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A. READING BINARY TAPES IN UNDEFINED RECORD FORMAT

ON THE 360/65

In the Research Laboratory of Electronics there are several specialized data-taking

devices utilizing magnetic tape for permanent storage of digitized data. For instance,

Potter Model 906 II-1 tape drives are used by both the flying-spot scanner and the

PDP-4 to ensure physical compatibility with the IBM tape units used by the 360/65. The

data format of such tapes is typically incompatible with Fortran IV (release 11 and

higher) standard binary tape format, which requires two full-words of control informa-

tion at the beginning of each record.

A general assembly language program which reads and writes the binary tapes

described above is now available at the M. I. T. Computation Center. The Job Control

language permits the user to set all valid OS/360 DD parameters, such as recording

density, record length, and block size, without program modification. Users often

desire to unpack the data for easier internal processing; at present, our group has

additional assembly language programs for packing and unpacking 12 bit and 18 bit data

words.

Eleanor C. River, Elaine C. Isaacs

B. GAUSSIAN QUADRATURE - A NUMERICAL TECHNIQUE

FOR INTEGRATION

We have developed a set of numerical integration programs in Fortran IV, which

utilize Gaussian Quadrature formulas to evaluate integrals which cannot be evaluated

using more conventional methods, such as the Trapezoidal Rule or Simpson's Rule.

Gaussian Quadratures are numerical approximations of the form

n

Sf(x) dx = w f(a.) + E.

j= 1

The weights w. and abscissas aj are determined so that En = 0 for a polynomial of degree

less than or equal to 2n - 1. Since by the Weierstrass theorem on polynomial

*This work was supported in part by the Joint Services Electronics Programs

(U. S. Army, U. S. Navy, and U. S. Air Force) under Contract DA 28-043-AMC-02536(E).

QPR No. 87 231



(XV. COMPUTATION RESEARCH)

approximation, any function f continuous on (a, b) can be approximated by a polynomial

of sufficiently high degree, n can be chosen such that given [ > 0, IEni < p for any such

function f.

There are numerous sets of weights and abscissas, proven mathematically to be

appropriate to various types of intervals. For a function f continuous on a finite inter-

val [a,b], we have written routines using the following formulas:

n

f(y) dy = -2 w f(Yi) + En (1)
j=l

y= x+j

xj = the jth zero of the Legendre Polynomial P (x).

2
W. =

b f(y) nSdy = a wf(y_) + E (2)
j=1

yj = (b-a)x. + a

2 thx. = a. where a. is the j positive zero of the Legendre Polynomial Pzn(x).

2w. = 2

(1-aIPn(a 
)]2

Sab f(y ) n
dy =Tb wf(yj) + E (3)

NT-b- y j=1

yj = (a-b)x. + b

x. and w. are as in (2).
J j

The creation of these routines involved writing a program to evaluate the coefficients

of the Legendre Polynomials, and setting up other programs to calculate the weights
n

wj and to form the sums K j w f(y.). A subprogram to compute f must be supplied

by the user.

As an example of the use of (1) and (3), we have evaluated
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+sin- (2-1) +sin-1 (Z/l+ siny) 2 - siny sinx I sin x
A = dy dx,

/2 sin2 x - (2-siny sinx)z

1 T 31r
< <1, 0<x<r, -<y<2-,

where "+ sin-" represents the greater value of the inverse sine in the range of x and y

given. Let b = +sin (2~/(1+ siny)). The integrand is infinite at x = b. We can establish

that the integrand G(x,y) can be written as

-sin-1(2-1) b F(x,y)
/ dy dx.

Rather than explicitly doing the algebra, we merely write

2z_-sinxsiny sin x hJ]-x

sin2 x - (Z-sinysinx) F(x,y)

G(x,y) =

Since the formula (3) does not evaluate F(x,y) at b, and since

lim =. ,

x-b sinZ x - (2 -siny sinx)

we can safely use (3) with f = F(x, y ) for a given yj. The procedure for the double inte-

b F(x, y)
gration is to use (1) with f = /ZNrb-x dx and at each yj defined in (1) apply (3) as

explained above.

Elaine S. Brown

C. BESSEL FUNCTIONS OF THE SECOND KIND

A frequently occurring equation in physics is Bessel's equation,

2
2 d dy 2 2

x - + x x+ (x -n )y = 0.
dxz

Historically, the development of solutions to this equation was slow and erratic.

The earliest appearance of an equation of this type occurs in a paper published by

John Bernouilli, in 1694. Seventy years later, an investigation by Euler on the vibra-

tions of a stretched membrane reveals the earliest analysis of a Bessel function of

integral order. Throughout the next half-century, the analysis of this equation was
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continued by such men as Lagrange, Laplace, and Fourier. Then, in a memoir

written in 1824, the German mathematician, Friedrich Wilhelm Bessel, put forth

a detailed discussion of the functions that now bear his name. His solution, the

Bessel coefficients of argument z and order n, has come to be denoted univer-

sally by the symbol J (z).

The desire for a second independent solution, and hence a fundamental sys-

tem of solutions, led many mathematicians to work further on the problem. The

result was several versions of the Bessel function of the second kind. No stand-

ard form has yet been accepted universally. American authors commonly choose

as a standard particular solution Neumann's function of order n, but there remains

some discrepancy in the exact definition of this function. Some authors cite a

Neumann function denoted by Y(n)(z)

S(n) log- n-4 2 (n-m-1) n! J (z) ) (-1)m-1 (n+2m)
(-) + Jnm(Z), (1)(nZ) = J I((z){logz - - m m(n+m) (n+2m)

m=O (nm)(m!)(z m=l

where

1 1 1
s s 1 +-+ ...- m= 1,2...

o m 2 3 m

Then, since any linear combination of J n(z) and Y(n)(z) is also a solution, these authors

define a second solution, Y(n) (z), the Weber function, as

Yn(Z) =2 Y(n)(z)+ (y-log 2)Jn(z)

where y is Euler's constant = 0. 577216. Other authors prefer to substitute (1) into (2),

combine terms, and to call the resulting function Neumann's function, denoted by Yn (z),

where

nm m-1 s2m n1 2mn (-1) -s + ns z z-n (n-m-l)! z22 r z m + n  zm-)
Sn 2 m=0 2m+n )(m!)(m+n)! I (2m-n)(m

z > 0; n = 0,1,..... (2)

In order to be as complete and as helpful as possible, we felt that a subroutine

written to compute both Yn(z), the Neumann function, and Y (z), the Weber function,

would be desirable. Working with definitions (1) and (2) as stated above, the subroutine

YNEU was written in Fortran IV for the IBM 360. For real arguments z of order n,
real and positive, the routine returns values of Y, the Neumann function, and BY,

the Weber function.
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The subroutine calls two other subroutines, BESJ and BESY, supplied in version II

of the scientific subroutine package for the IBM 360.

The routine has been written for five place accuracy and has been tested and checked

out for values of z between 0. 02 and 12. 0 and n = 0, 1,Z... 10.

Terry S. Kleiman
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