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RESEARCH OBJECTIVES

The plasma physics group continues to study the interactions between electromag-
netic oscillations and ionized gases. These studies are made over a very wide spec-
trum of frequencies ranging from tens of kilocycles per second through microwaves and
infrared frequencies to the optical. The low frequencies bring out the characteristics
of the ion motions whereas the high-frequency regime aims at investigating the electron
interactions. In the experiments we use the standard radio and microwave techniques
together with the more novel laser methods.

In earlier years we have concentrated on those aspects of wave-plasma interactions
in which the waves cause but a small pertubation of the medium. Now our interest tend
more and more towards nonlinear phenomena as, for example, coupling between particles
and waves, parametric coupling of waves with waves and turbulent plasma phenomena.

The experimental and theoretical studies carried out in the group are closely inter-
woven. Theoretical investigations are being made regarding the propagation of large
amplitude waves in an ionized gas, electromagnetic emission from plasma oscillation
in a highly turbulent gas and stochastic acceleration of charged particles. Particular
attention is being paid to such problems as particle trapping in the potential well of a
longitudinal oscillation, wave-wave coupling and parametric growth of oscillations.

G. Bekefi

A. EXACT NONLINEAR UNDAMPED WAVES IN A COLLISIONLESS PLASMAt

1. Moving Frame

Exact solutions of the collisionless Boltzmann and Poisson equations are easy to

find by a method for studying interacting electron beams, which was introduced by Sen 1

and further discussed by Bernstein, Greene and Kruskal. If there is a frame moving

with velocity u in which the potential is static V = V (x-ut), any distribution that is a

function only of the constants of motion of the electrons and ions will satisfy the Boltz-

mann equation, and Poisson's equation is solved by quadratures.

This work was supported principally by the U.S. Atomic Energy Commission (Con-
tract AT(30-1)-1842).

tThis work was done partly at The Los Alamos Scientific Laboratory under U.S.
Atomic Energy Commission Contract W-7405-Eng-36 with the University of California.

QPR No. 88 121



(XXI. PLASMA PHYSICS)

Let us chose electron variables scaled to thermal energies and write

v for my 2kT

x2 for m(x-ut)2/2kT

for e(V+V ) kT > 0.

In the moving frame (Fig. XXI-1)

FREE ELECTRONS

-cO
TRAPPED
ELECTRONS

Fig. XXI-1. Potential and kinetic energy diagram.

w= v -u

2 2
C =W -,

where c 2 is the energy constant, and we define the velocity c = Vw- to have the

same sign as w.

2. Distribution in Velocity

Any function of the variables v y, v z , u, c will satisfy the collisionless Boltzmann

equation. We wish, however, to represent waves in a plasma of stationary ions and in

which the electrons have a Maxwell distribution in the absence of a potential (4=0). Such

a distribution function is

n 2
f ...o e-(u+c)

This function is not the only one satisfying the required conditions, but if it is lin-

earized by expanding in powers of 4, it yields exactly the function of linear theory:

f +-v e-u-v

All of the results of linear theory are therefore contained in the assumed function (3).

The choice of the arbitrary constant V in the potential 4) such that min = 0 is
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equivalent to chosing a Maxwellian distribution at the coordinate marked fM in
2

Fig. XXI-2, and makes c negative for electrons trapped in the potential wells. The

0-

f c=o

X-U t

Fig. XXI-2. Trajectories in phase space.

V
2

0 I 2 3 4 5 6 7 8 9

-2

LLIAN

TRAPPEI

Fig. XXI-3. Logarithm of the assumed distribution in velocity.

distribution (3) is therefore complex for trapped electrons. We shall take only the real

part of it

n 2 2
0 -u -cf = - e

t Tr
cosh 2 u c;
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that is we drop the odd powers of c because they change sign (are not constants of the

motion) when electrons are reflected from the walls of the potential wells. This means

that for any level above the potential well in Fig. XXI-1 there will be unequal numbers

of electrons going to the right and to the left, but in the potential wells these numbers

are equal. This is necessary if we are to have a stationary state. Any lack of summe-

try in the potential wells will lead to a sloshing of the trapped electrons back and forth

in the well with eventual symmetrization by phase mixing. This has been studied by

O'Neil. 3 We are studying the steady-state waves that propagate after phase mixing has

taken place. The distribution defined by (3) and (5) is continuous everywhere but has a

discontinuous first derivative at the top of the well (Fig. XXI-3). This is allowed in a

collisionless plasma. The distribution (3) and (5) is probably the only one satisfying the

four conditions:

A Static in a moving frame

B Satisfies the linear limit

C Everywhere continuous

2
D Analytic in c .

3. Electron Density

We may now integrate (3) and (5) over all velocities to obtain the electron density

n_ 1 Ka )a = no (6)

0

where the coefficients K a are confluent hypergeometric functions

M(a,1/2,-u) = (-1) a!K (7)
2 a

with the signs chosen so that they are all positive for large u.

K = 2 K = Real Z'(u)

a(a+l) Ka+1 = (u 2 -Za+1/2)K a - (1-1/2a)Ka_1. (8)

Here Z(u) is the plasma dispersion function as defined and tabulated by Fried and Conte. 4

The functions u2K1 and -2uK2 are shown in Fig. XXI-4. There are two interesting lim-

its to the sum (6):

n_ - n(l-2u ) e, as u - 0 (9)n-nolu) .
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n
o

n - o 

S + /u 2

as T - 0. (10)

For u = 0, the electrons have a Boltzmann distribution in the potential with a max-

imum density over the center of the wells, 0 = max. A finite-phase velocity reduces

1.643
1.5

n 0.5

-0.5

0.857 2 3 4 5 6 7 8 9 10 11

Fig. XXI-4. Plasma functions u 2K and -2u 2K'

the density of electrons over the center of the well and eventually reduces it below the

density at zero potential. This is so because the free electrons have a higher velocity,

and hence lower density, at high . As we shall see, this reversal is necessary to pro-

duce positive space charge at high potentials and hence self-consistency. The function K 1

changes sign for 2u = 1.715. There are no self-consistent waves at low velocity.

4. Poisson's Equation

The number n is the electron density at zero potential. For phase velocities above

u = 0.926 the average electron density is less than n0 and for average space-charge

neutrality the positive ion density must also be less than n .

(11)n = n (1 - ).+ o\ 2

Then

n - n = n(C -')/2 (12)

and
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2
a2 ,.2( -,') (13)
Ox

where

2 2w2

ne p2 oo m 2-C (14)
o

Poisson's equation integrates once to give

E2 w = 22 (C - ), (15)

where

-K

f= (_)a (16)
1

and the constant of integration has been taken such that E = 0 at 4 = 0.

Let be the first positive zero of (15). Then provided 0 < C < 2, E 2 will be posi-

tive in the interval 0 < < 0o and there will be no net space charge between these

limits, as E = 0 at both ends. Conversely, the potential amplitude 4~ can have any value

below the first maximum of Of() < 2. Then C = Xf(o ).
Equation (15) then integrates to give the phase of the wave in terms of the poten-

tial

d \F--A'dy
x = = , (17)

o 02(-C -c -

where 4) = Ay 2

5. Cold Plasma Waves

In the cold plasma limit it is more convenient to write

n
n 0 (18)+ 1+A 18)

The integration of Poisson's equation then yields

O/u2 = A(1+ sin 4)(2+A+A sin 0),
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where

p x/u = (1+A)O - A cos 0. (19)

The fundamental frequency of the wave w /(l+A) is reduced as the amplitude

increases, but is independent of the phase velocity u which is quite arbitrary.

Equation 19 introduces the first harmonic, however, and there is a phase mod-

ulation that has the effect of broadening the maxima and sharpening the min-

ima of 4.

6. Small-Amplitude Waves

For small, but not very small, amplitudes

= Kj - K2 2 .  (20)

The integral (17) is then elliptic and yields the Jacobian elliptic function

=Asn 2 (X, k2 ), (21)

where k2 , the modulus of the elliptic function, is given by

2AK
2 2

3K 1 - 2AK 2

S= wu 1  AK2  (22)

o2W=0 2 W -A I Tp o 4

Clearly, K 1 must be positive (u2>1.715), and there is a maximum amplitude

3K
A - 4K (23)

4K2

for which the elliptic function becomes a hyperbolic tangent. For this amplitude, how-
ever, the approximation (20) is no longer valid, and it is unknown whether the full series

(16) leads to an upper limit. For low amplitudes the elliptic function approaches a sine

function, and the dispersion
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w= w uN K10 1

is the same

the plasma

1.4

1.2

1.0

0.8

W/1w

0.6

0.4

0.2

0
0

as that obtained from linear theory, except that the imaginary part of

dispersion function, Z', is omitted. Hence there is no damping. The

K

Fig. XXI-5. Dispersion relation for
undamped waves.

0.2 0.4 0.6 0.8 1.0

k /wo

dispersion obtained from (24) is shown in Fig. XXI-5. It has also been shown

by Vlasov. 5

7. Landau Damping

The Landau pole exists in the linearized form (4) of the, distribution (3). But Landau

damping is absent from the dispersion (24). Where has it been lost? Fortunately it is

easy to trace. Landau damping does not come directly from (4). This function must

first be analytically continued into the complex plane and then an integration performed

around the pole. We also perform an analytic continuation into the potential wells, but

in (5) we have only retained half of the result. The discarded part is

n 2 2
f - e-u -C i sin 2ulcl,

and integrating this between the limits w = +± yields

2
n 1 = ni u e-U

plus higher powers of 4. This is precisely the imaginary part needed to give
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K 1 = Z'(u)complex. (27)

The imaginary electrons represented by (25) have no place in a theory with real

variables, but this calculation is sufficient to show on the one hand that damping comes

from nonsymmetrical distributions of trapped electrons, and on the other hand that the

integration around the Landau pole is in reality dipping into the potential wells. 6

8. Summary

We have found a distribution function that satisfies the Vlasov equations exactly and

goes to the linear limit, but without damping, for small-amplitude waves, and we can

retrieve the exact Landau damping term by considering a nonsymmetrical distribution

of trapped electrons. Our distribution has no poles, but the trapped distribution has

negative portions for 4u c 2 < -1r /4. Distributions are being considered which correct

this defect without altering the linear limit.

W. P. Allis
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B. DIFFUSION WAVE EXPERIMENT

This report covers further progress on the diffusion wave experiment discussed in

Quarterly Progress Report No. 87 (pages 64-71). Specifically, a more appropriate

theory for the radial phase and amplitude profiles of the waves has been developed, which

sucessfully explains the observed data with a minimum of adjustable parameters.

In the previous report, the experimental geometry, plasma parameters, wave excita-

tion and detection methods, and some theoretical aspects, including the wave theory

assuming Bohm-type diffusion, were discussed. Also, initial fits to data with the Bohm

theory were presented, in which the radius of the plasma was divided into two regions

with generally different diffusion and end-loss parameters. The fits were satisfactory,

but the theory did not correctly predict the observed frequency dependence. That is,

fits for two different exciting frequencies could not be obtained by changing only the fre-

quency variable in the theory. Furthermore, end-loss rates needed for fits were lower

than would be expected physically for this longitudinally free-streaming plasma. (In one

case a loss rate of zero gave the best fit.) Thus a more satisfactory theory was needed.

1. Diffusion Theory

In general, at least three types of diffusion could occur in the experimental plasma,

the type depending on the effect of conducting end walls and the noise level of instabilities.

A quiet plasma not suffering from end effects should diffuse at the classical ambi-

polar rate in the appropriate limit for the experimental plasma:

ev +-+-
2 VL n(T++T_),

mA

where v_+ is the electron-ion momentum transfer collision frequency; T+, T_ are tem-

peratures in volts; and w is the electron cyclotron frequency. Here, v_+ is approxi-

mately proportional to (N/T3/2) For Bohm diffusion,

c
j =-- Vjn(T++T_),

where c is a constant generally unknown but often -1/16 experimentally. Bohm diffusion

is expected when the noise level exceeds some critical value, such that the Bohm rate

equals the always present collisional diffusion rate.

The third possibility, free-ion diffusion, will occur if electrons are short-circuited

across the magnetic field lines by conducting end walls. In this case

ev+n
fL 2 -(nT+),

m+ W+
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where v+n is the ion-neutral momentum transfer collision frequency. The inequality

sign applies because there may be considerable ion transport proportional to higher

order spatial derivatives, caused by ion-ion collisions.1

An effective local diffusion coefficient may be defined:

IVnI VT =VT_=0

The experimental and predicted values of D_ given will always be the local values at the

normalization radius, approximately 0. 5 cm. The following values were calculated, by

using the measured plasma parameters, for the two experimental conditions reported

here.

Type of Diffusion Predicted D1 (cm 2 /sec)

B: 530 Gauss 880 Gauss

Ambipolar, Quiet 4. 4 x 103 2. 3 X 103

Free-Ion, Simon 1. 3 X 104 8. OX 103

Bohm 2.6 X 104 1.3 x 104

Thus in these experiments free-ion and Bohm diffusion should result in roughly the same

rate, which is only 3-4 times the ambipolar rate.

2. Ambipolar Diffusion Wave Theroy

A computer program has been written to solve the diffusion wave equation in essen-

tially the same form as outlined in the previous report, except that the ambipolar form

of the diffusion coefficient was used, incorporating the density and temperature depen-

dence of the electron-ion collision frequency. For this theory, both the steady-state

plasma density and the electron-temperature radial profiles are needed as input. The

measured profiles were approximated by analytic functions. The same two adjustable

parameters are involved, the diffusion parameter (w/D) and the end-loss parameter

(Vs/L), both defined at the data normalization radius, -0. 5 cm. The IBM 360-65 facil-

ities of the M. I. T. Computation Center were used for the computations.

3. Comparison of Theory and Experiment

a. B = 530 Gauss

Figures XXI-6 and XXI-7 show theoretical and experimental phase and amplitude

radial profiles of the diffusion waves. The experimental points were taken with a
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Fig. XXI- 6. Experimental and theoretical diffusion wave phase profiles.

magnetic field of 530 Gauss and at lowest attainable noise levels. Figures XXI-8

and XXI-9 show the corresponding measured plasma-density and electron-temperature

1.0
0wUJ

N

-J

0.8
cr
0

oz
w
o 0.6

I-J

= 0.4

-
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w
o 0.2

0-
0.4

Fig. XXI-7.

0.8

0.6

04

0. 2 -
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RADIUS (cm) LOG SCALE

Experimental and theoretical
diffusion-wave amplitude pro-
files.

SYMBOLS :DATA

CURVE: APPROXIMATION
USED IN THEORY

\ B= 530GAUSS

WALL

0.4 0.6 0.8 1.0 1.4 1.8 2.2 3.0

RADIUS (cm) I OG SCALE

Fig. XXI-8. Plasma-density profile
and approximation used
in diffusion-wave theory.

profiles and the analytic approximations used in the theory. The smooth curves in

Figs. XXI-1 and XXI-Z are the computer solutions from the ambipolar theory, using the

values DL = 2. 9 x 103 cm 2 /sec and Vs = 4. 7 x 104 cm/sec in the adjustable parameters.

The only difference between the theoretical curves is the frequency used in the diffusion

parameter. The frequencies used were the four experimental values. The frequency
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2.0
SYMBOLS: DATA

-j

0 1.6 CURVE: APPROXIMATION
Wo IN THEORY

0I

B = 530GAUSS 0-

S0.4

0 WALL

RADIUS (cm)

Fig. XXI-9. Electron temperature profile and approximation used in
diffusion wave theory.

dependence of this theory seems satisfactory. An unexpected region of reduced phase

shift per unit radius shows up in the data (Fig. XXI-1). The "bump" is centered at the

radius of the anode (corrected for mag-o 2- 0.4 4 netic ,IJ

0 2an effect attributable to the change in
oend conditions at the radius of the anode.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 5.2

0.8 1 6 2.0 2.4 The severity and position of the bumpRADIUSRADIUS 
(cm)(cm)

depend on the anode radius and position.
Fig. XXI-0. Region of increased diffusion Using an anode of 20ry. larger radius

and end loss inserted in
theory for 530-Gauss mag- caused the bump to move out accord-
netic field. ingly. Thus it was necessary to include

in the theory a region of increased

diffusion and end loss to obtain the fits in Figs. XXI-1 and XXI-Z. The region is math-

ematically prescribed as illustrated in Fig. XXI-10. It seems significant that this
phenomenological approach agrees with the frequency dependence of the data. That is,

the features of the region do not have toth change with frequency in order to obtain agree-

ment with data.

b. B = 880 Gauss

Figures XXI- 11 and XXI- 12 give data and theory for a stronger magnetic field. The

fit procedure was the same as before, except that it was not necessary to postulate a
fit procedure was the same as before, except that it was not necessary to postulate a
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RADIUS (cm)
0.8 1.2 1.6 2.0 2.4 2.8 3.2

WALL

8 = 880 GAUSS

IO00-Hz EXCITING FREQUENCY

BOHM THEORY

AMBIPOLAR THEORY

SYMBOLS :DATA

Fig. XXI-11. Experimental and two theoretical diffusion-wave phase
profiles at 880-Gauss magnetic field.

region of reduced diffusion and end loss at the anode radius. Apparently the phenomenon

disappeared or was not detectable at the greater magnetic field. Both types of available

theory were fitted in order to gain a comparison. Identical temperature profiles were

AMBIPOLAR THEORY

- SYMBOLS: DATA

BOHM
- THEORY

0

- B= 880 GAUSS

1O00-Hz EXCITING \
FREQUENCY \

I I I I I \ I1
4 0.6 0.8 1.0 1.4 1.8 2.4

RADIUS (cm) LOG SCALE

Fig. XXI-12. Experimental and two theoret-
ical diffusion-wave amplitude
profiles at 880-Gauss mag-
netic field.

inserted in the two theories. (The Bohm theory does not require a density profile as

input.) The steady-state density and temperature profiles were fitted to data as before.

The results follow.

Type of Diffusion

Bohm

Ambipolar

Predicted Value

DI (cm /sec)

1. 3 X 104

2. 3 X 10 3

Experimental Values

DI (cm 2 /sec)

6.5 X 103

3. 9 X 103

Vs (cm/sec)

4.7 X 104

2. 2 X 10 5
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c. Interpretation of Loss Parameter

The end-loss rate that was used as an adjustable parameter in the theory can best

be viewed as an effective inverse loss time for plasma free-streaming to the end walls.

A reasonable upper bound for this rate should be given by (Cs/L), where C s is the ion

acoustic velocity. Or, equivalently, the upper bound for Vs is Cs, which is about
53 x 10 cm/sec in the experiment. The values obtained for V all fall within the order

s
of magnitude extending below C s , and thus are consistent with this interpretation. A

rigorous theoretical treatment of longitudinal plasma transport would be required in

order to attach any greater significance to the end-loss parameter. This treatment

would be difficult, if possible, and is not needed, since the present simple phenomeno-

logical approach gives satisfactory results.

d. Results of Comparisons

Three criteria seem appropriate for comparing the two theories with experiment.

(i) Correct prediction of frequency dependence.

(ii) Good agreement with data profiles at any one frequency.

(iii) Values of DL and Vs consistent with theoretical expectations.

The presentations of section 3a as compared with the results given in the previous

report indicate that criterion (i) favors the ambipolar theory. The comparison

in section 3b also favors the ambipolar theory on the basis of criterion (ii).

Either theory yields a fitted value of Di that is consistent with its assumed

diffusion mechanism, within the accuracy of the experimental and calculated values.

Thus criterion (iii) favors neither theory. Over-all, the ambipolar theory gives

a better explanation of the data.

4. A Check on an Important Assumption in the Theory

In the theory presented in the previous report,2 the approximation 8n/az = aT/az = 0

was made, based on the assumption that free-streaming would prevent the plasma

from supporting an appreciable longitudinal pressure gradient, except at the end-wall

sheaths. To check this, the longitudinal variation of the data was investigated. Fig-
ures XXI-13 and XXI-14 show probe floating potential and ion saturation current versus
longitudinal position, at several different radii. Two positions are marked to show
where radial profiles were taken. These profiles are shown in Figs. XXI-15, XXI-16,

and XXI-17. The amplitude and phase data at the two points differed uniformly by

approximately 7% and 12*, respectively. With normalization (at R = 0. 47 cm) the data
are practically identical. The amplitude ratio corresponds to that of the plasma
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densities (Fig. XXI-17). The temperature data at the two points are identical

within experimental accuracy, although the temperature appears to be slightly

2.5 cm

1.7cm

USUAL POSITION FOR
TAKING RADIAL
PROFILE DATA

POSITION FOR
TAKING

COMPARISON
DATA

6

z

n
I-

I-
z3

LULU
U-
U_

-.

H

1.05cm

R= 0.66 cm

I I I I I I
0 2 4 6 8 10 12 14

Z (cm) , TOWARD CATHODE--

R = 0.66 cm

1.05 cm

1.7 cm

2.5cm

USUAL POSITION FOR TAKING
RADIAL PROFILE DATA

POSITION FOR TAKII
COMPARISON DATA

NG

I I I I I I I I
0 2 4 6 8 10 12 14

Z (cm),TOWARD CATHODE -I

Fig. XXI-13. Probe floating potential vs
longitudinal position at sev-
eral radii.

Fig. XXI-14. Probe ion saturation cur-
rent vs longitudinal posi-
tion at several radii.

higher nearer the cathode. The temperature profiles are almost identical to the

one shown in Fig. XXI-9.

The 120 phase lag of the data farther from the cathode corresponds to a longitudinal

RADIUS (cr
04 0.8 1.2 1.6 20 2.4 2.8 3.2

j -40
Un

Li

-80-

U)
< -120 -
T
0

WALL
B = 530 GAUSS

IOOO-Hz EXCITING
FREQUENCY

SYMBOLS: DATA B
o USUAL Z POSITION 6
A COMPARISON POSITION

CURVE: AMBIPOLAR THEORY

DL = 3.2 x 103 cm 2 /sec

Vs = 6.5 x 104 cm/sec

Fig. XXI-15. Diffusion-wave phase data from two longitudinal positions
with theoretical curve.
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Fig. XXI-16. Diffusion-wave amplitude
data from two longitudinal
positions with theoretical
curve.

Fig. XXI-17. Plasma density at two lon-
gitudinal positions and the-
oretical curves.

propagation velocity of 1. 3 X 105 cm/sec, away from the cathode. These data indicate

that the assumption in question is reasonable.

5. Consistency of the Diffusion-Wave Results with the Steady-State Plasma

Figure XXI-17 also shows (smooth curve) a theoretical prediction of the plasma-

density profile which is in agreement with the data. The curve was obtained by a com-

puter solution of the nonlinear time-independent ambipolar diffusion equation, with the

end-loss term and diffusion coefficient determined from the diffusion waves. The equa-

tion is

1 n 8 1 / 2
R nT = KT

R aR T aR

where K is a constant proportional to the ratio of (Vs/L) to D1 . The same approxi-

mation to the measured Te profile was used as in the wave theory. A degree of fitting

is possible because two boundary conditions are required to define a unique solution.
12 -3

The conditions were estimated from the data; specifically, 8n/aR = 0 and n = 1 0 cm

at R = 2. 85 cm.

Two other computer curves (dashed lines) show the effect of varying the constant K

away from the value determined from the diffusion-wave data. Thus the values obtained
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from the diffusion-wave measurements are shown to be consistent with the static plasma

density profile.

6. Results and Conclusions

The diffusion-wave technique has been successfully used to measure transverse dif-

fusion coefficients in a dense highly ionized magnetically confined plasma. Ambipolar

collisional diffusion theory provides the most satisfactory description of the experi-

mental characteristics. The measured values of DI are in reasonable agreement with

predicted values based on this theory, with the use of measured plasma parameters.

This relatively simple and accurate method of measuring diffusion coefficients

would seem to be worthy of general consideration as a diagnostic technique in many

steady-state plasma devices. A preliminary study indicates that the method should

be feasible for such devices as the Q-machine, other hollow-cathode discharges,

duoplasmation-generated plasmas, and some beam-generated plasmas.

D. L. Flannery
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C. HELIUM AFTERGLOW DENSITY MEASUREMENTS UTILIZING A

NARROW-BAND FAR INFRARED INTERFEROMETER

1. Introduction

A narrow-band far infrared interferometer has been constructed and employed to

measure electron densities in the afterglow of a helium plasma. These measurements

were made with the interferometer operating at an ~2 00-i wavelength. The plasma is a

repetitively pulsed cold-cathode discharge in a few Torr of helium with electron den-

sities reaching 10 14cm-3

A complete description of the mechanics of the interferometer, together with a

Kirchhoff diffraction solution of its optics for an infinitesimal frequency width, W - W + do,

has been described previously.1 In this report the actual method of phase-shift mea-

surements will be demonstrated. Since the interferometer and detector accept a finite

bandwidth from the Hg arc source, it is necessary to integrate the monochromatic

Kirchhoff diffraction solution over the bandwidth. This problem will be dealt with here

and the introduction of an adjustable beam length for one arm of the interferometer will

be shown to allow rapid experimental measurements of the effective operating wavelength

and bandwidth. Because of the energy limitations of the Hg arc source, the beam diameter
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has to be sizable; thus the limitation on the maximum measurable phase shift resulting

from plasma density gradients within the beam must be considered. Finally, the appli-

cation of this interferometer to the measurement of the time dependence of electron den-

sities in a helium afterglow, and comparison of this experiment with the theory for

density decay in helium of Bates and Kingston 2 will be made.

2. Method of Experimental Phase-Shift Determination

The narrow-band interferometer is a two-beam instrument using lamellar diffraction

gratings to split the radiation into a reference and sample beam and then recombine the

two beams. As represented in Fig. XXI-18, symmetric angular positions of the two far

FAR
-IRROR
ON, E

DETECTOR

EXIT
1IRROR

GRATIN G
TO

GRATING 
ON E

SOURCE

SAMPLE
CELL
(PLAs, A)

FAR
TMvIRROR
TO70

Fig. XXI-18. Block diagram of the interferometer optics.

mirrors about the normal to the gratings in a plane perpendicular to the grating surface

defines the effective wavelength of operation. The gratings have a variable groove depth

so that they may be tuned for maximum efficiency at a given wavelength.3 As shown by
the arrows in Fig. XXI-18, grating 2 may be moved relative to grating 1, this movement
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being designated A. Because of the interference pattern produced by the two beams

incident on grating 2, the output normal to grating 2, which is accepted by the detector,

is dependent both on A and on the phase shift in the sample beam.

This important dependence, as demonstrated in the Kirchhoff diffraction solution for

monochromatic radiation, is

I D  cos 2r +~j , (1)

where ID is the intensity incident on the detector, d is the grating groove spacing, and

5 is the phase shift attributable to the sample. Since grating 2 is twice the length of

grating 1 (and therefore twice as big as the beam size defined by grating 1), it can be

driven continuously across the beam, with A allowed to change, from one end to the

other, by an amount Nd, where N is the number of grooves in grating 1. By varying A

linearly with time, the output of the detector, recorded on a strip chart moving synchro-

nously with A, is the sinusoidal modulation given by Eq. 1. Now, if the 3-1psec sampling

gate pulse, which is synchronous with the repetitively pulsed plasma, is delayed to a

time far out in the afterglow, (I = 0, and A increases linearly with time, a reference

modulation is recorded as shown on the left side of Fig. XXI-19. With the A movement

AI A

I I -

SAMPLE
IN BEAM

Fig. XXI- 19. Modulation output of the interferometer.

uninterrupted, the sampling gate is set into the earlier afterglow, where ¢4 is measur-

able and the shift in the output modulation 5A (shown in Fig. XXI-19) is immediately

related to . After a few modulations at this afterglow time, the gate can be reset for

a new time, and thus iD as a function of time in the afterglow is measured.

To determine 6A and hence D, it is useful to construct a transparent template with

a sinusoid of repetition length A engraved on it along with lines indicating the maxima

and minima of this sinusoid. Since A depends only on d and the drive rates, the mod-

ulations are achromatic and the template works for all frequencies. Then it is a simple

matter, purely by eye, to determine the position of the modulation maxima for each time,
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2 1/2
1 ne e

and thus determine 8A with an accuracy of ± A. For plasmas with p - << mo,

the phase shift may be written

-17 2 -1
4 = 2. 82 X 10 nL * Xcm j , (2)

where wp is the plasma frequency; w, the infrared frequency; X, the infrared wave-

length; and ne L, the line density through which the beam passes. It follows that the

sensitivity of the interferometer for line-density measurements is ~6 X 1015 X- 1 cm - 2 p.

To determine the upper limits on measurable values of ne L, it is necessary to include

bandwidth and beam-size considerations.

3. Finite Bandwidth Theory and Measurement

Although the period of the output modulation A is not frequency-dependent, the phase

shift attributable to a plasma is, as Eq. 2 shows. Since the far mirrors accept a finite

area of the diffraction pattern of grating 1, there is a finite bandwidth of frequencies

passing through the interferometer. When 5 is zero or a constant independent of fre-

quency, the interference patterns from the different frequencies formed on grating 2 by

the two beams are identically positioned. If # is frequency-dependent, the positions of

the patterns for different frequencies are shifted relative to each other, and the output

modulations deteriorate.

From the discussion of partially coherent light by Born and Wolf,4 the total intensity

incident on the detector is given by integrating the square of the absolute value of the

complex amplitude for the monochromatic solution over the frequency bandwidth

ID 1 W 2 F2 UD(Wo) UD(w) dw. (3)

1

The amplitude envelope F(ao) has been introduced to account for the output spectrum of

the Hg arc source, water-vapor absorption, variations in detector sensitivity with fre-

quency, and the lamellar grating efficiency. This leaves the square of the complex

amplitudes equal to the modulation term, Eq. 1, except for some inessential constants.

O - O 02 + 1 W2 - O
It is convenient to define new variables - ' 2 , and Po = so

o o

that F 2() and #(o) may be expanded in Taylor series about wo

00

F () br r (4)

r=0

and
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0o

2w +  S( .)  - Cs . (5)
s=O

This integration can now be carried out,5 and the result is

I D  cos 47 - + 2¢(w o) [o cos clp + sinCIPo - cos (6)

as long as

c = ( ()) t 2 << 4wA + 2 =0  (7)z d p20 d =

and

3 Id3  3
C 3 o 3 1( << 1. (8)

dp=0

These conditions are very well satisfied when p0 is only a few per cent, and T is due to

a plasma such that c o = -c 1 = c 2 = -c 3 . Thus the total intensity is proportional to the

required modulation term times an envelope. The modulation envelope has a width at
2

half-maximum of 6(c 1,o) - I, so that for a plasma phase shift the largest change in

phase shift that can be measured is

Tr

max 3 
(9)

This limit has been stated in terms of a change in phase shift. If the interferometer

is initially balanced before the plasma is introduced, then max is only one-half themax
value of (4) ma x . For this reason, it is convenient to unbalance the interferometer and

compensate one arm so that the full &D that is available can be used. A convenient

method of accomplishing this is to make a far mirror movable, to lengthen or shorten

one beam at will. In fact, if one is willing to recompensate the beam during the mea-

surements, it is possible to shift the envelope a number of times and extend the limit

by a factor of 10 to give

(6a) Ow (10)
max 3 °
comp

The movable far mirror is useful also in measuring the wavelength of operation

accurately and in obtaining an approximate value of the bandwidth. By having a microm-

eter drive to position the far mirror, measurements can be made of the phase shift as

a function of far-mirror movement without the presence of a plasma. Since the phase
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shift caused by the beam length is 2B -
f , where f is the length of the sample beamd6A 2A

minus the reference beam, it follows that the slope of a plot of 6A against 2 is d- ~=
An example of this is shown in Fig. XXI-20, where the effective operating wavelength is

1.0 -

X = 204tL

520 540 560 580

. (MILS)

0.5 -

I I I I I I I I
520 540 560 580

P (MILS)

Fig. XXI-20. Measurement of the effective
wavelength of operation.

Fig. XXI-21. Effective bandwidth mea-
surement.

determined to be 204 , with an accuracy better than 2%. A plot of modulation height

against f can be made from the same run, and the width of this measured envelope at

half-maximum, 62, will give the bandwidth 3o = 61-- In this case, as presented in

Fig. XXI-21, po = 3%. From these operational values and Eqs. 4 and 5, the maximum

line densities that can be measured for a plasma without density gradients become

15 -2nL = 3 X 10 cm (11)e max

and

nL
e max

comp

S3 1016 -2= 3 x10 em . (12)

4. Plasma Density Gradient Effects

For plasmas whose size transverse to the beam is somewhat larger than the inter-
2 .2

ferometer beam size and with 1 << W , the difference in phase shift resulting from

refraction inside the plasma is negligible. Also, the effects of spatial dispersion are
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not strong enough to give a significant loss in the sample beam. Thus it is possible to

consider the rays traversing the plasma as traveling in undeviated straight lines. A

problem that cannot be neglected, however, is that these rays see different line densities,

determined by their position relative to the coincident axes of the beam and the plasma.

Because the angles that rays make with the beam axis are quite small, they may be

approximated as straight lines parallel to the beam axis. Since these rays will undergo

different phase shifts, determined by their distance from the plasma axis, the output

must be found by integrating over the beam. Therefore

ID ~ 2r Po G(p) cos 2 2 n + (p) p dp, (13)

where p is the maximum beam radius, G(p) represents the intensity per unit area of
2Trthe beam in the annulus between p and p + dp, and D(p) -G- neL(p). Here nc is the

c
critical density corresponding to a plasma frequency equal to the diagnostic frequency.

2 2
P P

By introducing the variable ym - 2, where ro is the radius of the plasma cross
r 2r

o o
section, an integral equivalent to that in the previous section results. The solution of

this integral again gives the modulation function times an envelope. To remain within

the envelope, so that the modulations are measurable, requires

( df(Ym)\ 2
. < .

dy 2 3'
m =0 o

If the plasma tube used here is assumed to have a diffusion profile, where r0 = 2 inches,5
L = 3 inches, and p = 8inches, then the maximum measurable center density is

14 -30 8
n = 3 X 10 cm . This is a rather strict limitation, but it can be significantly relaxed

e
by only a small decrease in p 0

5. Plasma Measurements and Comparison with Theory

The plasma tube that was used is shown in Fig. XXI-22; it consisted of a cylindrical

cold cathode whose inner surface was the emitter. Two circular Pyrex plates at either

end of the cathode cylinder held the transparent grid anode, a smaller coaxial cylinder,

in place. The centers of the Pyrex end plates were cut out and two crystal quartz plates

were sealed on to allow the infrared beam to traverse the plasma along its axis. A con-

tinual flow of helium passed through the tube to keep the wall impurities from building

up. With a 40-psec, 1.5-kV pulse across the tube, a dense negative glow was

produced which penetrated the anode and filled the core of the tube (4 inches in

diameter, and 3 inches long).
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RESERVOIR

Fig. XXI-22. Diagram of the plasma tube.

Electron density measurements were made during the plasma excitation pulse and

out to 200 sec into the afterglow for plasma excitation pulses from 10 to 50 amps at

3 Torr and for pressures from 0. 6 to 6 Torr at a current of 24 amps. Samples of these
-l(d In nc-

data are shown in Fig. XXI-23. Experimental decay times dt are of the

order of 2 X 10 sec. Because of the short excitation pulses and the early after-
+ 6

glow times considered here, the maximum He 2 production rate previously published,
at n +) = 135 ponHe sec - 1 , is too small to make an appreciable fraction of the ions

He2 0He

into He + Therefore, dissociative recombination can be neglected. Also, the decay

times for diffusion, impurity attachment, radiative recombination, and three-body

recombination with neutrals all give decay times that are much too long.

Fortunately, a theory of collisional-radiative recombination for case (i) of optically

thin and case (ii) of optically thick helium plasmas has been developed by Bates and

Kingston,2 which includes electron-electron-ion collisional recombination, together with

radiative recombination and collisional or radiative de-excitation. Futhermore, since

the electron temperature decay affects the rate of electron density decay, they have

included energy losses in their theory. Thus inclusion of losses resulting from elastic

collisions and charge exchange gives an expression for the electron density decay only
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Fig. XXI-23. (a) Experimental data for plasma phase shift in the afterglow at
3 Torr. The symbols represent different plasma excitation cur-
rents: O 10 amps; Z , 20 amps; x 30 amps; and 0, 45 amps.

(b) Experimental data for plasma phase shift in the afterglow at var-
ious pressures. All data were taken with a plasma excitation
pulse of 24 amps. The symbols represent different helium pres-
sures: O 0. 6 Torr; A , 2 Torr; C , 4 Torr, and x 6 Torr.

QPR No. 88

(rad)

0
0 40 50

146



1013 1014

ne(cm
-3 )

(19

16
20

I-21

IO'_
ne(Cm-

3 )

(b)

Fig. XXI-24. (a) Comparison of collisional-radiative decay theory with experi-
ments in 3-Torr He. The smooth solid lines apply to the opti-
cally thin theory; and the dashed lines to the optically thick
theory. The jagged lines are plots of the experimental data with
straight lines drawn between points. The symbols refer to dif-
ferent plasma excitation currents: 0, 15 amps; A, 25 amps;
X, 35 amps; and 0, 50 amps.

(b) Comparison of collisional-radiative decay theory with experi-
ments at different pressures. The smooth solid lines apply to
the optically thin theory, and the dashed lines to the optically
thick theory. The jagged lines are plots of the experimental data
with straight lines drawn between points. All data were taken
with a plasma excitation pulse of 24 amps. The symbols refer
to different pressures: 0, 1 Torr; A , 2 Torr; X, 4 Torr; and
0, 5 Torr.
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in terms of initial neutral and electron densities and the optical thickness of

the plasma. Thus, the theory can be compared directly with the measurements

of the electron density decay without introducing the temperature as a separate

parameter.

This theory may be compared with the interferometer measurements shown

in Fig. XXI-24. Since the collisional-radiative recombination coefficient is approxi-
.75

mately dependent on n in this density range, the coefficient has been divided

by n e '.75 to give a quantity nearly independent of density. The profile of the

plasma is not well known, but is assumed to give a line density to center den-

sity ratio half-way between a pure diffusion profile and a pure recombination,

uniform profile. Thus the experimental decay should give the correct slope on
.75

the plot of a/ne 75 , even though its position along the ne axis is not determined

with certainty to better than ±25%. It should be noted that in time-dependent

computer solutions of the profile for two-body recombination afterglows 7 the pro-

file does not change appreciably in times considered here of less than one-tenth

of a diffusion time. We can determine a/ne 7 5 experimentally by noting that
d 2 4 d -1.75.75
dt (n) = -an or dt ne-1.75) a/n.75 ; hence, four-sevenths times the slope

of a plot of n 75 against t yields a/n .75
e e

Reasonable agreement in the early afterglow is obtained with the optically

thick theory. Because the optically thick theory is developed to include large

metastable populations and takes into account their rate of population change caused

by radiation and electron collisions, it is not surprising that this is the appro-

priate case to consider. In the measurements for higher plasma excitation cur-

rents, there is a sudden deviation from the theory at ~30 sec into the afterglow.

This decrease in the rate of loss of electrons can be attributed actually to the

production of electrons in the afterglow through metastable-metastable collisions.
T 28 -9 3 -1

These proceed at a rate8 of (n ) = 1. 2 x10 (He ) cm sec , and it is not

unusual to find metastable populations in the early afterglow approaching the elec-

tron densities. 9 The theory is not designed to deal with this, since no atom-

atom de-excitation collisions are taken into account.
M. L. Andrews
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D. ION TEMPERATURE MEASUREMENTS IN THE HOLLOW-CATHODE

ARC PLASMA

1. Introduction

This report describes some measurements of the temperature of ions in the hollow-

cathode arc plasma. A pressure-swept Fabry-Perot interferometer is used to deter-

mine the Doppler breadth of an emission line radiated by plasma ions. An objective of

this project is the measurement of the radial variation of ion temperature. The prelim-

inary results presented here indicate an apparent increase of ion temperature with

radial coordinate. This appearance suggests that the plasma is undergoing azimuthal

motion, for example, rotation. The optical system accepts light from a range of radii

in the plasma, and the corresponding range of Doppler shifts arising from radially

varying azimuthal motion would have the same effect as an increase in the Doppler

breadth of the line.

2. Apparatus

The pressure-scanned Fabry-Perot apparatus is patterned on the design of Biondi.1

The interferometer itself employs a 0. 5-cm spacer like that described by Phelps2 and

X/50 plates, 2 inches in diameter, with broadband dielectric coatings. The computed

finesse and resolving power are 19. 2 and 3. 5 X 105 (at 5000 A), respectively.

The hollow-cathode plasma 3 is viewed through a flat window in the front of a Pyrex

section equipped with a flat sloping rear surface to minimize the reflection of light from

the center of the plasma. The light is collected by a lens at its focal length from the

center of the plasma. An interference filter with 5 A bandwidth selects a singe emis-
sion line for the interferometer. The filter can be rotated to select the wavelength of
the line. The argon lines at 4658 A, 4610 A, and 4545 A and the neutral lines at 4642 A
and 4596 A can be selected. The Fabry-Perot interferometer is mounted in a pressure
can equipped with input and output windows and couplings that enable the operator to
adjust the parallelism of the interferometer plates without opening the can. To make

this adjustment, the fringes are observed visually through the output window. In opera-
tion the can is evacuated and argon gas is allowed to leak in slowly from a tank with a
regulator set at a high pressure (21 psig) so that the pressure in the can changes very
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nearly linearly with time while the first two fringes are scanned.

A lens outside the pressure can focuses the transmitted fringe pattern on a screen

that has a pinhole, 0. 010 inch in diameter. The lens-to-screen distance can be adjusted

by an external screw that slides the lens along the axis. A spring-loaded micrometer

adjustment permits centering the pinhole on the fringe pattern. This adjustment is made

by replacing the pinhole with crosshairs and centering the cross on the pattern visually.

The liquid-air-cooled photomultiplier mounting is similar to one described by

Bronco, St. John, and Fowler. 4 The output of the RCA 7850 photomultiplier is dis-

played on an X-Y recorder, with the x-axis time swept to yield a direct record of inten-

sity as a function of wavelength.

The optical system, including the lenses, interferometer, and detector are mounted

on an optical bench that can be raised and lowered with respect to the plasma by three

screws.

3. Data Analysis

The apparent breadth of a line recorded by the scanning interferometer is greater

that the thermal Doppler breadth, because of instrument broadening and Zeeman

splitting of the emission line.

The instrumental broadening is measured by scanning the profile of the 6334 A line

emitted from a neon glow lamp. The relation connecting the true width, instrument

width, and the observed width, obtained by the convolution of the Doppler and Airy pro-

files, has been presented in tabular form by Krebs and Sauer,6 and graphically by Tako

and Ohi. 7 The results of these calculations are used to determine the magnitude of the

instrument breadth from the observed breadth of the neon line, under the assumption

that the true width is its Doppler width at 300 K (0. 0434 cm - 1 ). It should be noted that

the Airy formula is derived under the assumption that the interferometer plates are

perfectly flat and parallel. Hence the application of the calculations6,7 to a real instru-

ment is an approximation. Experimental evidence suggests that the error in the half-

width resulting from the approximation is not too large when the parallelism of the

plates is in good adjustment. The measured instrumental width when the interferometer

is well adjusted is 0. 055 cm-1 which compares fairly well with the value 0. 0523 cm-1

computed from the reflection coefficient and the surface figure of the plates.

The true breadth of a line scanned in measurements on the arc plasma is obtained

from the observed width by inverting the calibration process to obtain the true width

from the measured width and the known instrument breadth.

The effect of Zeeman splitting on the observed line profile can be essentially

removed by inserting a polarizing filter with its axis parallel to the magnetic field so

that only the Zeeman Tr components reach the interferometer.5 The Tr components are

shifted very little from the zero field wavelength of the line (less than or of the order
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of 10- 3 A at fields up to 1000 Gauss for the lines observed in these experiments). The

apparent increase in the breadth of a line, because of this splitting, is small compared

with its thermal breadth.

4. Results

The experimental results are shown in Fig. XXI-25 where the ion temperature and

the intensity of the observed ion line are given as a function of the vertical position of
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INTENSITY, HIGH AC ARC CURRENT
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.000 05 Fig. XXI-25. Experimental results.
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the interferometer. At zero vertical position the axis of the optical system passes

through the center of the plasma. The line observed for these measurements was the

4658 A line of AII. The arc current was 10 amps, the flow rate was 70 atm-cc/min

and the axial magnetic field was 600 Gauss. Two sets of measurements were made:

one when the AC arc current was high (~70 mA) and one when the AC arc current was

low (~7 mA). The AC arc current is taken as a measure of -the amplitude of the noise

in the plasma. The noise level is controlled by adjusting the position of one of the gate

valves. This means that the pressure is lower (4. 5 [) in the high-noise case and higher

(8 ±) in the low-noise case. (The quoted pressures were measured near the anode; in

the cathode region the pressure was roughly the same in the two cases, 1-2 .) The

error brackets on some of the points represent the difference between the instrument

breadth measured before and after the arc temperature measurement. For the points

with no brackets, there was no change. The data taken on different days give an indi-

cation of the reproducibility of the results.

The magnitude of the ion temperature is approximately one-third to two-thirds of a

volt.

The ion temperature remains high when the axis of the optical system is so far from

the center of the plasma that the measured light intensity has dropped to less than 1% of

its maximum value. There is, in fact, an apparent increase in the temperature with

increasing vertical displacement which corresponds to line breadth increasing with
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radial coordinate. This appearance may be due to azimuthal plasma motion, for

example, rotation. The optical system accepts light from a range of radii and hence

samples a range of velocities, if the plasma has radially varying azimuthal motion. The

corresponding range of Doppler shifts would constitute a nonthermal Doppler broadening.

rotating instabilities have been observed in the hollow cathode arc plasma, 8 but the data

indicate that the present effect is not noticeably stronger in a noisy plasma than when

the plasma is quiet. The E X B drift in the plasma is azimuthal and of the same order

of magnitude as the ion thermal velocity. We plan to explore this effect further experi-

mentally by attempting to determine if there is a shift in the center frequency of the line.

J. K. Silk
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