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Abstract: We show that 4D gauge theories with Green-Schwarz anomaly cancellation and

possible generalized Chern-Simons terms admit a formulation that is manifestly covariant

with respect to electric/magnetic duality transformations. This generalizes previous work

on the symplectically covariant formulation of anomaly-free gauge theories as they typi-

cally occur in extended supergravity, and now also includes general theories with (pseudo-

)anomalous gauge interactions as they may occur in global or local N = 1 supersymmetry.

This generalization is achieved by relaxing the linear constraint on the embedding tensor so

as to allow for a symmetric 3-tensor related to electric and/or magnetic quantum anomalies

in these theories. Apart from electric and magnetic gauge fields, the resulting Lagrangians

also feature two-form fields and can accommodate various unusual duality frames as they

often appear, e.g., in string compactifications with background fluxes.
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1. Introduction

In field theories with chiral gauge interactions, the requirement of anomaly-freedom imposes

a number of nontrivial constraints on the possible gauge quantum numbers of the chiral

fermions. The strongest requirements are obtained if one demands that all anomalous

one-loop diagrams due to chiral fermions simply add up to zero.

These constraints on the fermionic spectrum can be somewhat relaxed if some of the

anomalous one-loop contributions are instead cancelled by classical gauge-variances of cer-

tain terms in the tree-level action. The prime example for this is the Green-Schwarz

mechanism [1]. In its four-dimensional incarnation, it uses the gauge variance of Peccei-

Quinn terms of the form aF ∧F , with a(x) being an axionic scalar field and F some vector
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field strengths, under gauged shift symmetries of the form a(x) → a(x) + cΛ(x), where

Λ(x) is the local gauge parameter and c a constant. Gauge variances of this form may can-

cel mixed Abelian/non-Abelian as well as cubic Abelian gauge anomalies in the quantum

effective action. The Abelian gauge bosons that implement the gauged shift symmetries

of the axions via Stückelberg-type gauge couplings correspond to the anomalous Abelian

gauge groups and gain a mass due to their Stückelberg couplings. If their masses are

low enough, these pseudo-anomalous gauge bosons might be observable and could possibly

play the rôle of a particular type of Z ′-boson. The phenomenology of such Stückelberg

Z ′-extensions of the Standard Model was studied in various works [2 – 10], which were in

part inspired by intersecting brane models in type II orientifolds, where the operation of a

4D Green-Schwarz mechanism is quite generic [11].1

In [18 – 20], however, it has recently been pointed out that in these orientifold com-

pactifications, the Green-Schwarz mechanism is often not sufficient to cancel all quantum

anomalies.2 In particular, the cancellation of mixed Abelian anomalies between anomalous

and non-anomalous Abelian factors in general needs an additional ingredient, so-called

generalized Chern-Simons terms (GCS terms), in the classical action. GCS terms are of

the schematic form A∧A∧ dA and A∧A∧A∧A, where the vector fields A are not all the

same. It is quite obvious that GCS terms are not gauge invariant, and it is precisely this

gauge variance that can be used in some cases to cancel possible left-over gauge variances

from quantum anomalies and Peccei-Quinn terms. Interestingly, these GCS terms indeed

do occur quite generically in the above-mentioned orientifold compactifications [18, 20].

Phenomenologically, they provide extra trilinear (and quartic) couplings between anoma-

lous and non-anomalous gauge bosons, which, given a low Stückelberg mass scale, may lead

to Z ′-bosons with possibly observable new characteristic signals [18 – 20].

In [26], it is shown how models with all three ingredients (each of which individually

breaks gauge symmetry):

(i) anomalous fermionic spectra,

(ii) Peccei-Quinn terms with gauged axionic shift symmetries,

(iii) generalized Chern-Simons terms,

can be compatible with global and local N = 1 supersymmetry. This compatibility is

non-trivial, because a violation of gauge symmetries usually also triggers a violation of

the on-shell supersymmetry, as is best seen by recalling that in the Wess-Zumino gauge

the preserved supersymmetry is a combination of the original superspace supersymmetry

and a gauge transformation. Due to the presence of the quantum gauge anomalies, one

therefore also has to take into account the corresponding supersymmetry anomalies of the

quantum effective action, as they have been determined by Brandt for N = 1 supergravity

in [27, 28]. A recent application of the theories studied in [26] to globally supersymmetric

models with interesting phenomenology appeared in [29].

1For more details on intersecting brane models, see, e.g. the reviews [12 – 17] and references therein.
2See also [21 – 25].
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While in [18, 26] the general interplay of all the above three ingredients is discussed,

it should be emphasized that not all three ingredients necessarily need to be present in a

gauge invariant theory. This is obvious from the original Stückelberg Z ′-models [3 – 10],

which do not have GCS terms. However, one can also construct purely classical theories,

in which only the last two ingredients (ii) and (iii), i.e. the gauged shift symmetries and

the GCS terms, are present and the fermionic spectrum is either absent or non-anomalous.

In fact, it was in such a context that GCS terms were first discussed in the literature.

More concretely, their possibility was first discovered in extended gauged supergravity

theories [30], which are automatically free of quantum anomalies due to the incompatibility

of chiral gauge interactions with extended 4D supersymmetry. The ensuing papers [31 – 40]

likewise remained focused on – or were inspired by — the structures found in extended

supergravity. Recently, axionic gaugings and GCS terms were also considered in the context

of global N = 1 supersymmetry in [41]. In all these cases, the absence of quantum anomalies

restricts the form of the possible gauged axionic shift symmetries.

Another very important example in this context is the work [42], which combines

classically gauge invariant local Lagrangians that may also include Peccei-Quinn and GCS

terms with the concept of electric/magnetic duality transformations. In four spacetime

dimensions, a field theory with n Abelian vector potentials and no charged matter fields

admits reparametrizations in the form of electic/magnetic duality transformations. Those

transformations that leave the set of field equations and Bianchi identities invariant are the

rigid (or global) symmetries of the theory and form the global symmetry group Grigid. In

section 3.2, we will discuss how, in general, Grigid is contained in the direct product of the

symplectic duality transformations that act on the vector fields and the isometry group of

the scalar manifold of the chiral multiplets: Grigid ⊆ Sp(2n,R) × Iso(Mscalar).

Note, however, that the Lagrangians that encode the field equations are in general not

invariant under such rigid symmetry transformations, as the latter may involve nontrivial

mixing of field equations and Bianchi identities. Moreover, the fields before and after a

symmetry transformation are, in general, not related by a local field transformation.

In order to gauge a rigid symmetry in the standard way (i.e., in order to introduce

charges for some of the fields), one needs to be able to go to a symplectic duality frame

in which the symmetry leaves the action invariant. This automatically implies that the

symmetry is also implemented by local field transformations. This would then allow the

introduction of minimal couplings and covariant field strengths for the electric vector po-

tentials in the Lagrangian in the usual way. This standard procedure obviously singles out

certain duality frames and breaks the original duality covariance.

In [42], it was shown how one can nevertheless reformulate 4D gauge theories in such a

way as to maintain, formally, the full duality covariance of the original ungauged theory. In

order to do so, the authors consider electric and magnetic gauge potentials (Aµ
Λ, Aµ Λ) (Λ =

1, . . . , n) at the same time and combine them into a 2n-plet, Aµ
M (M = 1, . . . , 2n) of vector

potentials. Introducing then also a set of antisymmetric tensor fields, an intricate system

of gauge invariances can be implemented, which ensures that the number of propagating

degrees of freedom is the same as before. The coupling of the electric and magnetic vector

potentials to charged fields is then encoded in the so-called embedding tensor ΘM
α =
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(ΘΛ
α,ΘΛ α), which enters the covariant derivatives of matter fields, φ, schematically,

(∂µ −Aµ
MΘM

αδα)φ . (1.1)

Here, α = 1, . . . ,dim(Grigid) labels the generators of the rigid symmetry group, Grigid,

acting as δαφ on the matter fields. In general, the gauge group also acts on the vector

fields via (2n × 2n)-matrices,

(XM )N
P ≡ XMN

P ≡ ΘM
α(tα)N

P , (1.2)

where the (tα)N
P are in the fundamental representation of Sp(2n,R).

The embedding tensor has to satisfy a quadratic constraint in order to ensure the

closure of the gauge algebra inside the algebra of Grigid. In [42], this fundamental constraint

is supplemented by one additional constraint linear in the embedding tensor, which can be

written in terms of the above-mentioned tensor XMN
P , as3

X(MN
QΩP )Q = 0 , (1.3)

where ΩPQ is the symplectic metric of Sp(2n,R). This constraint is sometimes called the

“representation constraint”, as it suppresses a representation of the rigid symmetry group

in the tensor XMN
P . Together with the quadratic constraint, it ensures mutual locality

of all physical fields that are present in the action.4 The full physical meaning of this

additional constraint, however, always remained a bit obscure, and was inferred in [42]

from identities that are known to be valid in N = 8 or N = 2 supergravity.

In this paper, we propose a physical interpretation of this representation constraint and

recognize it as the condition for the absence of quantum anomalies. Quantum anomalies

are automatically absent in extended 4D supergravity theories, and so it is no surprise,

that the internal consistency of N = 8 or N = 2 supergravity always hinted at the validity

of the constraint (1.3).

We then go one step further and show that if quantum anomalies proportional to a

constant, totally symmetric tensor,5 dMNP , are present, the representation constraint (1.3)

has to be relaxed to

X(MN
QΩP )Q = dMNP , with dMNP = ΘM

αΘN
βΘP

γdαβγ , (1.4)

to allow for a gauge invariant quantum effective action. Here dαβγ is a symmetric ten-

sor that will be defined by the anomalies. We show explicitly how the framework of [42]

3This constraint was considered in [42] for general N and in particular for N = 1 gauged supergravity and

generalizes an analogous condition originally found in [30]. In the context of rigid N = 1 supersymmetry,

its electric version already appeared in [41].
4A subtlety arises for generators δα that have a trivial action on the vector fields, i.e., (tα)M

N = 0. In

that case the mutual locality of the corresponding electric/magnetic components of the embedding tensor

should be imposed as an independent quadratic constraint.
5The tensor dMNP is the one that defines the consistent anomaly in the form given in equation (3.61).

As the gauge symmetry in the matter sector is implemented by minimal couplings to the gauge potentials

dressed with an embedding tensor, as can be seen from (1.1), the tensor dMNP must be of the form (1.4).
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has to be modified in such a situation and that the resulting gauge variance of the clas-

sical Lagrangian precisely gives the negative of the consistent quantum anomaly encoded

in dMNP .

Our work can thus be viewed as a generalization of [42] to theories with quan-

tum anomalies or, equivalently, as the covariantization of [18, 26] with respect to elec-

tric/magnetic duality transformations, and includes situations in which pseudo-anomalous

gauge interactions are mediated by magnetic vector potentials. While already interesting

in itself, our results promise to be very useful for the description of flux compactifications

with chiral fermionic spectra, as e.g. in intersecting brane models on orientifolds with fluxes,

because flux compactifications often give 4D theories which appear naturally in unusual

duality frames and contain two-form fields.

The outline of this paper is as follows. In section 2, we briefly recapitulate the re-

sults of [26], adapted to the notation of [42]. Section 3 then gives the symplectically

covariant framework of [42] in a more general treatment without using the representation

constraint (1.3). In section 4 we show how the formalism of [42] has to be modified in order

to accommodate quantum anomalies involving the relaxed representation constraint (1.4).

We flesh out our results with a simple nontrivial example in section 5 and conclude in

section 6.

2. Anomalies, generalized Chern-Simons terms and gauged shift symme-

tries in N = 1 supersymmetry

In this section, we summarize the results of [26] which will later motivate our proposed

generalization (1.4) of the original constraint (1.3).

In a generic low energy effective field theory, the kinetic and the theta angle terms of

vector fields, Aµ
Λ, appear with scalar field dependent coefficients,6

Lg.k. =
1

4
eIΛΣ(z, z̄)Fµν

ΛFµνΣ −
1

8
RΛΣ(z, z̄)εµνρσFµν

ΛFρσ
Σ . (2.1)

Here, Fµν
Λ ≡ 2∂[µAν]

Λ + XΣΩ
ΛAµ

ΣAν
Ω denotes the non-Abelian field strengths with

XΣΩ
Λ = X[ΣΩ]

Λ being the structure constants of the gauge group. We use the metric

signature (− + ++) and work with real ε0123 = 1. As usual, e denotes the vierbein

determinant. The second term in (2.1) is often referred to as the Peccei-Quinn term, and the

functions IΛΣ(z, z̄) and RΛΣ(z, z̄) depend nontrivially on the scalar fields, zi, of the theory.

One can combine these functions to a complex function NΛΣ(z, z̄) = RΛΣ(z, z̄)+iIΛΣ(z, z̄).

In a supersymmetric context, NΛΣ(z, z̄) has to satisfy certain conditions, depending on the

amount of supersymmetry. In N = 1 global and local supersymmetry, which will be the

6To compare notations between this paper, ref. [26] and ref. [42], note that the vector fields were denoted

as Wµ
A in [26], and are here and in [42] denoted as Aµ

Λ (upper greek letters are electric indices). In [26],

the kinetic matrix for the vector multiplets is, as in most of the N = 1 literature, denoted as fAB , which

corresponds to −iN ∗

ΛΣ in this paper. The structure constants fAB
C of [26] correspond to the XΛΣ

Ω = fΛΣ
Ω

here, and the axionic shift tensors CAB,C of [26] are now called XΛΣΩ = XΛ(ΣΩ) = CΣΩ,Λ. To compare

formulae of [42] to those here and in [26], the Levi-Civita symbol εµνρσ appears in covariant equations with

opposite sign (but ε0123 = 1 is valid in both cases due to another orientation of the spacetime directions).
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subject of the remainder of this section, NΛΣ = NΛΣ(z̄) simply has to be antiholomorphic

in the complex scalars of the chiral multiplets.

If, under a gauge transformation with gauge parameter ΛΩ(x), acting on the field

strengths as δ(Λ)FΛ
µν = ΛΞFΩ

µνXΩΞ
Λ, some of the zi transform nontrivially, this may

induce a corresponding gauge transformation of NΛΣ(z̄). In case this transformation is of

the form of a symmetric product of two adjoint representations of the gauge group,

δ(Λ)NΛΣ = ΛΩδΩNΛΣ , δΩNΛΣ = XΩΛ
ΓNΣΓ +XΩΣ

ΓNΛΓ , (2.2)

the kinetic term (2.1) is obviously gauge invariant. This is what was assumed in the action

of general matter-coupled supergravity in [43].7

If, however, one takes into account also other terms in the (quantum) effective action,

a more general transformation rule for NΛΣ(z̄) may be allowed:

δΩNΛΣ = −XΩΛΣ +XΩΛ
ΓNΣΓ +XΩΣ

ΓNΛΓ . (2.3)

Here, XΩΛΣ is a constant real tensor symmetric in the last two indices, which can be

recognized as a natural generalization in the context of symplectic duality transforma-

tions [41, 26]. Closure of the gauge algebra requires the constraint

XΩΛΣXΓΞ
Ω + 2XΣ[Ξ

ΩXΓ]ΛΩ + 2XΛ[Ξ
ΩXΓ]ΣΩ = 0 . (2.4)

If XΩΛΣ is non-zero, this leads to a non-gauge invariance of the Peccei-Quinn term in Lg.k.:

δ(Λ)Lg.k. =
1

8
εµνρσ XΩΛΣΛΩFµν

ΛFρσ
Σ . (2.5)

For rigid parameters, ΛΩ = const., this is just a total derivative, but for local gauge

parameters, ΛΩ(x), it is obviously not.

In order to understand how this broken invariance can be restored, it is convenient to

split the coefficients XΩΛΣ into a sum,

XΩΛΣ = X
(s)
ΩΛΣ +X

(m)
ΩΛΣ , X

(s)
ΩΛΣ = X(ΩΛΣ) , X

(m)
(ΩΛΣ) = 0 , (2.6)

where X
(s)
ΩΛΣ is completely symmetric, and X

(m)
ΩΛΣ denotes the part of mixed symmetry.

Terms of the form (2.5) may then in principle be cancelled by the following two mechanisms,

or a combination thereof:

(i) As was first realized in a similar context in N = 2 supergravity in [30] (see also

the systematic analysis [31]), the gauge variation due to a non-vanishing mixed part,

X
(m)
ΩΛΣ 6= 0, may be cancelled by adding a generalized Chern-Simons term (GCS term)

that contains a cubic and a quartic part in the vector fields,

LGCS =
1

3
X

(CS)
ΩΛΣ ε

µνρσ

(

Aµ
ΩAν

Λ∂ρA
Σ
σ +

3

8
XΓΞ

ΣAµ
ΩAν

ΛAρ
ΓAσ

Ξ

)

. (2.7)

7This construction of general matter-couplings has been reviewed in [44]. There, the possibility (2.3)

was already mentioned, but the extra terms necessary for its consistency were not considered.
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This term depends on a constant tensor X
(CS)
ΩΛΣ, which has the same mixed symmetry

structure as X
(m)
ΩΛΣ. The cancellation occurs provided the tensors X

(m)
ΩΛΣ and X

(CS)
ΩΛΣ

are, in fact, the same. It was first shown in [41] that such a term can exist in rigid

N = 1 supersymmetry without quantum anomalies.

(ii) If the chiral fermion spectrum is anomalous under the gauge group, the anomalous

triangle diagrams lead to a non-gauge invariance of the quantum effective action Γ

for the gauge symmetry: δ(Λ)Γ =
∫

d4xΛΛAΛ of the form

AΛ = −
1

4
εµνρσ

[

2dΩΣΛ∂µAν
Σ +

(

dΩΣΓXΛΞ
Σ +

3

2
dΩΣΛXΓΞ

Σ

)

Aµ
ΓAν

Ξ

]

∂ρAσ
Ω ,

(2.8)

with a symmetric8 tensor dΩΛΣ. If

X
(s)
ΩΛΣ = dΩΛΣ , (2.9)

this quantum anomaly cancels the symmetric part of (2.5). This is the Green-Schwarz

mechanism.

In [26], it was studied to what extent a general gauge theory of the above type (i.e.,

with gauged axionic shift symmetries, GCS terms and quantum gauge anomalies) can

be compatible with N = 1 supersymmetry. The results can be summarized as follows:

if one takes as one’s starting point the matter-coupled supergravity Lagrangian in eq.

(5.15) of reference [44], an axionic shift symmetry with XΛΣΩ 6= 0 satisfying the closure

condition (2.4) can be gauged in a way consistent with N = 1 supersymmetry if

(i) a GCS term (2.7) with X
(CS)
ΩΛΣ = X

(m)
ΩΛΣ is added,

(ii) an additional term bilinear in the gaugini, λΣ(x), and linear in the vector fields is

added:9

Lextra = −
1

4
iAµ

ΩXΩΛΣλ̄
Λγ5γ

µλΣ, (2.10)

(iii) the fermions in the chiral multiplets give rise to quantum anomalies with dΩΛΣ =

X
(s)
ΩΛΣ. The consistent gauge anomaly, AΛ is of the form (2.8). The exact result for

the supersymmetry anomaly can be found in [28] or eq. (5.8) of [26]. These quantum

anomalies precisely cancel the classical gauge and supersymmetry variation of the

new Lagrangian Lold + LGCS + Lextra, where Lold denotes the original Lagrangian

of [44].

8More precisely, the anomalies have a scheme dependence. As reviewed in [18] one can choose a scheme

in which the anomaly is proportional to a symmetric dΩΛΣ. Choosing a different scheme is equivalent to the

choice of another GCS term (see item (i)). We will always work with a renormalization scheme in which

the quantum anomaly is indeed proportional to the symmetric tensor dΩΛΣ according to (2.8).
9A superspace expression for the sum LGCS + Lextra is known only for the case X

(s)
ΛΣΩ = 0, i.e., for the

case without quantum anomalies [41].
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3. The embedding tensor and the symplectically covariant formalism

In this section, we recapitulate the results of [42], which describe a symplectically covariant

formulation of (classically) gauge invariant field theories. Correspondingly, we will assume

the absence of quantum anomalies in this section.

3.1 Electric/magnetic duality and the conventional gauging

In the absence of charged fields, a gauge invariant four-dimensional Lagrangian of n Abelian

vector fields Aµ
Λ(Λ = 1, . . . , n) only depends on their curls Fµν

Λ ≡ 2∂[µAν]
Λ. Defining the

dual magnetic field strengths

Gµν Λ ≡ εµνρσ
∂L

∂Fρσ
Λ
, (3.1)

the Bianchi identities and field equations read

∂[µFνρ]
Λ = 0 , (3.2)

∂[µGνρ] Λ = 0 . (3.3)

The equations of motion (3.3) imply the existence of magnetic gauge potentials, Aµ Λ,

via Gµν Λ = 2∂[µAν]Λ. These magnetic gauge potentials are related to the electric vector

potentials, Aµ
Λ, by nonlocal field redefinitions. The electric Abelian field strengths, Fµν

Λ,

and their magnetic duals, Gµν Λ, can be combined into a 2n-plet, Fµν
M , such that FM =

(FΛ, GΛ). This allows us to write (3.2) and (3.3) in the following compact way:

∂[µFνρ]
M = 0 . (3.4)

Apparently, equation (3.4) is invariant under general linear transformations

FM → F ′M = SM
NF

N , where SM
N =

(

UΛ
Σ ZΛΣ

WΛΣ VΛ
Σ

)

, (3.5)

but only for symplectic matrices SM
N ∈ Sp(2n,R) a relation of the type (3.1) is possible.

The admissible rotations SM
N thus form the group Sp(2n,R):

ST ΩS = Ω, (3.6)

with the symplectic metric, ΩMN , given by

ΩMN =

(

0 ΩΛ
Σ

ΩΛ
Σ 0

)

=

(

0 δΣΛ
−δΛΣ 0

)

. (3.7)

We define ΩMN via ΩMNΩNP = −δM
P . Note that the components of ΩMN should not be

written as ΩΛ
Σ etc., as these are different from (3.7).

Starting with a kinetic Lagrangian of the form (2.1), an electric/magnetic duality

transformation leads to a new Lagrangian, L′(F ′), which is of a similar form, but with a

new gauge kinetic function

NΛΣ → N ′
ΛΣ = (VN +W )ΛΩ

[

(U + ZN )−1
]Ω

Σ . (3.8)

– 8 –
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The subset of Sp(2n,R) symmetries (of field equations and Bianchi identities) for

which the Lagrangian remains unchanged in the sense that L′(F ′(F )) = L(F ) and (3.8) is

implemented by transformations of the fields on which N depends, are invariances of the

action. In a different duality frame, the Lagrangian might have a different set of invariances.

From the spacetime point of view, these are all rigid (“global”) symmetries. Some-

times these global symmetries can be turned into local (“gauge”) symmetries. For the

conventional gaugings one has to restrict to the transformations that leave the Lagrangian

invariant, which implies that ZΛΣ in the matrices SM
N of (3.5) has to vanish. In the

context of symplectically covariant gaugings [42], however, this restriction can be lifted,

and we will come back to these in section 3.2. The standard way to perform a gauging of a

symmetry of interest is therefore to first switch to a symplectic duality frame in which the

symmetries of interest act on Fµν
M = (Fµν

Λ, Gµν Λ) by lower block triangular matrices (i.e.

those with Z = 0) such that they become (as rigid symmetries) invariances of the action.

The gauging requires the introduction of gauge covariant derivatives and field strengths

and can be implemented solely with the electric vector fields Aµ
Ω and the corresponding

electric gauge parameters ΛΩ. The gaugeable symplectic transformation, S, must be of the

infinitesimal form

SM
N = δM

N − ΛΩSΩ
M

N . (3.9)

According to our definition (3.5), these infinitesimal symplectic transformations act on

the field strengths by multiplication with the matrices SΛ
M

N from the left. Following

the conventions of [42], however, we will use matrices XΩM
N to describe the infinitesimal

symplectic action via multiplication from the right:

δFµν
M = F ′

µν
M − Fµν

M = −ΛΩFµν
NXΩN

M , i.e. XΩN
M = SΩ

M
N . (3.10)

For standard electric gaugings, we then have

δ

(

FΛ
µν

Gµν Λ

)

= −ΛΩ

(

XΩΞ
Λ 0

XΩΛΞ XΩ
Ξ

Λ

)(

FΞ
µν

Gµν Ξ

)

, (3.11)

where XΩΣ
Λ = −XΩ

Λ
Σ = fΩΣ

Λ are the structure constants of the gauge algebra, and

XΣΞΓ = XΣ(ΞΓ) give rise to the axionic shifts mentioned in section 2 (compare (3.8)

with (2.3) for the particular choice of S given in (3.9)).

The gauging then proceeds in the usual way by introducing covariant derivatives (∂µ−

Aµ
ΛδΛ), where the δΛ are the gauge generators in a suitable representation of the matter

fields. One also introduces covariant field strengths and possibly GCS terms as described

in section 2. As we assume the absence of quantum anomalies in this section, we have to

require X(ΛΣΓ) = 0.

3.2 The symplectically covariant gauging

We will now turn to the more general gauging of symmetries. The group that will be

gauged is a subgroup of the rigid symmetry group. What we mean by the rigid symmetry

group is a bit more subtle in N = 1 supergravity (or theories without supergravity) than in
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extended supergravities. This is due to the fact that in extended supergravities the vectors

are supersymmetrically related to scalar fields, and therefore their rigid symmetries are

connected to the symmetries of scalar manifolds.

In N = 1 supersymmetry, the rigid symmetry group, Grigid, is a subset of the product

of the symplectic duality transformations that act on the vector fields and the isometry

group of the scalar manifold of the chiral multiplets: Grigid ⊆ Sp(2n,R) × Iso(Mscalar).

The relevant isometries are those that respect the Kähler structure (i.e. generated by holo-

morphic Killing vectors) and that also leave the superpotential invariant (in supergravity,

the superpotential should transform according to the Kähler transformations). Elements

(g1, g2) of Sp(2n,R) × Iso(Mscalar) that are compatible with (3.8) in the sense that the

symplectic action (3.8) of g1 on the matrix N is induced by the isometry g2 on the scalar

manifold, are rigid (“global”) symmetries provided they also leave the rest of the theory

(deriving from scalar potentials, etc.) invariant [45]. The rigid symmetry group, Grigid, is

thus a subgroup of Sp(2n,R) × Iso(Mscalar).
10

The generators ofGrigid will be denoted by δα, α = 1, . . . , dim(Grigid). These generators

act on the different fields of the theory either via Killing vectors δα = Kα = Ki
α

∂
∂φi defining

infinitesimal isometries on the scalar manifold, or with certain matrix representations,11

e.g. δαφ
i = −φj(tα)j

i.

On the field strengths Fµν
M = (Fµν

Λ, Gµν Λ), these rigid symmetries must act by

multiplication with infinitesimal symplectic matrices12 (tα)M
P , i.e., we have

(tα)[M
P ΩN ]P = 0 . (3.12)

In order to gauge a subgroup, Glocal ⊂ Grigid, the 2n-dimensional vector space spanned

by the vector fields Aµ
M has to be projected onto the Lie algebra of Glocal, which is

formally done with the so-called embedding tensor ΘM
α = (ΘΛ

α,ΘΛ α). Equivalently,

ΘM
α completely determines the gauge group Glocal via the decomposition of the gauge

group generators, which we will denote by X̃M , into the generators of the rigid invariance

group Grigid:

X̃M ≡ ΘM
αδα. (3.13)

The gauge generators X̃M enter the gauge covariant derivatives of matter fields,

Dµ = ∂µ −Aµ
MX̃M = ∂µ −Aµ

ΛΘΛ
αδα −AµΛΘΛαδα , (3.14)

where the generators δα are meant to either act as representation matrices on the fermions

or as Killing vectors on the scalar fields, as mentioned above. On the field strengths of

the vector potentials, the generators δα act by multiplication with the matrices (tα)N
P ,

10Note that this may include cases where either the symplectic transformation g1 or the isometry g2 is

trivial. Another special case is when the isometry g2 is non-trivial, but N does not transform under it, as

happens, e.g, when N = i is constant. Grigid is in general a genuine subgroup of Sp(2n, R)× Iso(Mscalar),

even in the latter case of constant N .
11The structure constants defined by [δα, δβ] = fαβ

γδγ lead for the matrices to [tα, tβ ] = −fαβ
γtγ .

12These matrices might be trivial, e.g., for Abelian symmetry groups that only act on the scalars (and/or

the fermions) and that do not give rise to axionic shifts of the kinetic matrix NΛΣ.
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so that (3.13) is represented by matrices (XM )N
P whose elements we denote as XMN

P ,

see (1.2), and whose antisymmetric part in the lower indices appears in the field strengths

Fµν
M = 2∂[µAν]

M +X[NP ]
MAµ

NAν
P , XNP

M = ΘN
α(tα)P

M . (3.15)

The symplectic property (3.12) implies

XM [N
QΩP ]Q = 0 , XMQ

[NΩP ]Q = 0 . (3.16)

In the remainder of this paper, the symmetrized contraction X(MN
QΩP )Q will play an

important rôle. We therefore give this tensor a special name and denote it by DMNP :

DMNP ≡ X(MN
QΩP )Q . (3.17)

Note that this is really just a definition and no new constraint. Using the definition (3.17),

one can check that

2X(MN)
QΩRQ +XRM

QΩNQ = 3DMNR ,

i.e. X(MN)
P =

1

2
ΩPRXRM

QΩNQ +
3

2
DMNRΩRP . (3.18)

3.2.1 Constraints on the embedding tensor

The embedding tensor ΘM
α has to satisfy a number of consistency conditions. Closure of

the gauge algebra and locality require, respectively, the quadratic constraints

closure: fαβ
γΘM

αΘN
β = (tα)N

P ΘM
αΘP

γ , (3.19)

locality: ΩMNΘM
αΘN

β = 0 ⇔ ΘΛ[αΘΛ
β] = 0 , (3.20)

where fαβ
γ are the structure constants of the rigid invariance group Grigid, see footnote 11.

Another constraint, besides (3.19) and (3.20), was inferred in [42] from supersymmetry

constraints in N = 8 supergravity

DMNR ≡ X(MN
QΩR)Q = 0 . (3.21)

This constraint eliminates some of the representations of the rigid symmetry group and is

therefore sometimes called the “representation constraint”. As we pointed out in the intro-

duction, one can show that the locality constraint is not independent of (3.19) and (3.21),

apart from specific cases where (tα)M
N has a trivial action on the vector fields.

However, we will neither use the locality constraint (3.20) nor the representation con-

straint (3.21). We will, instead, need another constraint in section 3.2.4, whose meaning

we will discuss in section 4. Before coming to that new constraint, we thus only use the

closure constraint (3.19). This constraint reflects the invariance of the embedding tensor

under Glocal and it implies for the matrices XM the relation

[XM ,XN ] = −XMN
P XP . (3.22)

This clearly shows that the gauge group generators commute into each other with ‘structure

constants’ given by X[MN ]
P . However, note that XMN

P in general also contains a non-

trivial symmetric part, X(MN)
P . The antisymmetry of the left hand side of (3.22) only
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requires that the contraction X(MN)
P ΘP

α vanishes, as is also directly visible from (3.19).

Therefore one has

X(MN)
P ΘP

α = 0 → X(MN)
PXPQ

R = 0 . (3.23)

Writing (3.22) explicitly gives

XMQ
PXNP

R −XNQ
PXMP

R +XMN
PXPQ

R = 0 . (3.24)

Antisymmetrizing in [MNQ], we can split the second factor of each term into the antisym-

metric and symmetric part, XMN
P = X[MN ]

P +X(MN)
P , and this gives a violation of the

Jacobi identity for X[MN ]
P as

X[MN ]
PX[QP ]

R +X[QM ]
PX[NP ]

R +X[NQ]
PX[MP ]

R

= −
1

3

(

X[MN ]
PX(QP )

R +X[QM ]
PX(NP )

R +X[NQ]
PX(MP )

R
)

. (3.25)

Other relevant consequences of (3.24) can be obtained by (anti)symmetrizing in MQ. This

gives, using also (3.23), the two equations

X(MQ)
PXNP

R −XNQ
PX(MP )

R −XNM
PX(QP )

R = 0 ,

X[MQ]
PXNP

R −XNQ
PX[MP ]

R +XNM
PX[QP ]

R = 0 . (3.26)

3.2.2 Gauge transformations

The violation of the Jacobi identity (3.25) is the prize one has to pay for the symplectically

covariant treatment in which both electric and magnetic vector potentials appear at the

same time. In order to compensate for this violation and in order to make sure that

the number of propagating degrees of freedom is the same as before, one imposes an

additional gauge invariance in addition to the usual non-Abelian transformation ∂µΛM +

X[PQ]
MAµ

P ΛQ and extends the gauge transformation of the vector potentials to

δAµ
M = DµΛM −X(NP )

MΞµ
NP , DµΛM = ∂µΛM +XPQ

MAµ
P ΛQ , (3.27)

where we introduced the covariant derivative DµΛM , and new vector-like gauge param-

eters Ξµ
NP , symmetric in the upper indices. The extra terms X(PQ)

MAµ
P ΛQ and the

Ξ-transformations contained in (3.27) allow one to gauge away the vector fields that corre-

spond to the directions in which the Jacobi identity is violated, i.e., directions in the kernel

of the embedding tensor (see (3.23)).

It is important to notice that the modified gauge transformations (3.27) still close on

the gauge fields and thus form a Lie algebra. Indeed, if we split (3.27) into two parts,

δAµ
M = δ(Λ)Aµ

M + δ(Ξ)Aµ
M , (3.28)

the commutation relations are

[δ(Λ1), δ(Λ2)]Aµ
M = δ(Λ3)Aµ

M + δ(Ξ3)Aµ
M ,

[δ(Λ), δ(Ξ)]Aµ
M = [δ(Ξ1), δ(Ξ2)]Aµ

M = 0 , (3.29)
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with

ΛM
3 = X[NP ]

MΛN
1 ΛP

2 ,

Ξ3µ
PN = Λ

(P
1 DµΛ

N)
2 − Λ

(P
2 DµΛ

N)
1 . (3.30)

To prove that the terms that are quadratic in the matrices XM in the left-hand side of (3.29)

follow this rule, one uses (3.26).

Due to (3.23) and (3.27), however, the usual properties of the field strength

Fµν
M = 2∂[µAν]

M + X[PQ]
MAµ

PAν
Q (3.31)

are changed. In particular, it will no longer fulfill the Bianchi identity, which now must be

replaced by

D[µFνρ]
M = X(NP )

MA[µ
NFνρ]

P −
1

3
X(PN)

MX[QR]
P A[µ

NAν
QAρ]

R . (3.32)

Furthermore, Fµν
M does not transform covariantly under a gauge transformation (3.27).

Instead, we have

δFµν
M = 2D[µδAν]

M − 2X(PQ)
MA[µ

P δAν]
Q

= XNQ
M Fµν

NΛQ − 2X(NP )
MD[µΞν]

NP − 2X(PQ)
MA[µ

P δAν]
Q , (3.33)

where the covariant derivative is (both expressions are useful and related by (3.26))

X(NP )
MDµΞν

NP = ∂µ

(

X(NP )
MΞν

NP
)

+Aµ
RXRQ

MX(NP )
QΞν

NP ,

DµΞν
NP = ∂µΞν

NP +XQR
PAµ

QΞν
NR +XQR

NAµ
QΞν

PR . (3.34)

Therefore, if we want to deform the original Lagrangian (2.1) and accommodate electric and

magnetic gauge fields, Fµν
M cannot be used to construct gauge-covariant kinetic terms.

For this reason, the authors of [42] introduced tensor fields Bµν α, later in [46] to be

described by Bµν
MN , symmetric in (MN), and with them modified field strengths

Hµν
M = Fµν

M +X(NP )
MBµν

NP . (3.35)

We will consider gauge transformations of the antisymmetric tensors of the form

δBµν
NP = 2D[µΞν]

NP + 2A[µ
(NδAν]

P ) + ∆Bµν
NP , (3.36)

where ∆Bµν
NP depends on the gauge parameter ΛQ, but we do not fix it further at this

point. Together with (3.33), this then implies13

δHµν
M = XNQ

MΛQHµν
N +X(NP )

M∆Bµν
NP . (3.37)

13Note that Fµν
N in the second line of (3.33) can be replaced by Hµν

N due to (3.23).
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3.2.3 The kinetic lagrangian

The first step towards a gauge invariant action is to replace Fµν
Λ in Lg.k., (2.1), by Hµν

Λ,

which then yields the new kinetic Lagrangian

Lg.k. =
1

4
eIΛΣHµν

ΛHµνΣ −
1

8
RΛΣε

µνρσHµν
ΛHρσ

Σ , (3.38)

where again IΛΣ and RΛΣ denote, respectively, ImNΛΣ and ReNΛΣ. Using

Gµν Λ ≡ εµνρσ
∂L

∂Hρσ
Λ

= RΛΓHµν
Γ +

1

2
eεµνρσ IΛΓ Hρσ Γ , (3.39)

the Lagrangian and its transformations can be written as

Lg.k. = −
1

8
εµνρσHΛ

µνGρσ Λ ,

δLg.k. = −
1

4
εµνρσGµν ΛδH

Λ
ρσ

+
1

8
εµνρσΛQ

(

HΛ
µνXQΛΣH

Σ
ρσ − 2HΛ

µνXQΛ
ΣGρσ Σ − Gµν ΛXQ

ΛΣGρσ Σ

)

, (3.40)

where, in the third line, we used the infinitesimal form of (3.8):

δ(Λ)NΛΣ = ΛM
[

−XMΛΣ + 2XM(Λ
ΓNΣ)Γ + NΛΓXM

ΓΞ NΞΣ

]

. (3.41)

When we introduce

Gµν
M =

(

Gµν
Λ , GµνΛ

)

with Gµν
Λ ≡ Hµν

Λ , (3.42)

we can rewrite the second line of (3.40) in a covariant expression, and when we also

use (3.37) we get

δLg.k. = εµνρσ

[

−
1

4
Gµν Λ

(

ΛQXPQ
ΛHρσ

P +X(NP )
Λ∆Bρσ

NP
)

+
1

8
Gµν

MGρσ
NΛQXQM

RΩNR

]

. (3.43)

Clearly, the newly proposed form for Lg.k. in (3.38) is still not gauge invariant. This should

not come as a surprise because (3.41) contains a constant shift (i.e., the term proportional

to XMΛΣ), which requires the addition of extra terms to the Lagrangian as was reviewed

in section 2 for purely electric gaugings. Also the last term on the right hand side of (3.41)

gives extra contributions that are quadratic in the kinetic function. In the next steps we

will see that besides GCS terms, also terms linear and quadratic in the tensor field are

required to restore gauge invariance. We start with the discussion of the latter terms.

3.2.4 Topological terms for the B-field and a new constraint

The second step towards gauge invariance is made by adding topological terms linear and

quadratic in the tensor field Bµν
NP to the gauge kinetic term (3.38), namely

Ltop,B =
1

4
εµνρσ X(NP )

ΛBµν
NP
(

Fρσ Λ +
1

2
X(RS)ΛBρσ

RS
)

. (3.44)
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Note that for pure electric gaugings X(NP )
Λ = 0, as we saw in (3.11). Therefore, in this

case this term vanishes, implying that the tensor fields decouple.

We recall that, up to now, only the closure constraint (3.19) has been used. We are

now going to impose one new constraint :

X(NP )
MΩMQX(RS)

Q = 0 . (3.45)

We will later show that this constraint is implied by the locality constraint (3.20) and the

original representation constraint of [42], i.e. (1.3), but also by the locality constraint and

the modified constraint (1.4) that we discussed in the introduction. The constraint thus

says that

X(NP )
ΛX(RS)Λ = X(NP )ΛX(RS)

Λ . (3.46)

A consequence of this constraint that we will use below follows from the first of (3.18)

and (3.23):

X(PQ)
RDMNR = 0 . (3.47)

The variation of Ltop,B is

δLtop,B =
1

4
εµνρσX(NP )

Λ
[

HµνΛ δBρσ
NP +Bρσ

NP δFµνΛ

]

(3.48)

=
1

4
εµνρσX(NP )

Λ
[

HµνΛ δBρσ
NP + 2Bρσ

NP
(

DµδAνΛ −X(RS)ΛA
R
µ δA

S
ν

)]

.

3.2.5 Generalized Chern-Simons terms

As in [42], we introduce a generalized Chern-Simons term of the form (these are the last

two lines in what they called Ltop in their equation (4.3))

LGCS = εµνρσAµ
MAν

N

(

1

3
XMN Λ ∂ρAσ

Λ +
1

6
XMN

Λ∂ρAσΛ +
1

8
XMN ΛXPQ

ΛAρ
PAσ

Q

)

.

(3.49)

Modulo total derivatives one can write its variation as (using (3.24) antisymmetrized in

[MNQ] and the definition of DMNP in (3.17))

δLGCS = εµνρσ

[

1

2
Fµν

ΛDρδAσΛ −
1

2
FµνΛX(NP )

ΛAρ
NδAσ

P

−DMNPAµ
MδAν

N

(

∂ρAσ
P +

3

8
XRS

PAρ
RAσ

S

)]

. (3.50)

These variations can be combined with (3.48) to

δ (Ltop,B + LGCS) = εµνρσ

[

1

2
Hµν

ΛDρδAσΛ+
1

4
HµνΛX(NP )

Λ
(

δBρσ
NP −2Aρ

NδAσ
P
)

−DMNPAµ
MδAν

N

(

∂ρAσ
P +

3

8
XRS

PAρ
RAσ

S

)]

,

(3.51)
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3.2.6 Variation of the total action

We are now ready to discuss the symmetry variation of the total Lagrangian

LV T = Lg.k. + Ltop,B + LGCS , (3.52)

built from (3.38), (3.44) and (3.49). We first check the invariance of (3.52) with respect

to the Ξ-transformations. We see directly from (3.43) that the gauge-kinetic terms are

invariant. The second line of (3.51) also clearly vanishes inserting (3.27) and using (3.47).

This leaves us with the first line of (3.51), which, using (3.36) and (3.27), can be written

in a symplectically covariant form:

δΞLV T = −
1

2
εµνρσHµν

MX(NP )
QΩMQDρΞσ

NP . (3.53)

The B-terms in H, see (3.35), are proportional to X(RS)
M and thus give a vanishing con-

tribution due to our new constraint (3.45). For the F terms we can perform an integration

by parts14 and then (3.32) gives again only terms proportional to X(RS)
M leading to the

same conclusion. We therefore find that the Ξ-variation of the total action vanishes.

We can thus further restrict to the ΛM gauge transformations. According to (3.33), the

DρδAσΛ-term in (3.51) can then be replaced by 1
2ΛQXNQΛHρσ

N (see again footnote 13),

which can then be combined with the first term of (3.43) to form a symplectically covariant

expression (the first term on the right hand side of (3.54) below). Adding also the remaining

terms of (3.51) and (3.43), one obtains, using (3.36),

δLV T = εµνρσ

[

1

4
Gµν

MΛQXNQ
RΩMRHρσ

N +
1

8
Gµν

MGρσ
NΛQXQM

RΩNR

+
1

4
(H− G)µν ΛX(NP )

Λ∆Bρσ
NP

−DMNPAµ
MDνΛN

(

∂ρAσ
P +

3

8
XRS

PAρ
RAσ

S

)]

.(3.54)

We observe that if the H in the first line was a G, eqs. (3.16) and (3.18) would allow one

to write the first line as an expression proportional to DMNP . This leads to the first line

in (3.55) below. The second observation is that the identity (H − G)Λ = 0 allows one to

rewrite the second line of (3.54) in a symplectically covariant way, so that, altogether, we

have

δLV T = εµνρσ

[

1

4
Gµν

MΛQXNQ
RΩMR(H − G)ρσ

N +
3

8
Gµν

MGρσ
NΛQDQMN

−
1

4
(H− G)µν

MΩMRX(NP )
R∆Bρσ

NP

−DMNPAµ
MDνΛN

(

∂ρAσ
P +

3

8
XRS

PAρ
RAσ

S

)]

.(3.55)

By choosing

∆Bρσ
NP = −ΛNGρσ

P − ΛPGρσ
N , (3.56)

14Integration by parts with the covariant derivatives is allowed as (3.24) can be read as the invariance of

the tensor X and (3.16) as the invariance of Ω.
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the result (3.55) becomes

δLV T = εµνρσ

[

3

8
ΛQDMNQ

(

2Gµν
M (H− G)ρσ

N + Gµν
MGρσ

N
)

−DMNPAµ
MDνΛ

N

(

∂ρAσ
P +

3

8
XRS

PAρ
RAσ

S

)]

, (3.57)

which is then proportional to DMNP , and hence zero when the original representation

constraint (3.21) of [42] is imposed.

Our goal is to generalize this for theories with quantum anomalies. These anomalies

depend only on the gauge vectors. The field strengths G, (3.39), however, also depend

on the matrix N which itself generically depends on scalar fields. Therefore, we want

to consider modified transformations of the antisymmetric tensors such that G does not

appear in the final result.

To achieve this, we would like to replace (3.56) by a transformation such that

X(NP )
R∆Bρσ

NP = −2X(NP )
RΛNGρσ

P +
3

2
ΩRMDMNQΛQ(H− G)ρσ

N . (3.58)

Indeed, inserting this in (3.55) would lead to

δLV T = εµνρσ

[

3

8
ΛQDMNQFµν

MFρσ
N

−DMNPAµ
MDνΛ

N

(

∂ρAσ
P +

3

8
XRS

PAρ
RAσ

S

)]

, (3.59)

where we have used (3.47) to delete contributions coming from the Bµν
NP term in Hµν

M

(cf. (3.35)).

The first term on the right hand side of (3.58) would follow from (3.56), but the second

term cannot in general be obtained from assigning transformations to Bρσ
NP (compare

with (3.18)). Indeed, self-consistency of (3.58) requires that the second term on the right

hand side be proportional to X(NP )
R, which imposes a further constraint on DMNP . We

will see in section 4.3 how we can nevertheless justify the transformation law (3.58) by

introducing other antisymmetric tensors. For the moment, we just accept (3.58) and explore

its consequences.

Expanding (3.59) using (3.15) and (3.27) and using a partial integration, (3.59) can be

rewritten as

δLV T = −A[Λ] , (3.60)

where

A[Λ] = −
1

2
εµνρσΛPDMNP∂µAν

M∂ρAσ
N

−
1

4
εµνρσΛP

(

DMNRX[PS]
N +

3

2
DMNPX[RS]

N

)

∂µAν
MAρ

RAσ
S . (3.61)

This expression formally looks like a symplectically covariant generalization of the electric

consistent anomaly (2.8). Notice, however, that at this point this is really only a formal
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analogy, as the tensor DMNP has, a priori, no connection with quantum anomalies. We

will study the meaning of this analogy in more detail in the next section. To prove (3.60),

one uses (3.47) and the preservation of DMNP under gauge transformations, which follows

from preservation of X, see (3.24), and of Ω, see (3.16), and reads

XM(N
P DQR)P = 0 . (3.62)

For the terms quartic in the gauge fields, one needs the following consequence of (3.62):

(XRS
M XPQ

N DLMN )[RSPL] = −(XRS
M XPM

N DLQN +XRS
M XPL

N DQMN )[RSPL]

= −(XRS
M XPL

N DQMN )[RSPL] , (3.63)

where the final line uses (3.25) and again (3.47).

Let us summarize the result of our calculation up to the present point. We have

used the action (3.52) and considered its transformations under (3.27) and (3.36), where

∆Bµν
NP was undetermined. We used the closure constraint (3.19) and one new con-

straint (3.45). We showed that the choice (3.56) leads to invariance if DMNP van-

ishes, which is the representation constraint (3.21) used in the anomaly-free case studied

in [42]. However, when we use instead the more general transformation (3.58) in the case

DMNP 6= 0, we obtain the non-vanishing classical variation (3.60). The corresponding

expression (3.61) formally looks very similar to a symplectically covariant generalization of

the electric consistent quantum anomaly.

In order to fully justify and understand this result, we are then left with the following

three open issues, which we will discuss in the following section:

(i) The expression (3.61) for the non-vanishing classical variation of the action has to be

related to quantum anomalies so that gauge invariance can be restored at the level

of the quantum effective action, in analogy to the electric case described in section 2.

This will be done in section 4.1.

(ii) The meaning of the new constraint (3.45) that was used to obtain (3.60) has to be

clarified. This is subject of section 4.2.

(iii) We have to show how the transformation (3.58), which also underlies the result (3.60),

can be realized. This will be done in section 4.3.

4. Gauge invariance of the effective action with anomalies

4.1 Symplectically covariant anomalies

In section 3, we discussed the algebraic constraints that were imposed on the embed-

ding tensor in ref. [42] and that allowed the construction of a gauge invariant Lagrangian

with electric and magnetic gauge potentials as well as tensor fields. Two of these con-

straints, (3.19) and (3.20), had a very clear physical motivation and ensured the closure
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of the gauge algebra and the mutual locality of all interacting fields. The physical ori-

gin of the third constraint, the representation constraint, (3.21), on the other hand, re-

mained a bit obscure. In order to understand its meaning, we specialize it to its purely

electric components,

X(ΛΣΩ) = 0 . (4.1)

Given that the components XΛΣΩ generate axionic shift symmetries (remember the first

term on the right hand side of (3.41)), we can identify them with the corresponding symbols

XΛΣΩ in section 2, and recognize (4.1) as the condition for the absence of quantum anoma-

lies for the electric gauge bosons (see (2.9)). It is therefore suggestive to interpret (3.21) as

the condition for the absence of quantum anomalies for all gauge fields (i.e. for the electric

and the magnetic gauge fields), and one expects that in the presence of quantum anomalies,

this constraint can be relaxed. We will show that the relaxation consists in assuming that

the symmetric tensor DMNP defined by (3.17) is of the form15

DMNP = dMNP , (4.2)

for a symmetric tensor dMNP which describes the quantum gauge anomalies due to anoma-

lous chiral fermions. In fact, one expects quantum anomalies from the loops of these

fermions, ψ, which interact with the gauge fields via minimal couplings

ψ̄γµ(∂µ −Aµ
ΛΘΛ

αδα −AµΛΘΛαδα)ψ . (4.3)

Therefore, the anomalies contain — for each external gauge field (or gauge parameter) —

an embedding tensor, i.e. dMNP has the following particular form:

dMNP = ΘM
αΘN

βΘP
γdαβγ , (4.4)

with dαβγ being a constant symmetric tensor. In the familiar context of a theory with a

flat scalar manifold, constant fermionic transformation matrices, tα, and the corresponding

minimal couplings, the tensor dMNP is simply proportional to

dMNP ∝ ΘM
αΘN

βΘP
γTr({tα, tβ}tγ}, (4.5)

where the trace is over the representation matrices of the fermions.16

We showed that the generalization of the consistent anomaly (2.8) in a symplectically

covariant way leads to an expression of the form (3.61) with the DMNP -tensor replaced by

dMNP . Indeed, the constraint (4.2) implies the cancellation of this quantum gauge anomaly

by the classical gauge variation (3.60). Note that it is necessary for this cancellation that

the anomaly tensor dMNP is really constant (i.e., independent of the scalar fields). We

expect this constancy to be generally true for the same topological reasons that imply

the constancy of dΛΓΩ in the conventional electric gaugings [27, 28]. In this way we have

already addressed the first issue of the end of the previous section. We are now going to

show how the constraint (4.2) suffices also to address the other two issues, (ii) and (iii).

15The possibility to impose a relation such as (4.2) is by no means guaranteed for all types of gauge

groups (see e.g. [47] for a short discussion in the purely electric case studied in [26]).
16One might wonder how the magnetic vector fields AµΛ can give rise to anomalous triangle diagrams,

as they have no propagator due to the lack of a kinetic term. However, it is the amputated diagram with

internal fermion lines that one has to consider.
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4.2 The new constraint

We now comment on the constraint (3.45):

X(NP )
MΩMQX(RS)

Q = 0 . (4.6)

We will show that this equation holds if the locality constraint is satisfied, and (4.2) is

imposed on DMNP with dMNP of the particular form given in (4.4). To clarify this, we

introduce as in [42] the ‘zero mode tensor’17

ZMα =
1

2
ΩMNΘN

α , i.e.

{

ZΛα = 1
2ΘΛα ,

ZΛ
α = −1

2ΘΛ
α .

(4.7)

One then obtains, using (3.18), the definition of X in (3.15) and (4.4) that

X(NP )
M = ZMα∆αNP , (4.8)

for some tensor ∆αNP = ∆αPN . Due to the fact that we allow the symmetric tensor

DMNP in (3.17) to be non-zero and impose the constraint (4.2), this tensor ∆αNP is not

the analogous quantity called dαMN in [42],18 but can be written as

∆αNP = (tα)N
QΩPQ − 3dαβγΘN

βΘP
γ . (4.9)

However, the explicit form of this expression will not be relevant. We will only need that

X(NP )
M is proportional to ZMα.

Now we will finally use the locality constraint (3.20), which implies

ZΛ[αZΛ
β] = 0 , i.e. ZMαZNβΩMN = 0 . (4.10)

This then leads to the desired result (4.6).

The tensor ZMα can be called zero-mode tensor as e.g. the violation of the usual Jacobi

identity (second line of (3.25)) is proportional to it. We now show that it also defines zero

modes of DMNR. Indeed, another consequence of the locality constraint is

XMN
P ΩMQΘα

Q = 0 → XMN
PZMα = 0 , XQM

P ΩQSXSN
R = 0 . (4.11)

With (3.18) and (3.23) this implies

DMNRZ
Rα = 0 . (4.12)

Note that we did not need (4.2) to achieve this last result, but that the equation is consistent

with it.

17Note that the components of ΩMN have signs opposite to those of ΩMN as given in (3.7).
18We use ∆αMN in this paper to denote the analogue (or better: generalization) of what was called dαMN

in [42], because dαMN is reserved in the present paper to denote the quantity ΘM
βΘN

γdαβγ (cf eq. (4.20))

related to the quantum anomalies.
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4.3 New antisymmetric tensors

Finally, in this section we will justify the transformation (3.58), without requiring further

constraints on the D-tensor. That transformation gives an expression for X(NP )
R∆Bρσ

NP

that is not obviously a contraction with the tensor X(NP )
R (due to the second term on

the right hand side of (3.58)). We can therefore in general not assign a transformation of

Bρσ
NP such that its contraction with X(NP )

R gives (3.58). To overcome this problem, we

will have to change the set of independent antisymmetric tensors. The Bµν
MN cannot be

considered as independent fields in order to realize (3.58). We will, as in [42], introduce a

new set of independent antisymmetric tensors, denoted by Bµν α for any α denoting a rigid

symmetry.

The fields Bµν
NP and their associated gauge parameters ΞNP appeared in the relevant

formulae in the form X(NP )
MBµν

NP or X(NP )
MΞNP , see e.g. in (3.27), (3.33), (3.35)

and (3.44). With the form (4.8) that we now have, this can be written as

X(NP )
MBµν

NP = ZMα∆αNPBµν
NP . (4.13)

We will therefore replace the tensors Bµν
MN by new tensors Bµν α using

∆αMNBµν
MN → Bµν α . (4.14)

and consider the Bµν α as the independent antisymmetric tensors. There is thus one tensor

for every generator of the rigid symmetry group. The replacement thus implies that

X(NP )
MBµν

NP → ZMαBµν α . (4.15)

We also introduce a corresponding set of independent gauge parameters Ξµ α through the

substitution:

∆αMNΞµ
MN → Ξµ α . (4.16)

This allows us to reformulate all the equations in the previous sections in terms of Bµν α

and Ξµ α. For instance we will write:

δAµ
M = DµΛM − ZMαΞµα , (4.17)

Hµν
M = Fµν

M + ZMαBµν α , (4.18)

Ltop,B =
1

4
εµνρσ ZΛαBµν α

(

Fρσ Λ +
1

2
ZΛ

βBρσ β

)

. (4.19)

We will show that considering Bµν α as the independent variables, we are ready to solve

the remaining third issue mentioned at the end of section 3. To this end, we first note that

all the calculations in section 3 remain valid when we use (4.15) and (4.17)–(4.19) to express

everything in terms of the new variables Bµν α and Ξµ α, because the equations (3.45)

and (3.47) we used in section 3 are now simply replaced by (4.10) and (4.12), respectively.

If we now set, following (4.4),

dMNP = ΘM
αdαNP , dαNP = dαβγΘN

βΘP
γ , (4.20)
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then we can define (bearing in mind (4.8))

δBµν α = 2D[µΞν]α + 2∆α NPA[µ
NδAν]

P + ∆Bµν α ,

∆Bµν α = −2∆αNP ΛNGµν
P + 3dαNP ΛN (H − G)µν

P , (4.21)

to reproduce (3.58), where the left-hand side of (3.58) is replaced according to (4.15). Here

the covariant derivative is defined as

D[µΞν]α = ∂[µΞν]α + fαβ
γΘP

βA[µ
P Ξν] γ . (4.22)

Of course, (4.21) is only fixed modulo terms that vanish upon contraction with the embed-

ding tensor.

4.4 Result

In this section we have seen, so far, that it is possible to relax the representation con-

straint (3.21) used in ref. [42] to the more general condition (4.2) if one allows for quantum

anomalies. The physical interpretation of the original representation constraint (3.21)

of [42] is thus the absence of quantum anomalies.

Due to these constraints we obtained the equation (4.8), which allowed us to introduce

the Bµν α as independent variables. All the calculations of section 3.2 are then valid with

the substitutions given in (4.15) and (4.16). We did not impose (4.8) in section 3.2, and

therefore we could at that stage only work with Bµν
NP . However, now we conclude that

we need the Bµν α as independent fields and will further only consider these antisymmet-

ric tensors.

The results of this section can alternatively be viewed as a covariantization of the

results of [18, 26] with respect to electric/magnetic duality transformations.19 To further

check the consistency of our results, we will in the next section reduce our treatment to a

purely electric gauging and show that the results of [26] can be reproduced.

4.5 Purely electric gaugings

Let us first explicitly write down DMNP in its electric and magnetic components:

DΛΣΓ = X(ΛΣΓ) ,

3DΛ
ΣΓ = XΛ

ΣΓ − 2X(ΣΓ)
Λ ,

3DΛΣ
Γ = −XΓ

ΛΣ + 2X(ΛΣ)
Γ ,

DΛΣΓ = −X(ΛΣΓ) . (4.23)

In the case of a purely electric gauging, the only non-vanishing components of the

embedding tensor are electric:

ΘM
α = (ΘΛ

α, 0) . (4.24)

19We have not discussed the complete embedding into N = 1 supersymmetry here, which would include

all fermionic terms as well as the supersymmetry transformations of all the fields. This is beyond the scope

of the present paper.
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Therefore also XΛ
N

P = 0 and (4.4) implies that the only non-zero components of DMNP =

dMNP are DΛΣΩ. Therefore, (4.23) reduce to

DΛΣΩ = X(ΛΣΩ) , X(ΣΩ)
Λ = 0 , XΩ

ΛΣ = 0 . (4.25)

The non-vanishing entries of the gauge generators are XΛΣΓ and XΣΩ
Λ = −XΣ

Λ
Ω =

X[ΣΩ]
Λ, the latter satisfying the Jacobi identities since the right hand side of (3.25) for

MNQR all electric indices vanishes. The X[ΣΩ]
Λ can be identified with the structure

constants of the gauge group that were introduced e.g. in (2.2). The XΛΣΩ correspond to

the shifts in (2.2). The first relation in (4.25) then corresponds to (2.9).

The locality constraint is trivially satisfied and the closure relation reduces to (2.4)

as expected.

At the level of the action LVT, all tensor fields drop out since, when we express ev-

erything in terms of the new tensors Bµν α, these tensors always appear contracted with a

factor ΘΛ α = 0. In particular, the topological terms Ltop,B vanish and the modified field

strengths for the electric vector fields Hµν
Λ reduce to ordinary field strengths:

Hµν
Λ = 2∂[µAν]

Λ +X[ΩΣ]
ΛAµ

ΩAν
Σ . (4.26)

Also the GCS terms (3.49) reduce to their purely electric form (2.7) with X
(CS)
ΩΛΣ = X

(m)
ΩΛΣ.

Finally, the gauge variation of LVT reduces to minus the ordinary consistent gauge anomaly,

as we presented it in (2.8).

This concludes our reinvestigation of the electric gauging with axionic shift symmetries,

GCS terms and quantum anomalies as it follows from our more general symplectically

covariant treatment. We showed that the more general theory reduces consistently to the

known case of a purely electric gauging.

4.6 On-shell covariance of Gµν
M

For completeness, we will show in this section that Gµν
M (as defined in (3.39) and (3.42)) is

the object that transforms covariantly on-shell, rather than Hµν
M . We consider the total

action (3.52), where now Ltop,B is given by (4.19), and in Lg.k., the expression (4.18) is

used. We write the general variation of this action under generic variations δAµ
M , δBµν α

of Aµ
M , Bµν α. The variation of Lg.k. has a contribution only from HΛ, since the matrix N

is inert under variations of Aµ
M and Bµν α, and thus will be given by the first term in the

expression of δLg.k. in (3.40). Summing this variation with the variation of the topological

terms (3.51) we find:

δLV T = εµνρσ

[

1

2
Gµν

MDρδAσ
N ΩMN

+
1

4
(HµνΛ − GµνΛ)

(

ZΛαδBρσ α − 2X(NP )
ΛAρ

NδAσ
P
)

−DMNPAµ
MδAν

N

(

∂ρAσ
P +

3

8
XRS

PAρ
RAσ

S

)]

. (4.27)

This allows us to determine the equations of motion for the independent tensor fields Bµν α:

δLV T

δBµν α
≈ 0 ⇔ (H − G)µνΛ Z

Λα =
1

2
(H− G)µνΛ ΘΛα ≈ 0 , (4.28)
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which tells us that the equations of motion imply20 that just some Hµν Λ are identified

on-shell with the corresponding GµνΛ. More precisely, these are the tensors Hµν Λ that

are singled out by the contraction with ΘΛα; they thus correspond to those magnetic

vectors AµΛ that enter the action. From (4.28), together with the constraint (4.2) and the

particular form (4.4) for dMNP , we also see that

(Hµν
P − Gµν

P )DPMN ≈ 0 . (4.29)

The properties (4.28) and (4.29) will be used next to prove that the tensor which is actually

on-shell covariant under gauge-induced duality transformations is Gµν
M and not Hµν

M .

Given the complete gauge variation for the antisymmetric tensor fields (4.21), we

can write down the explicit gauge transformation properties of Hµν
M and Gµν

M , which

generalize those found in [42, 36] for DMNP = 0:

δHµν
M = −ΛQXQP

M Hµν
P + ΛQ

(

2X(QP )
M +

3

2
ΩMN DNPQ

)

(Hµν
P − Gµν

P ) ,

δGµν
Λ = −ΛQXQP

Λ Gµν
P + ΛQ X̂PQ

Λ (Hµν
P − Gµν

P ) ,

δGµνΛ = −ΛQXQPΛGµν
P +

1

2
εµνρσ IΛΣ ΛQ X̂PQ

Σ (HρσP − GρσP )

+RΛΣ ΛQ X̂PQ
Σ (Hµν

P − Gµν
P ) , (4.30)

where we have used the following short-hand notation:

X̂PQ
M ≡ XPQ

M +
3

2
ΩMN DNPQ . (4.31)

The first line of (4.30) follows from (3.37) and (3.58). The second transformation is a

component of the first one since Gµν
Λ = Hµν

Λ, and for the transformation of GµνΛ we

use (3.41).

From (4.28) and (4.29) we see that, on-shell, the terms containing (Hµν
P−Gµν

P ) X̂PQ
M

vanish. Therefore we conclude that, as opposed to Hµν
M , the tensor Gµν

M is on-shell gauge

covariant and the gauge algebra closes on it modulo field equations. Consistency of course

requires that field equations transform into field equations, and indeed it can be shown

that:

δ(HµνΛ − GµνΛ) = ΛQ
(

X̂PQΛ + RΛΣ X̂PQ
Σ
)

(Hµν
P − Gµν

P )

+
1

2
εµνρσ IΛΣ ΛQ X̂PQ

Σ (HρσP − GρσP ) . (4.32)

5. A simple nontrivial example

Let us now briefly illustrate the above results by means of a simple example. We consider

a theory with a rigid symmetry group embedded in the electric/magnetic duality group

Sp(2,R). The embedding in the symplectic transformations is given by

t1M
N =

(

1 0

0 −1

)

, t2M
N =

(

0 0

1 0

)

, t3M
N =

(

0 1

0 0

)

, (5.1)

20Identifications on shell are indicated by ≈.
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i.e. t2
11 = 1. Let us consider the following subset of duality transformations:

SM
N = δM

N − ΛPXPN
M , with generators XPM

N =

(

0 0

XP
11 0

)

, (5.2)

where ΛP is the rigid transformation parameter. The tensor X is related to the embedding

of the symmetries in the symplectic algebra using the embedding tensor,

XPM
N =

3
∑

α=1

ΘP
αtαM

N . (5.3)

We have thus chosen the embedding tensor

ΘP
1 = 0 , ΘP

2 = XP
11 , ΘP

3 = 0 . (5.4)

We now want to promote SM
N to be a gauge transformation, i.e., we take the

ΛN = ΛN (x) spacetime dependent and the XPM
N are the gauge generators. This ob-

viously corresponds to a magnetic gauging, as (4.25) is violated, and therefore requires

the formalism that was developed in [42] and reviewed in section 3.2. The locality con-

straint (3.20) is automatically satisfied, as only the index value α = 2 appears, and closure

of the gauge algebra spanned by the XPM
N requires that we impose (3.19), where only

the right-hand side is non-trivial. It requires Θ1
2 = 0, and thus the only gauge generators

that are consistent with this constraint are

XPM
N = (X1M

N , X1
M

N ) , with X1M
N = 0 , X1

M
N =

(

0 0

X111 0

)

. (5.5)

Note that this choice still violates the original linear representation constraint (3.21),

as (4.23) gives D111 = −X111 6= 0. However, as we saw in section 3, this does not prevent

us from performing the gauging with generators XPM
N given in (5.5). We introduce a

vector Aµ
M which contains an electric and a magnetic part, Aµ

1 and Aµ1. Note that only

the magnetic vector couples to matter via covariant derivatives since the embedding tensor

projects out the electric part. In what follows, we also assume the presence of anomalous

couplings between the magnetic vector and chiral fermions. As we will now review, this

justifies the nonzero X111 6= 0, since it will give rise to anomaly cancellation terms in the

classical gauge variation of the action. More precisely, we will have to require that

Θ12 = X111 , −X111 = d111 = (X111)3d̃222 , (5.6)

where we introduced d̃222 as the component of dαβγ .

To show this, we first introduce a kinetic term for the electric vector fields:

Lg.k. =
1

4
e I Hµν

1Hµν 1 −
1

8
R εµνρσHµν

1Hρσ
1, (5.7)

where we introduced the modified field strength (4.18)

Hµν
1 = 2∂[µAν]

1 +
1

2
X111Bµν2 , (5.8)
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which depends on a tensor field Bµν2 and therefore transforms covariantly under

δAµ
1 = ∂µΛ1 +X111Aµ 1Λ1 −

1

2
X111Ξµ2 ,

δBµν2 = 2∂[µΞν]2 + 4A[µ 1∂ν]Λ1 − 6Λ1∂[µAν] 1 − Λ1Gµν 1 ,

δAµ1 = ∂µΛ1 . (5.9)

This follows from (4.21) since the only nonzero component of ∆2MN is ∆2
11 = 2 and for

d2MN we have only d2
11 = −1. One can check that

δHµν
1 = −

1

2
X111Λ1(H + G)µν 1 , with

Hµν 1 = Fµν 1 = 2∂[µAν]1 ,

Gµν 1 ≡ RHµν
1 +

1

2
eIεµνρσH

ρσ 1 . (5.10)

Under gauge variations, the real and imaginary part of the kinetic function transform as

follows (cf. (3.41)):

δI = 2Λ1X
111RI , δR = Λ1X

111
(

R2 − I2
)

. (5.11)

Then it’s a short calculation to show that

δLg.k. =
1

4
εµνρσΛ1X

111Gµν 1∂ρAσ1 . (5.12)

This is consistent with (3.43).

In a second step, we add the topological term (4.19)

Ltop,B =
1

4
εµνρσX111Bµν2∂[ρAσ] 1 . (5.13)

The gauge variation of this term is equal to (up to a total derivative)

δLtop,B = −
1

4
Λ1X

111εµνρσ (∂µAν 1) (2∂ρAσ 1 + Gρσ 1) . (5.14)

The generalized Chern-Simons term (3.49) vanishes in this case. Combining (5.12)

and (5.14), one derives

δ (Lg.k. + Ltop,B) = −
1

2
Λ1X

111 (∂µAν 1) (∂ρAσ 1) ε
µνρσ . (5.15)

This cancels the magnetic gauge anomaly whose form can be derived from (3.61),

A[Λ] = −
1

2
εµνρσΛ1d

111 (∂µAν 1) (∂ρAσ 1) , (5.16)

if we remember that X111 = −D111 = −d111. Note that the electric gauge fields do not

appear which corresponds to the fact that the electric gauge fields do not couple to the

chiral fermions.

A simple fermionic spectrum that could yield such an anomaly (5.16) is given by,

e.g., three chiral fermions with canonical kinetic terms and quantum numbers Q =

(−1), (−1), (+2) under the U(1) gauged by Aµ 1. Indeed, with this spectrum, we would

have Tr(Q) = 0, i.e., vanishing gravitational anomaly, but a cubic Abelian gauge anomaly

d111 ∝ Tr(Q3) = +6.
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6. Conclusions

In this paper we have shown how general gauge theories with axionic shift symmetries, gen-

eralized Chern-Simons terms and quantum anomalies [26] can be formulated in a way that

is covariant with respect to electric/magnetic duality transformations. This generalizes

previous work of [42], in which only classically gauge invariant theories with anomaly-free

fermionic spectra were considered. Whereas the work [42] was modelling extended (and

hence automatically anomaly-free) gauged supergravity theories, our results here can be

applied to general N = 1 gauged supergravity theories with possibly anomalous fermionic

spectra. Such anomalous fermionic spectra are a natural feature of many string compactifi-

cations, notably of intersecting brane models in type II orientifold compactifications, where

also GCS terms frequently occur [18]. Especially in combination with background fluxes,

such compactifications may naturally lead to 4D actions with tensor fields and gaugings

in unusual duality frames. Our formulation accommodates all these non-standard formu-

lations, just as ref. [42] does in the anomaly-free case.

At a technical level, our results were obtained by relaxing the so-called representation

constraint to allow for a symmetric three-tensor dMNP that parameterizes the quantum

anomaly. In contrast to the other constraints for the embedding tensor, this modified

representation constraint is not homogeneous in the embedding tensor, which is a novel

feature in this formalism. Also our treatment gave an interpretation for the physical

meaning of the “representation” constraint: In its original form used in [42], it simply

states the absence of quantum anomalies. It is interesting, but in retrospect not surprising,

that the extended supergravity theories from which the original constraint has been derived

in [42], need this constraint for their internal classical consistency.

It would be interesting to embed our results in a manifestly supersymmetric framework.

Likewise, it would be interesting to study explicit N = 1 string compactifications within

the framework used in this paper, making use of manifest duality invariances. Another

topic we have not touched upon are Kähler anomalies [48 – 58] in N = 1 supergravity or

gravitational anomalies. We hope to return to some of these questions in the future.
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