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1. Introduction

One of the topics of major progress in string theory in recent years is the question of

moduli stabilization. The two key mechanisms in this respect are flux compactifications

and non-perturbative effects from wrapped brane instantons (see also [1] for scenarios

where α′ corrections play also an important role). Concerning the first, the simplest flux

compactifications, which involve p-form field strength fluxes [2, 3], have been generalized

to more involved (and less understood) geometric fluxes [4, 5] and non-geometric [6] flux

compactifications. Despite the lack of complete understanding of many aspects of the
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microscopic description of these general configurations, a uniform description exists in terms

of the inclusion of superpotentials (generalizing [7]) in the 4d effective field theory action of

the fluxless model. The second mechanism, non-perturbative effects from wrapped brane

instantons [8 – 11], has been proposed to contribute non-trivially to the stabilization of those

moduli which in certain classes of models are not fixed by flux effects [12].1 Detailed studies

of the D-brane instantons contributing to the non-perturbative superpotential in concrete

CY compactifications have been carried out, in the absence of fluxes, in [16, 17]. These

effects are intrinsically four-dimensional, and their computation results in the modifications

of the four-dimensional effective action.

The two mechanisms coexist in many of the proposals to achieve complete moduli

stabilization, starting with [12]. It is therefore crucial to achieve a proper understanding

of their interplay, in other words of D-brane instanton effects in flux compactifications.

Given the difficulties of formulating string theory in the presence of fluxes, a successful

viewpoint is to consider the D-brane instantons of the fluxless compactification, and to

compute the effects they suffer upon introducing the fluxes. Indeed fluxes can have non-

trivial effects on instantons. A drastic example is that some D-brane instantons of the

underlying model are not compatible with the flux, due to Freed-Witten anomalies [18],

and are therefore absent in the flux compactification. This effect has been discussed in [19],

and we will not focus on it (although it will appear in some of our examples, see section 4.4).

A second kind of effect is that fluxes can lift some of the fermion zero modes of D-brane

instantons, therefore modifying the kind of 4d effective interaction they produce. This

has been exploited to show that instantons that do not contribute to the superpotential

in the absence of fluxes, can contribute to the superpotential in the presence of fluxes.

This effect has been established using different techniques, all relying in a microscopic

description of the brane instanton and flux system. For instance the computation of the

couplings of worldvolume fermions via the use of the D-brane action coupled to the flux

background, [20 – 23]. A second, recently appeared, technique directly obtains this coupling

by computing disk diagrams with two fermion zero mode insertions and one closed string

flux vertex operator. Although, when applicable, they lead to the correct result, there are

several disadvantages to the microscopic computations of flux effects on instantons.

1. Different choices of flux quanta lead to vacua in different corners of moduli space, of

the original theory, with presumably very different microscopic flux configuration. In

the microscopic approach one needs to study each vacuum individually to establish

the 4d effective superpotential appropriate to the corresponding vacuum.

2. More drastically, the vacuum itself may crucially depend on the non-perturbative

effects present in the model. One may have to face the paradoxical situation that the

non-perturbative superpotential computed at a point in moduli space forces the model

to move away from it (and thus requiring the re-evaluation of the non-perturbative

effect in the new candidate vacuum).

1Other recent activity in D-brane instantons, initiated in [13 – 15], focuses on the generation of pertur-

batively forbidden couplings, and its application to potentially phenomenological models.
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3. The microscopic approach to non-perturbative effects of flux compactifications, work-

ing pointwise in moduli space, does not make manifest certain intuitions from effective

field theory. Consider the effective field theory of the fluxless model, with cutoff the

compactification scale, and with a moduli space of vacua. Considering introducing

fluxes, with a scale (set up roughly by the flux density) which we take much lower

than the compactification scale. The effect of such perturbation must be describable

as an effective potential in the moduli space of the original theory, and must therefore

admit a global description in moduli space. As we have emphasized above, this is

indeed common practice at the classical level (with flux superpotential describing the

perturbation in the effective theory), and should be valid for the exact theory includ-

ing non-perturbative corrections. However, this is not manifest in the microscopic,

pointwise in moduli space, approach.

4. Recent considerations of non-perturbative effects globally in moduli space have led

to new insights into their detailed structure, and their continuity and holomorphy

properties [24, 25] (see also [26, 27] for related discussions). It is certainly possible that

there are similarly interesting questions in the structure of non-perturbative effects

in flux compactifications, which cannot be uncovered in the microscopic approach.

5. Finally, the microscopic approach cannot address the computation of non-

perturbative effects in flux compactification without a well understood microscopic

description, like non-geometric fluxes, or even certain kinds of geometric fluxes.

In this paper, we propose an alternative approach, which is based on the use of the 4d

effective field theory, and does not require a microscopic description of the configuration, so

it circumvent the above difficulties. The basic idea is simple, and follows the line of thought

in point 3 above. In the description of the 4d effective action of the original fluxless theory,

one must in principle include the contributions from all BPS D-brane instantons, namely

the non-perturbative superpotential from instanton with two fermion zero modes, and the

multi-fermion F-terms from instantons with additional fermion zero modes (see [28, 29] for

such terms in gauge theory and heterotic strings, and [30, 25] in the context of D-brane

instantons). Upon introduction of the flux superpotential, some moduli are massive and

should be integrated out. This process catalyzes the transformation of some of the original

multi-fermion F-terms into new non-perturbative contributions to the superpotential of the

flux compactifications (at scales below the moduli mass scale, which is roughly the flux

scale). The proposal works globally in moduli space, and does not suffer the problems of a

pointwise approach. In addition, it is formulated purely in terms of the 4d effective action,

and therefore can address the question of non-perturbative effects in any flux background

for which a 4d flux superpotential is known. This includes the familiar p-form fluxes, but

also geometric and non-geometric fluxes.

The paper is organized as follows. In section 2 we describe the basic idea in a more

quantitative fashion, section 2.1, and discuss the procedure in comparison with a more

familiar situation in gauge field theory, section 2.2. In section 3 we focus on a concrete

example of euclidean D3-branes with fermion zero modes associated to the deformation
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of the wrapped 4-cycle. In section 4 we describe some other examples of IIB D3-brane

instantons, focused around the common theme of generating non-perturbative superpo-

tentials from instantons with U(1) Chan-Paton symmetry, by catalysis with 3-form and

non-geometric flux superpotentials. In section 5 we use the bulk-boundary map of open-

closed topological strings to show the existence of relations between disk and sphere cor-

relators, required for consistency of the microscopic and effective field theory description

of flux effects on D-brane instantons. In section 6 we briefly comment on the relevance of

N = 1 special geometry to D3-brane instantons. Section 7 we make some final remarks.

Appendix A contains some properties of multi-fermion F-terms, and appendix B sketches

the computation of supergraphs involved in integrating out massive moduli (or dressing up

instantons of the original theory by flux interactions).

2. Lifting fermion zero modes is integrating out massive moduli

2.1 The basic idea

The basic idea in our proposal is that all D-brane instantons induce potentially impor-

tant terms in the 4d effective action, even in the fluxless compactification. This is clearly

recognized for instantons with two fermion zero modes in the fluxless model, since they

contribute to the non-perturbative superpotential. But it also holds for D-brane instan-

tons with additional fermion zero modes, which do not contribute to the superpotential,

but induce multi-fermion F-terms (denoted higher F-terms in the following), of the kind

studied in [28, 29] and reviewed in appendix A (see [30, 25, 31, 33] for recent discussions

of higher F-terms generated by D-brane instantons). In component terms, these include

higher-derivative interactions, and are usually not considered in the effective action of

compactifications. However we will argue that they are crucial in providing a consistent

description of the introduction of fluxes, since the latter catalyze the transformation of

higher F-terms into superpotential terms.

We first consider a simple model, which will illustrate the main point in a simplified

setup, sufficient for our purposes. Although the discussion is general, for concreteness we

phrase it in terms of a type IIB compactification on a CY threefold, with an orientifold

projection introducing O3-planes. The compactification contains, in the absence of fluxes,

a number of Kahler moduli Ta, and of complex structure moduli Ui. Consider an euclidean

D3-brane instanton wrapped on a 4-cycle S whose volume is controlled by a Kahler modulus

T . For simplicity we assume that the instanton has a O(1) worldvolume Chan-Paton

symmetry. Then, its sector of universal fermion zero modes contains only the translational

goldstones xµ and the goldstinos θ, and the orientifold projects out the additional fermion

zero modes from the N = 2 of the underlying CY compactification). In addition, there are

a number of 2n fermion zero modes ηi,α̇, associated to the deformations of the 4-cycle S

invariant under the orientifold projection. Hence i = 1, . . . , n = H2,0
+ (S), and α̇ labels the

two modes, which transform as a chiral spinor of the 4d Lorentz symmetry. There are also

bosonic zero modes related to deformations of S, but we will ignore them in this discussion.

For simplicity we consider n = 1, since the generalization, briefly mentioned at the end, is

straightforward.
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In order to compute the 4d amplitude of the D3-brane instanton, we have to integrate

over its zero modes, so we need to soak up the fermion zero modes to get a non-zero result.

The deformation fermion zero modes can be saturated using the the interaction terms

Smix = ηα̇D
α̇
U (2.1)

These interactions of deformation fermion zero modes and complex structure moduli will

be further discussed in section 5. Note also that they are mirror to those argued for

in [30], between deformation fermion zero modes on D6-branes and Kahler moduli in IIA

compactifications.

The resulting 4d amplitude for the D3-brane instanton is sketchily of the form

S4d,0 =

∫

d4x d2θ d2η e−Sinst ≃

∫

d2θ e−T DU DU (2.2)

Our basic statement is that the inclusion of these kind of terms allows a consistent descrip-

tion, purely in terms of the effective action, of the non-perturbative effects in all conceivable

flux compactifications of the model. Note that this last property implicitly exploits the fact

that the non-perturbative contributions are well-behaved globally in moduli space [24, 25].

As a prototypical example, consider introducing NSNS and RR 3-form fluxes in this

compactification. Their effect in the effective action is the introduction of the flux super-

potential [7]

Wflux =

∫

X

G3 ∧ Ω (2.3)

where G3 = F3 − τH3, τ is the complex IIB dilaton, and Ω is the holomorphic 3-form

of the CY threefold X. This superpotential can be argued to be exact, even when non-

perturbative effects are included, by using the domain wall arguments in the derivation

in [7]. The only relevant information about this superpotential, for our simplified discussion,

is that it generically stabilizes all complex structure moduli. The effective 4d action for

the flux compactification thus contains the F-term piece

S4d,flux =

∫

d4x d2θ e−T DU DU +

∫

d4x d2θWflux(U) (2.4)

Since the superpotential stabilizes U and makes it massive, it can be integrated out to

provide an effective action below the scale set by the fluxes. This amounts to computing

the Feynman diagrams where the field U runs in internal lines, and does not appear in

external lines. The one relevant for us corresponds to an effective interaction from a diagram

involving the D3-brane instanton vertex with the two legs of the U field contracted with a

superpotential interaction. The diagram can be computed in a manifestly supersymmetric

fashion using supergraphs, as we do (in a slightly more general setup) in appendix B. The

resulting 4d interaction, in the effective theory below the flux scale, is

S4d,fin ≃

∫

d2θ e−T G (2.5)
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where G is defined by expanding Wflux(U) = GU2 + . . . and is related to the flux den-

sity. Hence, the procedure automatically produces the appearance of non-perturbative

superpotential from instantons with additional fermion zero modes in the fluxless case.

Some comments are in order:

• It may seem that we have generated a superpotential from a computation of Feynman

diagrams, and that this violates familiar non-renormalization theorems. In fact there

is no contradiction, since the final superpotential can be regarded as the original

one, expressed in terms of the left-over fields after integrating out the massive ones.

Related to this, the familiar non-renormalization theorems do not hold in the presence

of higher F-terms, which can precisely turn into superpotential terms when suitably

dressed by additional interactions.

• Notice the interpretation of the additional factor of G from the viewpoint of matching

of scales. Let us associate a dynamical scale Λn.p. = e−T to the non-perturbative

effects of the original theory. The non-perturbative effects of the final effective theory

are controlled by a dynamical scale Λ′ = e−TG. This is the correct scale obtained by

matching when one integrates out a massive field with mass controlled by G.

The result (2.5) matches the expectations from the microscopic approach. Indeed, from

the microscopic D3-brane instanton viewpoint, the effect of the flux is to produce a lifting

of the fermion zero modes, namely a modification of the D3-brane instantons worldvolume

action by a term

Slift. = Gηη (2.6)

where we are using the same G as above, for reasons to be discussed later on (see example

in section 3, and a general discussion in section 5). Using this interaction to saturate the

integration over fermion zero modes, the D3-brane instanton leads to a non-perturbative

superpotential in the flux compactification of the above form.

Hence we recover the same non-perturbative superpotential, but exclusively from con-

siderations of the 4d effective action. This is achieved thanks to the inclusion, in the

original fluxless 4d effective action, of higher F-terms arising from instantons which do

not contribute to the superpotential of the original model. Our work shows that these

higher F-terms are nevertheless of crucial importance to allow a systematic discussion of

non-perturbative superpotentials in flux compactifications.

To illustrate the advantage of the 4d effective theory viewpoint on the interplay of

fluxes and instantons, consider the 4d superpotential in the flux compactification. From

the microscopic viewpoint, one may be tempted to consider the moduli dependent superpo-

tential to include both the flux superpotential Wflux and the non-perturbative superpoten-

tial e−TG. Our derivation above however shows that this procedure is incorrect, and that

these superpotentials belong to two different effective theories: Wflux is the superpotential

for moduli above the scale set by the flux, so that moduli are still included in the effec-

tive action, and the proper non-perturbative effect is the higher F-term e−T (DU)2. And

e−TG is the effective superpotential below the flux scale, where the massive moduli have

– 6 –



J
H
E
P
0
1
(
2
0
0
9
)
0
4
8

been integrated out. Incidentally, note that in a flux compactification where the vacuum

expectation value of the superpotential at the minimum W0 is non-zero (hence there is

a non-zero cosmological constant in supergravity), the effective superpotential below the

flux scale contains the constant piece W0, in addition to the non-perturbative piece e−TG.

Therefore this validates the kind of procedure described in [12]. These issues, which may

be confusing from the microscopic viewpoint, become clear in a formulation which allows

the deeply rooted intuitions of effective field theory.

The generalization of our derivation to additional fermion zero modes is straightfor-

ward. For an instanton with 2n additional fermion zero modes, the effective action of

the fluxless compactification contains a non-perturbative higher F-term with 2n chiral

derivatives of the relevant moduli. Once a flux superpotential is turned on, the effective

non-perturbative effects in the flux compactification are obtained by integrating out the

massive moduli. Namely by computing Feynman diagrams where the original instanton

is dressed by superpotential interactions, which soak up pairs of external legs involving

the massive moduli. The supergraphs computation of these diagrams follows the pattern

in appendix B. Also, although we have illustrated the idea using D3-brane instantons

and deformation zero modes, there are clear generalizations to any other kind of D-brane

instanton and of additional fermion zero modes, see later for examples.

2.2 A simple field theory analog

In this section we consider a simple supersymmetric field theory system, which provides a

very precise illustration of the above procedure, but in a more familiar setting.

Consider four-dimensional N = 1 SU(Nc) SQCD with Nf = Nc flavors. As studied

in [28], this theory contains an instanton generating a four-fermion F-term. Namely, there

are 2Nc neutral fermion zero modes from the gauginos, and 2Nf from the flavor quarks.

The Yukawa couplings pair up 2Nc−2 of the ”gaugino” fermion zero modes with 2Nf−2 of

the ”flavor” fermion zero modes, which are thus all lifted. The left-over ”gaugino” fermion

zero modes are the goldstinos θα of the two supersymmetries broken by the instanton, while

the two ”flavor” fermion zero modes η, η̃ must be saturated against external insertions of

the 4d fermion fields. In other words, from the viewpoint of the instanton worldvolume,

there is a coupling of the form

Smix = ηDQ + η̃ DQ̃ (2.7)

where actually Q, Q̃ are actually combinations of the different flavor fields in the funda-

mental/antifundamental. This implies that the instanton leads to an F-term, roughly of

the form

S4d,0 =

∫

d4x d2θ e−T DQDQ̃ (2.8)

where we have ignored the presence of a non-holomorphic function of the flavor fields.

Consider now perturbing the theory by the introduction of a mass term m for one of

the flavors. From the microscopic instanton point of view, this is perceived as the lifting of

– 7 –
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the two fermion zero modes η, η̃, since they are just modes of the 4d flavor fields. Therefore

we have a lifting term on the instanton action

Slift = mηη̃ (2.9)

Saturating the two extra fermion zero modes with this interaction, we see that the instanton

amplitude leads to a 4d superpotential term of the form

S4d,fin =

∫

d4x d2θ e−T m (2.10)

where we are ignoring a (holomorphic) function of the flavor fields. In fact this agrees with

the analysis in [28]. There it was argued that the presence of the extra superpotential mod-

ifies the supersymmetry algebra, and that the amplitude of the instanton in the deformed

theory turns into

S4d,BW =

∫

d4x d2θ e−T
(

DQDQ̃ + m
)

(2.11)

which indeed contains the term of interest.

The above argument is completely analogous to the discussion of lifting of fermion zero

modes of D-brane instantons by closed string fluxes. The analog of the flux is the mass

parameter, which from the viewpoint of the instanton lifts some of the fermion zero modes,

and allows the generation of a non-perturbative superpotential.

Clearly, the field theory example makes it manifest that there is an alternative and

more familiar way to interpret these effects, in terms of the 4d effective field theory. The

mass deformation makes one of the flavors massive, so that integrating it out we are left

with Nf = Nc − 1 SQCD. The instanton in this theory generates an Affleck-Dine-Seiberg

superpotential. In more detail, after the introduction of the mass parameter, the theory

has the F-terms

S4d,mass =

∫

d4x d2θ e−T DQDQ̃ +

∫

d4x d2θmQQ̃ (2.12)

Integrating out the massive flavor amounts to evaluating the dressed instanton diagrams,

with two external flavor legs contracted with a mass term, similar to the diagram 1. The

resulting dressed instanton interaction gives a superpotential term

S4d,fin =

∫

d4x d2θ e−T m (2.13)

in the effective Nf = Nc−1 SQCD theory. Restoring a (holomorphic) function of the flavors,

and using matching of scales, this reproduces the expected ADS superpotential. Thus the

instanton superpotentials in the deformed effective theories can be obtained by dressing

the instantons of the original theory with the deformation interaction. Our procedure in

section 2.1 is simply the application of this effective field theory logic to D-brane instantons

in flux compactifications.

The above field theory model can be easily engineered into string theory, e.g. as in [25]

(see also [33]). Equivalently, it can be done in the T-dual Hanany-Witten picture [34, 35]

– 8 –
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(see [36] for a review) with color D4-branes stretched between two relatively rotated NS-

branes, and semi-infinite D4-branes yielding the flavors. the analogy with the discussion

in the previous section can be made completely precise, by applying a T-duality similar to

that in [37], as follows: The NS-branes turn into a conifold-like singularity, the D4-branes

turn into D3-branes, and the mass term (corresponding to a twist in the original HW

geometry [38]) turns into a background 3-form flux. We refrain from entering additional

details of this realization, and content ourselves with stating the complete analogy of the

procedures in the previous section with standard practice in supersymmetric gauge field

theory.

3. Example: deformation fermion zero modes and 3-form fluxes

In this section we consider more explicit examples of the above mechanism, focusing on

D3-brane instantons with deformation fermion zero modes, in the presence of 3-form fluxes.

3.1 The setup

Let us consider type IIB theory compactified on a CY threefold X. Since we are mostly

interested in the N = 1 supersymmetric case, we consider there are orientifold planes, which

for definiteness we take to be O3/O7 planes (analogous discussion could be carried out for

M5-brane instantons in compactifications of F-theory on CY fourfolds). Still, since we are

interested in instantons which may have extra fermion zero modes we do not assume that

they are mapped to themselves by the orientifold action, and so the orientifold projection

is not very crucial. In any event, the fact that we eventually turn on flux superpotentials

makes it natural to use the N=1 language.

Consider an euclidean D3-brane instanton wrapped on a holomorphic 4-cycle S. For

simplicity we consider its worldvolume gauge bundle to be trivial. For a U(1) instanton, in

addition to the universal set of fermion zero modes, we have sets of deformation bosonic zero

modes φ, and their fermionic partners ηα. The index α denotes a spinor index in spacetime,

so we have two fermion zero modes of this kind. They are associated to deformations of the

4-cycle S keeping it holomorphic. Namely to sections of the holomorphic normal bundle

of S on X. For each such section φa ∈ H0(NS) we can use the holomorphic (3, 0) form

Ω on X to construct φbc = φaΩabc, which is an element of H(2,0)(S). So the deformation

zero modes of the D3-brane instantons are classified by the latter group (at least locally in

moduli space, see section 6 for a discussion about issues more globally in moduli space). We

are interested in a U(1) instanton with 2p of these fermion zero modes, with p = h2,0(S).

For simplicity we assume that the instanton has O(1) Chan-Paton symmetry, so that the

universal sector contains only two fermion zero modes, the goldstinos θ.

In the following we particularize this general analysis to simple flat factorized examples,

like T4 ×T2 or K3×T2, realized as (T4/Z2)×T2 (or additional quotients thereof), with

a D3-brane instanton wrapped on the fiber T4 or K3, and sitting on top of the orientifold

plane. We choose the latter so that the D3-brane has Chan-Paton symmetry O(1) and the

deformation fermion zero mode survives the orientifold projection.

– 9 –
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3.2 The microscopic viewpoint: Lifting zero modes by fluxes

Let us consider the effect of fluxes on these fermion zero modes, and how they are lifted.

In order to keep the discussion as clean as possible, let us consider a supersymmetric

vacuum of the theory, with a primitive (2, 1) flux density G3. The lifting of fermion zero

modes of D3-branes by fluxes has been studied in several works, and we simply borrow

the relevant results. The coupling can be computed using the D-brane action coupled to a

general supergravity background [20] (see also [21 – 23], or as we discuss later by computing

correlators in the fluxless theory. The relevant piece for us has the structure

(

G̃3

)

m̂n̂p
Θ Γm̂n̂pΘ (3.1)

where Θ encodes all worldvolume D3-brane fermions (expressed as a 10d spinor, or as

spinors on the D3-brane transforming also as spinors of the normal bundle in the CY and

of the 4d spacetime directions), and hatted/unhatted coordinates correspond to directions

parallel/transverse to the D3-brane instanton. Also G̃3 is related to the continuation of

the standard G3 to euclidean signature. More specifically

G̃3 = i (F3 + τ̃ H3 ) with τ̃ = i e−φ + a γ5 (3.2)

Since we focus on a particular spinor with fixed eigenvalue of the D3-brane worldvolume

chirality γ5, G̃3 essentially reduces to the standard G3, modulo a proportionality constant.

This approach has been often applied in the literature, and we will not repeat it here.

Instead for future convenience it will be useful to use a different derivation of the coupling

for our case of interest. It is based on the study of the effect of type IIB 3-form fluxes on

D-brane instanton fermion zero modes as carried out in [32]. The approach is to compute

disk correlators involving two fermion zero modes and one vertex operator of the closed

string 3-form fluxes. We refer to these references for details, and restrict the discussion to

selection rules, based on H-momentum in the bosonized formalism, which are sufficient to

show the existence of the relevant couplings.

We consider a 3-form flux which preserves the supersymmetry of the vacuum, and in

particular is of the form

G3 = Gdz1 dz2 dz3 (3.3)

This corresponds to a weight vector (++−) of the internal CFT. The deformation fermion

zero modes are associated to the (2, 0) form dz1dz2 on the 4-cycle, and thus correspond to

weight vectors

1

2
(+ + −;−−) ,

1

2
(+ + − + +) (3.4)

where we have also shown the 4d spacetime spinor weights, which are implicit in what

follows. There is a cubic coupling corresponding to the correlator structure

〈 (+ + −)G3
·

1

2
(−− +) η ·

1

2
(−− +) η 〉 (3.5)
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This leads to a coupling

Slift = Gη η (3.6)

Thus in the presence of these flux, the D3-brane instanton provides a 4d superpotential

S4d,fin =

∫

d4x d2θ Ge−T (3.7)

3.3 Effective field theory viewpoint: integrating out moduli

In the following we show how this result is derived from our effective field theory approach.

Consider the fluxless compactification. The D3-brane instanton considered above has one

set of additional deformation fermion zero modes. These have couplings to complex struc-

ture moduli, as follows

Smix = η
(

DU1 + DU2

)

(3.8)

That these couplings are allowed, can be seen by using the H-momentum structure of the

4d modulinos

ψU1
↔

1

2
(+ − +)L ⊗ (−00)R + (L↔R)

ψU1
↔

1

2
(− + +)L ⊗ (0 − 0)R + (L↔R) (3.9)

where there is a left-right symmetrization to form combinations invariant under the orien-

tifold action. So there are allowed correlator structures

〈 1
2 (−− +) η ·

(

1
2 (− + −)L ⊗ (+00)R + (L↔R)

)

ψU1

〉

〈 1
2 (−− +) η ·

(

1
2 (+ −−)L ⊗ (0 + 0)R + (L↔R)

)

ψU2

〉 (3.10)

Note that the boundary conditions of the worldsheet fields on the disk relate the left and

right pieces of the 4d modulino vertex operator, allowing non-vanishing correlators. It is

worthwhile to point out that the correlators are also non-vanishing in the unorientifolded

theory, namely for instantons not mapped to themselves under the orientifold action.

Besides the symmetry between the first two complex planes, there is a heuristic argu-

ment to show the coupling of the deformation fermion zero modes to the combination of

complex structure moduli as in (3.8). Consider momentarily the theory in the absence of

orientifold plane. Then the closed string background has a hyperkahler structure, and a

triplet of kahler forms Ji. The wrapped D3-brane selects a particular complex structure,

with respect to which the forms organize as a Kahler and complex structure 2-forms on

K3 or T 4 as J = J3, Ω = J1 + iJ2. In the latter case we can write

J = dz1 dz1 + dz2 dz2 , Ω = dz1 dz2 (3.11)

In the complete threefold, they can be used to construct the (2, 1) forms J dz3, associated

to U1 +U2, and Ω dz3, associated to U3. The structure of the coupling of the worldvolume

fermions to U1 + U2 in inherited from this underlying property.
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Using the couplings (3.8), the D3-brane instanton generates a higher F-term in the

fluxless compactification, with the structure

S4d,0 =

∫

d4x d2θ e−T
(

DU1 + DU2

)2
(3.12)

Upon introduction of fluxes, the theory is deformed by the flux superpotential. We

are interested in the term coupling the (2, 1) flux (3.3) to the 4d modulinos in the chiral

multiplets U1, U2. These can be computed from a correlator in the sphere, and can be

argued to be allowed by the selection rules. Indeed using (3.9), we find allowed correlators

〈 (+ + −)G3
·

(

1

2
(+ − +)L ⊗(−00)R +(L↔R)

)

ψU1

·

(

1

2
(− + +)L⊗(0 − 0)R+(L↔R)

)

ψU2

〉

Hence there is a component of the superpotential

Wflux = GU1 U2 (3.13)

Integrating out the moduli stabilized by the flux, and taking into account their appearance

in the higher F-term in the original effective action, we can derive the non-perturbative

superpotential (3.7). Notice the advantage that the effective action for the fluxless com-

pactfication can be used for any flux which can conceivably be turned on. This can be used

to provide some non-trivial examples of non-perturbative superpotentials in quite involved

flux environments, involving for instance non-geometric fluxes, see section 4.4.

Before that, we would like to mention that the term (3.13) can also be recovered

following the more standard form of the 4d flux superpotential, namely (2.3). We are

interested in the quantity

∂2W

∂U1∂U2
=

∫

X

G3 ∧
∂2Ω

∂U1∂U2
(3.14)

evaluated at the minimum of the flux potential. This provides the coefficient of the effective

vertex dressing the instanton induced 4d higher F-term. Namely, it plays the role of the

coefficient G in the above discussion. The toroidal model is simple enough so that the

latter can be computed easily from

Ω = dz1 dz2 dz3 =
(

dx1 + U1dy
1
) (

dx2 + U2dy
2
) (

dx3 + U3dy
3
)

(3.15)

where dxi, dyi for a basis of integer forms in the ith two-torus. The computation can still be

further simplified by using some additional general considerations. Note that in Minkowski

vacua G3 must have (0, 3) or (2, 1) components. Each holomorphic derivative of Ω flips

at most one holomorphic leg to an antiholomorphic one, hence ∂12Ω has (3, 0), (2, 1) and

(1, 2) components. Then the (0, 3) component of G3 does not contribute to (3.14). Finally

we notice that the (1, 2) component of ∂12Ω is

∂Ω

∂U1∂U2

∣

∣

∣

∣

(1,2)

= dz1 dz2 dz3 (3.16)
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Thus the only contribution to (3.14), and hence to the coefficient G in the above discussion,

is the piece of G3 proportional to dz1dz2dz3, as used above.

From the viewpoint of the 4d effective action, one may not be particularly interested in

the Hodge structure of the different quantities mentioned in the computation, but rather in

the result, expressed in terms of the basic inputs of the compactification, namely the flux

quanta. This is straightforward to obtain from the standard form of the 4d superpotential

used in the study of moduli stabilization, as we now discuss. The procedure of computing

the complete flux superpotential on tori was described in detail in [39, 40]. For later

convenience, we follow the notation in [41]. We introduce a basis of integer homology

cycles, obtained by tensoring the forms dxi, dyi, on each two-torus

α0 = dx1dx2dx3 ; β0 = dy1dy2dy3 ,

α1 = dx1dy2dy3 ; β1 = dy1dx2dx3 , (3.17)

α2 = dy1dx2dy3 ; β2 = dx1dy2dx3 ,

α3 = dy1dy2dx3 ; β3 = dx1dx2dy3 ,

In this basis, the fluxes have an expansion

F3 = −mα0 − e0β0 +

3
∑

i=1

(eiαi − qiβi)

H3 = h0β0 −
3

∑

i=1

aiαi + h̄0α0 −
3

∑

i=1

āiβi (3.18)

Introducing the complex coordinates zi = xi + U iyi, and using Ω = dz1 dz2 dz3,we have

Wflux =

∫

G3 ∧ Ω = e0 + i

3
∑

i=1

eiUi − q1U2U3 − q2U1U3 − q3U1U2 + imU1U2U3

+ S

[

ih0 −
3

∑

i=1

aiUi + iā1U2U3 + iā2U1U3 + iā3U1U2 − h̄0U1U2U3

]

(3.19)

where we are using S = −iτ . This superpotential generically makes massive all the complex

structure moduli. Using this expression for the superpotential, we have

∂2W

∂U1∂U2
= −q3 + imU3 + iā3 S − h̄0 S U3 (3.20)

Taking the values of S,U3 at the minimum of the flux potential, we obtain the coeffi-

cient of the effective vertex dressing the instanton induced 4d higher F-term. Namely the

quantity (3.14), directly in terms of the flux quanta (and the vevs of S,U3). Thus upon

integrating out the fields U1, U2 as described above, we obtain the 4d non-perturbative

superpotential

S4d,fin =

∫

d4x d2θ (−q3 + imU3 + iā3 S − h̄0 S U3 ) e−T (3.21)
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where in general the coefficient must be evaluated at the minimum of the flux potential, if

the moduli S,U3 are massive with mass given by the flux scale (since the above superpo-

tential is valid in the effective theory below this scale).

4. Applications

We hope to have convinced the reader about the virtues of the effective field theory ap-

proach, and its full generality beyond the concrete example considered above. In order

to illustrate better the power of this technique, in this section we consider some further

examples, which include fluxes with no 10d description (and for which the microscopic

approach is thus beyond present techniques).

Although the examples in this section can be taken on their own, the common theme is

the use of our approach to obtain non-perturbative superpotentials from generic D3-brane

instantons, not mapped to themselves under the orientifold action. These typically have

additional fermion zero modes which are notoriously difficult to lift, and whose lifting is

related to supersymmetry breaking in spacetime [25].

4.1 Revisiting a no-go result: U(1) instantons and 3-form fluxes

The effective field theory approach allows to derive in very simple terms some known results

in the literature. For instance, consider a general CY compactification without fluxes, and

an euclidean D3-brane wrapped on a rigid 4-cycle, not mapped to itself under the orien-

tifold action, and with no world-volume flux turned on. This instanton has two additional

fermion zero modes τ , which are goldstinos of the accidental N = 2 supersymmetry in the

underlying CY compactification, and therefore does not contribute to the superpotential.

Naively, one might think that it is possible to lift these fermion zero modes with suitable

3-form fluxes. However, a microscopic analysis using the D3-brane action coupled to fluxes

shows this not to be possible [30].

This has a very simple explanation from the effective field theory point of view. The

instanton is an example of D-brane instanton whose BPS phase can misalign, with respect

to the N = 1 susy of the compactification, and which were studied in [25]. For such

instantons, the two additional fermion zero modes τ have couplings to the Kahler modulus

Σ which controls the BPS misalignment, and thus lead to an effective 4d higher F-term

contribution of the form

S4d,0 =

∫

d4x d2θ e−T DΣDΣ (4.1)

Turning on 3-form fluxes leads to the deformation of the theory by the superpotential (2.3),

which depends only on the dilaton and complex structure moduli. Therefore, it is not

suitable to dress the D3-brane instanton amplitude and turn it into a superpotential. The

above higher F-terms remains intact in this class of flux compactifications.

It is very satisfactory to check that the effective field theory approach provides new

intuitions concerning results which do not have an obvious physical interpretation in the

microscopic picture.
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4.2 Magnetized U(1) instantons

One may suspect that the no-go result is just an accident of the particular kind of flux

compactification considered. In fact, it has been recently shown in [32, 33] that 3-form

fluxes can lift similar fermion zero modes in D(−1)-brane instantons. Performing suitable

dualities, we would conclude that it should be possible to lift these fermion zero modes for

D3-branes by using non-geometric fluxes. In previous approaches it was not possible to

verify this directly. However, we can use the effective field theory techniques to show this

in concrete examples. In order to do so, it will be convenient to have concrete examples of

U(1) instantons.

Let us consider the closed string background of section 3, but focus on a different D3-

brane instanton. We again focus on instantons wrapped on the K3 (or T4/Z2) fiber, but

consider turning on a worldvolume magnetic flux. For simplicity, we keep the factorized

structure of the tori, so

F = m1 dx
1 dy1 + m2dx

2 dy2 (4.2)

In order to be BPS, the worldvolume flux must be primitive. Hence the instanton is BPS on

the locus m1T1 +m2T2 = 0, and become non-BPS away from it. This is a simple example

of D-brane instanton whose BPS phase can misalign, and which were studied in [25]. For

concreteness, we focus our analysis on the BPS locus in Kahler moduli space.

Such instantons generate higher F-terms involving derivatives of Kahler moduli. In-

deed, due to the worldvolume magnetic flux, the D3-brane instanton is not mapped to itself

under the orientifold action, and has worldvolume gauge group U(1) (which thus supports

the flux). The universal sector of zero modes contains two additional fermion zero modes

τ (which become the extra goldstinos θ away from the BPS locus). These fermion zero

modes have couplings with the 4d moduli controlling the BPS phase of the instanton [25],

namely

Smix = η D
(

m1T 1 + m2 T 2

)

(4.3)

Note that in this formula we are restricting to the coupling to the factorized Kahler moduli.

In general, there are couplings to additional Kahler moduli (off diagonal in T4/Z2 × T2,

or twisted in T6/(Z2 × Z2)), which are not shown. These couplings would be relevant in

the case with no worldvolume magnetic fluxes m1 = m2 = 0. In other words, we have used

magnetization of the D3-brane instanton as a trick to make the couplings of τ to Kahler

moduli without going out of the factorized ansatz.

In addition to τ , the instanton has the deformation zero modes η discussed above. In

total, the non-perturbative contribution of the instanton has the structure

S4d,0 =

∫

d4x d2θ e−T
[

D(m1T 1 + m2 T 2 )
]2 [

D( c1U1 + c2U2 )
]2

(4.4)

where T is a combination of the different Kahler moduli, dependent on m1,m2, and c1, c2
are coefficients depending also on the magnetization quanta. These details will not be very

relevant to our purposes, and we skip them.
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As we have mentioned in different opportunities, it is now straightforward to discuss

the possible non-perturbative effects derived from this instanton in different flux compact-

ifications, by simply introducing the relevant superpotential in the effective action and

integrating out the massive moduli.

4.3 Magnetized D3-brane instantons and 3-form fluxes

Just for reference, let us describe the introduction of 3-form fluxes in the compactification

and their effect on the above D3-brane instantons. Introducing the superpotential (2.3), in

the form (3.19), we see that it is possible to use superpotential interactions to contract the

external legs of complex structure fields in the instanton amplitude (4.4). However, it is not

possible to contract the external legs of Kahler moduli. So the instanton non-perturbative

effects is a higher F-term of the form

S4d,fin =

∫

d4x d2θ Ge−T [D(m1T 1 + m2 T 2 ) ]2 (4.5)

where G is the coefficient of the dz1dz2dz3 term in G3, as above.

In microscopic terms, the 3-form fluxes have lifted the fermion zero modes η, but not

the τ . This system combines features of the instantons considered in section 3 and 4.1.

Note that the possible lifting of the τ zero modes of magnetized D3-branes by 3-form fluxes

in [30] requires the introduction of off-diagonal magnetic fluxes, hence lies outside the class

we are considering.2

4.4 Magnetized D3-brane instantons and non-geometric fluxes

The effective field theory approach allows to consider a possible mechanism to lift the τ

fermion zero modes, by turning on additional non-geometric fluxes. The fact that such

fluxes do not have a 10d geometric description prevents the use of a microscopic picture.3

However, it poses no obstacle to a treatment in the effective field theory description.

The superpotential for 3-form and non-geometric fluxes has been considered in detail

e.g. in [6]. For our purposes, the expression for factorized toroidal geometries in type IIB

compactifications with O3-planes, we may use the expression in [41].

Wn.g.flux = e0 + i
3

∑

i=1

eiUi − q1U2U3 − q2U1U3 − q3U1U2 + imU1U2U3

+S

[

ih0 −
3

∑

i=1

aiUi + iā1U2U3 + iā2U1U3 + iā3U1U2 − h̄0U1U2U3

]

(4.6)

+

3
∑

i=1

Ti

[

− ihi −
3

∑

j=1

Ujbji + iU2U3b̄1i + iU1U3b̄2i + iU1U2b̄3i + U1U2U3h̄i

]

.

2In fact, the analysis of this effect in [25] suggests a link between the lifting of the τ fermion zero

modes and the breaking of supersymmetry by non-primitivity of G3. This suggests that this lifting may

not be achievable in CY compactifications other than T
6 or K3×T

2, and thus may not be describable in

an effective action including only the superpotential (2.3).
3For particular choices of flux, it may be possible to dualize the model to a geometric one. Also it may

be possible that certain effects are local enough to allow for a local 10d geometric description. See e.g. [42]

for studies in this direction.
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where the coefficients hi, bij, h̄i, b̄ij , i, j = 1, 2, 3 are the non-geometric flux quanta, and

are related to the notation of [6] in table 2 of [41]. These integers, and those controlling the

3-form fluxes, are subject to certain mutual consistency conditions, for whose discussion

we refer to the references.

We would however like to discuss an important compatibility conditions between the

D-brane instantons of interest and the fluxes. Namely, the fluxes imply a gauging of

certain isometries in the 4d effective theory, which must therefore not be violated by the

non-perturbative effects. This is a generalization of the analysis in [19], and directly related

to the Freed-Witten consistency conditions on brane wrappings in the presence of fluxes.

In fact this issue had not appeared in our previous examples with 3-form fluxes because the

pullback of the RR 3-form fluxes on the D3-brane 4-cycle vanished, hence satisfying the

Freed-Witten consistency conditions (in fact this is generic for 4-cycles and 3-form fluxes

on CY compactifications). In our present situation, the cancellation is not automatic,

and if we fix the instanton D3-brane of interest, it restricts the set of fluxes compatible

with it (or viceversa). These compatibility conditions are also identical to the Freed-

Witten consistency conditions for 4d spacefilling D-branes wrapped on the same cycle as

the instanton [43, 44]. In any event, they amount to requiring the invariance of the flux

superpotential under the isometry along the modulus controlling the BPS phase of the

relevant wrapped D-brane (for spacefilling branes, this is the gauging of the worldvolume

U(1) gauge symmetry). In our case we require invariance under

T1 → T1 +m1λ ; T2 → T2 +m2λ (4.7)

This invariance should hold for any value of the complex structure moduli Ui, and we

obtain a set of constraints
∑

i=1,2

mihi = 0 ;
∑

i=1,2

mibji = 0 ;
∑

i=1,2

mib̄ji = 0 ;
∑

i=1,2

mih̄i = 0 (4.8)

These can be regarded as restrictions on the allowed D-brane instantons in a given flux

compactification, or as restrictions on the allowed fluxes with one can turn on without

destroying the existence of a given instanton. We adopt the latter viewpoint in our analysis.

Clearly the above constraints still allow many flux configurations to be turned on, in a way

compatible with our instantons of interest. Our main motivation for the above discussion,

is to emphasize that the analysis of the compatibility of fluxes and instantons is amenable

(as already mentioned in the references on the topic) to an analysis purely in terms of the

4d effective field theory, and fits perfectly with the viewpoint of the present paper.

It is clear that the superpotential (4.7) contains interaction terms which are capable of

contracting the diverse external legs in the original non-perturbative interaction (4.4). The

result has a complicated dependence of the bulk and worldvolume flux quanta, although

can be systematically computed for any given flux choice, and is in general nonzero. This

corresponds in microscopic terms to the lifting of the η and τ fermion zero modes by

the flux background. It would be interesting to explore the relation to spacetime susy

breaking in this setup, which is expected from the general arguments in [25]. Leaving these

aspects for future work, we close this section by hoping to have illustrated the use of the
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4d effective action to discuss fermion zero mode lifting, even in situations with no available

microscopic description.

5. Worldsheet bulk-boundary map: D-brane zero modes as zero modes of

4d moduli

As is already clear from section 3, the matching of the microscopic fermion zero mode

lifting and the effective field theory process of integrating out moduli, requires a very

specific condition. Denote G the flux component that lifts a given fermion zero mode,

namely leads to a fermion zero mode coupling Gηη on the instanton action. Consider now

the closed string moduli coupling to this fermion zero mode via ηDU . Then consistency

with the effective field theory picture requires that the flux superpotential must contain a

term GUU .

In other words, there must be a correlation between the couplings of the flux back-

ground to fermion zero modes and to spacetime moduli fields. For gauge field theory

instantons, as in the example in section 2.2, the relation between the couplings of instan-

ton fermion zero modes and of spacetime fields is automatic, since the instanton fermion

zero modes are particular components of the spacetime fields, localized on the core of the

instanton. On the other hand, for general D-brane instantons in string theory, the instan-

ton zero modes are open string fields, whose couplings are computed via disk diagrams,

while the spacetime moduli fields are closed strings, whose couplings are computed via

sphere diagrams. Still, this matching between specific open and closed modes, and their

disk and sphere couplings, is found in particular examples, as in sections 3.2, 3.3.

In the following we suggest an explanation for this matching, based on very general

principles (as expected, since the existence of a matching is required on grounds of very

general principles of effective field theory). Notice that the relevant couplings, of the

flux to the fermion zero modes, of the fermion zero modes to the moduli, and of the

flux to the moduli, enjoy powerful holomorphy properties, and indeed are computable

in the corresponding topological string theory (similar to the discussion of other D-brane

instanton couplings in [45]). Therefore the appropriate setup for our question is open-closed

topological string theory. In fact, the formulation of abstract properties of two-dimensional

open-closed topological field theory [46] leads to an interesting correspondence between

open and closed states and their correlators, the so-called bulk-boundary map, which we

now explain.

Consider a topological string theory with open and closed strings. The closed string

sector contains a set of states or vertex operators (which by abuse of language we do not

distinguish), living on a Hilbert space Hcl.. Let us consider a basis for this, with elements

φi, with respect to which one can expand any other state in Hcl. On this space one can

define the product C(φ, φ′) of two states φ, φ′ by scattering them into a third via a sphere

diagram. In terms of the basis

φi · φj = C(φi, φj) = C k
ij φk (5.1)

– 18 –



J
H
E
P
0
1
(
2
0
0
9
)
0
4
8

The closed string product coefficients C k
ij correspond to the sphere scattering amplitude of

states i, j into state k.

One can operate similarly in the open string sector. For simplicity, we focus on the

case of a single kind of boundary, i.e. a single kind of D-brane. One can introduce a basis

in the Hilbert space Hop. of open strings, with elements ψa. One can use disk diagrams

with two incoming states ψ, ψ′ scattering into an outgoing one to define an open string

product B(ψ,ψ′). In terms of the basis we have

ψa · ψb = B(ψa, ψb) = B c
ab ψc (5.2)

Finally, there is a basic operation which defines a map (which is not an isomorphism) from

the Hcl. to Hop.. It corresponds to taking a disk diagram with one insertion of a closed

string vertex operator φ, and moving it to the boundary to define a boundary operator

e(φ). Using the basis we have

e(φi) = e ai ψa (5.3)

which defines the bulk-boundary map coefficients. This process can be transformed (by a

conformal transformation in the physical theory, or by deformation in the topological) into

a diagram, denoted closed-open conduit, in which an incoming closed string state turns

into an open one.

The sewing constraints in the open-closed topological field theory imply the bulk-

boundary crossing symmetry formula [46]

B(e(φ), e(φ′)) = e(C(φ, φ′)) (5.4)

or in terms of the basis

e ai e
b
j B

c
ab = eck C

k
ij (5.5)

The above is precisely the relation we hoped for!

Let us begin explaining the right hand side. In our setup, the closed string fields φ, φ′

correspond to the spacetime moduli fields, for concreteness the modulinos.4 Their product

C(φ, φ′) is the vertex operator of the flux component coupling to them. Its boundary image

e(C(φ, φ′)) corresponds to the bulk flux restricted to the D-brane instanton.

Consider now the left hand side. The operator ψ = e(φ) (and similarly for ψ′ = e(φ′))

corresponds to an open string mode which couples, via the closed-open conduit, with the

modulino φ. Hence it corresponds to a D-brane instanton fermion zero mode, coupling to

the modulino field. The product B(ψ,ψ′) corresponds to the field which couples to the

fermion zero modes and lifts them. Equation (5.4) implies that the object that lifts the

worldvolume fermion zero modes is precisely the restriction to the D-brane instanton of

the flux component coupling to the moduli fields.

4The structure of products and maps respects the Z2 grading which allows to distinguish bosons and

fermions, with their familiar rules in amplitudes.
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Hence even for D-brane instantons with no gauge field theory, the bulk-boundary map

allows to understand fermion zero modes as natural restrictions to the D-brane instanton

of fields in the bulk. This works very simply in practice: consider the modulino fields in

section 3.3, roughly speaking the structure in (3.9). Once restricted to the boundary, one

should no longer distinguish between left and right. It is then possible to show that the

structure of the modulino vertex operator becomes essentially that of the D-brane fermion

zero modes, e.g. (3.4) at the level of weight vectors.

The above discussion also sheds some light on the general question of the precise nature

of D-brane instantons which are not gauge field theory instantons. Since their zero modes

can be naturally regarded as excitations of closed string fields, they should be though of

as instanton configurations of the closed string field background.

6. Comments on the role of N = 1 special geometry for D3-brane instan-

tons

In this section we make some general remarks on the relation of N = 1 special geometry

and mixed Hodge variations and the study of euclidean D3-brane instantons. In the lit-

erature [47 – 49], see also [51, 50], these tools have been developed as a generalization of

the special geometry in the complex structure moduli space of N = 2 CY compactifica-

tions [52]. The N = 1 special geometry describes the moduli space of complex structure

deformations and worldvolume deformations of B-type D-branes, which factorize only lo-

cally. The basic ingredients stemming from this special geometry are the coefficients of

the open-closed chiral ring (closely related to the product coefficients in section 5), which

are related to diverse 3-point amplitudes in disks and spheres. Given the close relation

between certain disk diagrams for euclidean D3-branes on 4-cycles and 4d spacetime fill-

ing D7-branes on the same 4-cycles, it would be interesting to develop the tools of mixed

Hodge variations to study aspects of D3-brane instanton effects. We merely point out

some interesting connections, emphasizing the differences with respect to the application

to D7-branes. A systematic discussion is beyond the scope of the present work. Note that

the language of N = 1 special geometry is in principle tailored to allow the inclusion of

3-form flux superpotentials, thus presumably provides a framework to develop the more

formal properties of the proposal in this paper.

Consider a type IIB compactification on a CY X with D-branes wrapped on a holo-

morphic 4-cycle S. For simplicity, we focus the discussion in the case without orientifold

planes, although the construction extends to orientifolded theories. We are interested in

studying the space of complex structure deformations of X and the space of deformations

of S (keeping it holomorphic). At this point, it is important to distinguish if we are consid-

ering 4d spacefilling D7-branes or euclidean D3-brane instantons. In the case of D7-branes,

the moduli of S are 4d fields, and combine with the complex structure moduli of S to form

a joint moduli space MN=1, which does not factorize. In the case of euclidean D3-branes,

the moduli of S are bosonic zero modes of the instanton, over which one should integrate.

The total space MN=1 described above, should not be regarded as a joint moduli space,

but it remains an useful object, denoted M for short: it contain the information on how
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the instanton moduli space evolves as one moves around the complex structure moduli

space MN=2 of X. This is possible because the space MN=1 is fibered over MN=2. The

computation of the instanton amplitude at a given point of the base (for a given complex

structure of X) implies the operation of integrating over the fiber (the moduli space of S).

The N = 1 special geometry of M presumably guarantees that the fibration structure is

such that the result of the integration depends holomorphically on the base.

This issue is thus related to the question of holomorphy of the non-perturbative su-

perpotentials, as functions of the complex structure moduli (in the IIB picture). It thus

continues a line of discussions in the papers [24, 25, 27]. As expected, since complex struc-

ture moduli space has a better behaved holomorphy properties in their coupling to D-branes

(they couple holomorphically as coefficients in the D-brane superpotentials), as compared

with Kahler moduli (which couple non-holomorphically, as Fayet-Illiopoulos terms, thus

leading to real codimension one lines of marginal stability), the microscopic explanation of

holomorphy of the superpotential does not require dramatic effects like multi-instantons,

but rather a careful treatment of the instanton contribution as a function over moduli

space, controlled in this case by N = 1 special geometry.

A second aspect in which N = 1 special geometry plays an important role is in deter-

mining the couplings of D3-brane instanton fermion zero modes. As discussed in [49, 48, 49],

the spacetime superpotential on the moduli space MN=1 of complex structure moduli and

D7-brane moduli, including flux superpotential and D7-brane moduli superpotential, is

nicely encoded in the (relative) periods of a top holomorphic (relative) form, which de-

pends on both closed and open string moduli. In suitable (flat) coordinates, the derivatives

of the top relative form with respect to the different moduli provides the basic structure

constants of the open-closed chiral ring (essentially the open-closed product coefficients).

Therefore the N = 1 special geometry contains the basic information about the couplings

between D7-brane moduli and complex structure moduli. This information can be presum-

ably translated to information on the couplings of D3-brane instanton fermion zero modes

with complex structure moduli, of the kind we have used in our present work. We hope to

come back to these interesting questions in future work.

7. Conclusions

In this paper we have provided a description of the effects of fluxes on D-brane instantons,

in terms of the 4d effective field theory of the compactification. This allows a description

of this effect globally in moduli space, and a better understanding of some of its properties.

The advantages of the effective field theory approach have been extensively discussed in

the introduction and we will not repeat them here.

Although we have emphasized a pragmatic point of view, with concrete examples,

the construction has interesting connection with more formal tools. For instance, the

crucial requirement of the correlation between the couplings of instanton fermion zero

modes and of 4d moduli fields is deeply rooted in the bulk-boundary map of topological

string theory. This allows to make precise the intuition that instanton fermion zero modes

are zero modes of 4d fields, localized at the core of the instanton. In fact, it suggests a
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very general correspondence between physics of instanton fermion zero modes, and their

spacetime description, in general compactifications, with fluxes or without them.

Finally, for the case of D3-brane instantons wrapped on 4-cycles, and their interplay

with complex structure moduli of the Calabi-Yau compactification, there seem to be inter-

esting connections with the NN = 1 special geometry and mixed Hodge structure in the

joint moduli space M. This is an interesting direction for further exploration.

We hope our work provides an interesting step in the phenomenological and formal

properties of combining fluxes and non-perturbative effects.
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A. Review of higher F-terms

In this section we briefly review some useful properties of multi-fermion F-terms (higher F-

terms henceforth), following [28, 29]. We will adapt the discussion to our needs, considering

the higher F-terms to be generated by BPS instantons with additional fermion zero modes.

BPS instantons with 2p additional fermion zero modes, beyond the two N = 1 gold-

stinos, generate a multi-fermion F-term of the form

δS =

∫

d4x d2θ ωi1···ip j1···jp (Φ)
(

Dα̇1
Φi1D

α̇1 Φj1

)

· · ·
(

Dα̇p
ΦipD

α̇p
Φ
jp

)

,

≡

∫

d4x d2θ Oω (A.1)

where the field dependent tensor ωi1···ip j1···jp is antisymmetric in the ik and also in the jk,

and symmetric under their exchange. Formally it can be regarded as a section of Ω
p
M⊗Ω

p
M.

The conditions that δS is supersymmetric and a non-trivial F-term implies that ω

belongs to a non-trivial cohomology class in moduli space, for a certain cohomology, to

which we refere as Beasley-Witten cohomology. For our purposes it is sufficient to consider

the condition that the operator is supersymmetric, which amount to the statement that ω

is annihilated by ∂, when regarded as a section of Ω
p

M ⊗ ΛpTM [28, 29], namely

ωi1···ip j1···jp = ω
j1···jp

i1···ip
Kj1j1

. . . Kjpjp
(A.2)

where Kii the Kahler metric in field space of chiral multiplets.

This condition is usually referred to as holomorphy of ω. In some discussions in the

literature, the lack of holomorphy of ωi1···ip j1···jp due to the lowering of indices does not

play an important role, and is considered only implicitly.
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ωij

U
i

U
j

Uk

U l

∂klW

Figure 1: The supergraph describing the integration out of the multiplets U .

Finally, let us mention that the behavior of higher F-terms from D-brane instantons

across lines of marginal stability of the instantons, was discussed in [25]. The higher F-

terms remain continuous and holomorphic in a precise sense, and can discussed globally in

moduli space, as we implicitly use in this paper.

B. Sketch of the computation using supergraphs

In this appendix we sketch the computation of the diagrams which provide the effective

non-perturbative interactions once the relevant moduli (made massive by the flux super-

potential) have been integrated out.

We consider the 4d theory with one chiral multiplet, a superpotential term and a

4-fermion F-term

S =

∫

d4x d2θ d2θ K(U i, U
i
) +

∫

d4x d2θ ωj
i
KjjDU

i
DU

j
+

∫

d4x d2θW (U) (B.1)

Although the discussion is general, in our applications we are interested in situations where

the higher F-term is of non-perturbative origin, arising from an instanton with additional

fermion zero modes. The superpotential term will in our application be thought of as a flux

superpotential, stabilizing the closed string modulus U . Along this line, we can consider

the simple case where the superpotential is a mass term for the fields U i. More in general,

we can Taylor expand the superpotential and focus on the terms of the form ∂ijWU iU j .

As will be clear momentarily, higher orders will not modify the result we are after.

We are interested in integrating out the massive fields U i. To do so, we need to evaluate

the Feynman diagrams where these fields run in internal lines. In particular, the diagram

in figure 1 shows that the presence of the superpotential term can dress the higher F-term

and produce a new non-perturbative superpotential contribution in the resulting low-energy

effective field theory (in which U has been integrated out). The computation can be made

in the manifestly supersymmetric formalism of supergraphs. We refer to [54, 53] for the

basic formalism, and simply recall some useful rules (for which we momentarily denote the

chiral multiplets by Φ to keep the more familiar notation).

• Massless propagators 〈ΦiΦ
j
〉 are given by Kij −1, where Kij is the inverse Kahler

metric in the space of chiral multiplet fields. Notice that we consider our perturbation

theory as an expansion around a certain point in moduli space, and thus work in a

kind of background field method, where the fields on which the propagator seems to

depend are just replaced by the vevs around the point in moduli space.
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• Since we deal with massless fields, the holomorphic 〈ΦΦ〉 or antiholomorphic ones

〈ΦΦ〉 vanish.

• For each holomorphic field endpoint in an internal line one introduces a factor of

the square spinor derivative −1
4D

2
/4 (and a factor of −1

4D
2 for anti-holomorphic

endpoint). This arises from the factors −1
4D

2
in the functional derivatives with

respect to the sources introduced to construct the generating functional

δ

δJ(x, θ)
J(x′, θ′) = −

1

4
D

2
δ4(x− x′) δ4(θ − θ′) (B.2)

• At each chiral vertex, one can absorb a factor of −1
4D

2
to turn it into a full superspace

interaction
∫

d4x d2θ

(

−
1

4
D

2
)

f(Φ) =

∫

d4x d2θ d2θ f(Φ) (B.3)

The supergraph of interest is shown in figure 1, and can be computed as follows. From

the vertex associated to the higher F-term, we obtain two factors −1
4D

2 from the U legs,

and one of D
2

from the vertex itself. The latter can be used to promote the integration

measure d2θ → d4θ. In addition we have a factor ωm
i
Kmj , and a combinatorial factor of

1/2. In total

−
1

8
ωij D

2D2 (B.4)

Note that we commute things freely in the spirit of the background field method, namely

we have functional dependences only on the vevs. From the vertex associated to the

superpotential, we obtain two factors of −1
4D

2
, one of which promotes the integral over

half superspace to full superspace. In addition we have a factor ∂klW , and a combinatorial

factor of 1/2. Finally, the two propagators give factors Kik/ , Kjl/ . The total result is

−
1

64

D2D
2
D2

2
ωijKikK

jl ∂klW = −
1

4
ωij ∂

ijW
D2

(B.5)

where we have used D2D
2
D2 = 16 D2. We can further use

∫

d4x d4θ

(

−
1

4
D2/

)

f =

∫

d4x d2θ f (B.6)

and obtain a 4d effective interaction which we may write
∫

d4x d2θKiiKjj ωij ∂ijW (B.7)

This leads to the result mentioned in the main text, which agrees with that in [28], obtained

using different arguments. Note that the superpotential in the above expression is not

holomorphic throughout field space; however, as pointed out in [28], it need be holomorphic

only when restricted to the moduli space of supersymmetric vacua. In our case, the only
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source of non-holomorphy involves the chiral multiplets which have been made massive, so

the restriction to the massless sector indeed defines a holomorphic function.

The generalization of the argument to systems with more general higher F-terms is

straightforward. Each microscopic superpotential term can be used to contract pairs of

external legs in the higher F-term, reducing the number of external legs of the instanton

interaction in pairs. It is easy to repeat the above supergraph arguments to obtain the

final result explained in the main text. It is also easy to show that these are the only

possible contraction patterns, and that there are no diagrams involving e.g. four internal

lines between the higher F-term and a superpotential coupling. This is just the supersym-

metric generalization of the fact that at each superpotential term there can be at most two

fermionic legs.
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