addition, there are two undetermined constants (Lagrange multipliers),

P6 and P7 , associated with the energy and bandwidth constraints.

Two factors contribute to the difficulty of solving these equations: one is the fact that

they are nonlinear, and the second is the split boundary condition. At present, we are

investigating possible solution techniques.

4. Summary

We have obtained an asymptotic approximation for the error probabilities for opti-

mum detection of random signals in terms of the semi-invariant moment-generating

function (s). We then obtained closed-form expressions for 11(s), by assuming that the

signals are sample functions from Gaussian random processes. When these processes

can be modeled as the output of linear systems that can be modeled via state variables,

we were able to obtain i(s) in a particularly simple form from the solution to a set of

linear differential equations. We then applied these results to the problem of designing

an optimal signal for communicating over a singly-spread fading channel. We employed

the minimum principle of Pontryagin to obtain a system of differential equations and

boundary conditions which the optimum signal must satisfy.

L. D. Collins

References

1. H. Cramor, Mathematical Methods of Statistics (Princeton University Press,
Princeton, N.J. , 1956).

2. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (National
Bureau of Standards, Washington, D.C., 1964), Sec. 26. 2. 47.

3. L. D. Collins "Closed-form Expressions for the Fredholm Determinant for State-
variable Covariance Functions (submitted to Correspondence Section, IEEE Proc.).

QPR No. 88 275



(XXIX. DETECTION AND ESTIMATION THEORY)

4. R. E. Kalman and R. S. Bucy, "New Results in Linear Filtering and Prediction
Theory," Trans. ASME J. Basic Engrg., pp. 95-108, March 1961.

5. F. C. Schweppe, "Evaluation of Likelihood Functions for Gaussian Signals," IEEE
Trans., Vol. IT-11, No. 1, pp. 61-70, January 1965.

6. M. Athans and F. C. Schweppe, "Gradient Matrices and Matrix Calculations," Tech-
nical Note 1965-53, Lincoln Laboratory, M.I. T., November 17, 1965.

7. M. Athans and P. L. Falb, Optimal Control (McGraw-Hill Publishing Co., New York,
1966).

B. SCHEME TO UTILIZE NOISELESS FEEDBACK TO REDUCE

CHANNEL NOISE

1. Introduction

A much-studied communication problem is that of communicating over an additive

white Gaussian noise channel at the ultimate error-free rate given by channel capacity.

A great deal of effort has been expended toward developing systems that approach the

channel capacity rate arbitrarily closely. Such systems involve block coding, sequen-

tial decoding, orthogonal signaling (see Wozencraft and Jacobsl),or other equally com-

plex algorithms for approaching channel capacity. Recently, many authors 2 - 5 have

demonstrated that simpler systems will achieve channel capacity if a noiseless feedback

link is available from the receiver to the transmitter. The availability of a noiseless

feedback link does not change the forward channel capacity.

In this report noiseless feedback will be applied to reduce the additive channel noise

in a manner independent of the particular type of channel signaling. If this feedback

technique is applied to the digital example mentioned above, channel capacity will be

achieved without coding. If this technique is applied to a process-estimation system,

the rate distortion bound on mean-square error can be obtained.

A noiseless feedback channel is shown to be effective in reducing the channel noise

and leaving the transmitted signal uncorrupted. In other words, the over-all feedback sys-

tem behaves exactly as the no-feedback system, but with a reduced "effective" additive

noise.

2. No-Feedback System

Figure XXIX-2 shows a communication system without feedback. m(t) is the trans-

mitted signal that depends on the information that is being conveyed through the channel.

It might be the transmitted signal in a digital problem, a parameter-estimation problem

or a process-estimation problem. In the example below a parameter estimation prob-

lem is studied; for the present, the exact form that m(t) takes is unimportant.

The receiver in Fig. XXIX-2 depends on the structure of the modulation and operates

to recover the information conveyed through the channel. The receiver would be a
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CHANNEL

n (t)

m(t) r (t)= m(t)+n(t)
SOURCE - MODULATOR RECEIVER

Fig. XXIX-2. No-feedback communication system.

decoder if block coding were used.

3. Feedback System

Figure XXIX-3 shows the system of Fig. XXIX-2 modified to include a feedback chan-

nel. Since the feedback channel is noiseless, a waveform, m(t), can be subtracted at the

transmitter and added at the receiver without affecting the message waveform m(t). The

gain K(t) is necessary in order to adjust the transmitter to meet power (energy) con-

straints that are assumed identical to the no-feedback transmitter requirements.

The "ESTIMATOR" in Fig. XXIX-3 represents a filter that generates the minimum

mean-square estimate of m(t), given K(T) m(T) + n(T) (ESTIMATOR input) for T7 t. If

K(t) is chosen so that the average transmitted power in the feedback system is identical

to that of the no-feedback system, then

K2(t) E{(m(t)-M(t)) 2 } = E{m(t)},

CHANNEL I

n(t) I
I

SM n (t)
K(t)

Fig. XXIX-3. Feedback communication system.
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and K(t) < 1 for all t. This fact implies that the effective noise n(t)/K(t) into the feed-

back receiver is less in magnitude than the noise n(t) input to the no-feedback receiver

for all t; hence, the feedback system performs better.

Improvement will also be obtained for other choices of K(t) (satisfying the transmitted

power constraint), although this fact is not as obvious as the choice of K(t) above. In

some applications the estimate m(t) may be too complicated or impossible to compute.

In such cases a suboptimum ESTIMATOR could be inserted, and thereby the feedback

channel would be utilized to improve the system performance. The following example

is in such a situation.

If K(t) * constant, the receiver must be modified from the no-feedback receiver to

incorporate time-variant noise.

4. Example

This brief example demonstrates some of the ideas presented for the conversion of

a no-feedback system to one employing feedback.

Without feedback assume that the value of a random variable e (uniform in [-.5, .5])
is to be conveyed across an additive white noise channel (noise density, N0 /2). The

transmitter is limited in energy to E 0 in the time interval [0, T]. This problem is analo-

gous to the feedback schemes of Omura and of Schalkwijk and Kailath. 4

Assume that the transmitter uses pulse amplitude modulation, with the height of the

pulse being proportional to 0. Then

m(t) = (1)

in order to maintain the transmitted energy constraint. The receiver is assumed to be

the minimum mean-square linear estimator of 0; therefore, the estimate at t = T is

12E0 1
TT T 12

=(T) = dt NO r(t). (2)

2 0

The normalized (or fractional) variance of 9(T) for this no-feedback scheme is

1

tno 2E 0 ' (3)
feedback 1 + 0

N O

This performance is optimal for the constraints of simple linear modulation and a linear

receiver. A linear receiver is not optimal for this problem because of the non-Gaussian

probability density of the random variable 0. Obviously, a more complex modulation

scheme will work better.
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In order to add feedback, the "ESTIMATOR" block in Fig. XXIX-3 needs to be

determined. Assume that a Kalman filter is used to form the estimate m(t). The input

to the filter is

ZE
r"(t) = K(t) m(t) + n(t) = K(t) T + n(t), (4)

and the estimate m(t) is

1 2E
0

m(t) = (t), (5)
A

with 8(t) the output of the Kalman filter

d ^  2 24E 0 ^ 2 1E 0

--(t) =-K (t) P(t) N-T 8(t) +N T K(t) P(t) r"(t) (6)

e(0) = 0.

The covariance

P(t) = E{(8(t)- )2 } (7)

satisfies

24E0
P(t) = - K2 2P(t) = (K2 t) P2(t)

1
P(0) 12 (8)

The Kalman filter is not the minimum variance estimator of 8, because of the prob-

ability density of 8; hence, the ESTIMATOR is suboptimal and could be improved by a

more complex filter.

With the further constraint that the mean power of the feedback system agree with

the no-feedback system, K(t) is evaluated as

12E E
K2(t) E[(m(t)- m(t)) ] = K2 (t) P(t) = (9)

The performance P(t) (from Eqs. 8 and 9) satisfies

2E0 P(t) 1
P(t) - N T P(0) - 12 (10)

Integrating yields the performance of the feedback system:
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P(T) -2EO/N 0
- =e

1 feedback
12

This fractional error is less than the no-feedback error in Eq. 3. For large values of

2E 0 /N 0 the difference is considerable; the effective signal-to-noise ratio of the feed-

back system is approximately the no-feedback ratio exponentiated.

5. Conclusions

A technique for the utilization of a noiseless feedback channel has been proposed

for use in arbitrary communication systems over white noise channels. The system

is not designed to utilize the feedback channel optimally, but the technique presented

turns out to be optimal for many communication systems.

This technique achieves improvement by inserting some feedback devices between

the no-feedback transmitter and the no-feedback receiver. Virtually no changes are

made in the basic signaling structure in converting from a no-feedback system to a

feedback system. The feedback channel operates to reduce the transmitted power, but

does not alter the type of message modulation/demodulation employed. Obviously, the

actual transmitted signal is slightly different in the two systems.

T. J. Cruise
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