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Abstract

A method for calibrating the response of a segmented calorimeter to hadrons is devel-
oped. The ansatz is that information on longitudinal shower fluctuations gained from a
principal component analysis of the layer energy depositions can improve energy resolution
by correcting for hadronic invisible energy and dead material losses: projections along the
eigenvectors of the correlation matrix are used as input for the calibration. The technique
is used to reconstruct the energy of pions impinging on the ATLAS calorimeters during the
2004 Barrel Combined Beam Test at the CERN H8 area. Simulated Monte Carlo events are
used to derive corrections for invisible energy lost in nuclear reactions and in dead material
in front and in between the calorimeters. For pion beams with energies between 20 and
180 GeV, the particle energy is reconstructed within 3% and the resolution is improved by
about 20%.



Introduction

In order to measure the energy of a hadron impinging on a calorimeter it is necessary to overcome the fact
that part of the energy is deposited in a non-measurable (invisible) form, i.e. nuclear break-up and excita-
tion, energy deposits arriving out of the sensitive time window (such as delayed photons), soft neutrons,
etc. All of these effects are absent in the case of particles interacting only electromagnetically [1, 2].
All secondary particle showers generated by hadrons will have a component of such particles. As the
average size of this component increases with the energy of the impinging hadron [3], the ratio of vis-
ible to invisible energy increases, resulting in a non-linear response of the calorimeter. In addition, the
large event-by-event fluctuations of the size of the electromagnetic component 1) degrade the measured
resolution.

The calorimeter material and size are not always aimed at (or capable of) equalizing the hadronic
and electromagnetic energy response (compensation). In these cases offline calibration techniques have
been developed that use the properties of the visible deposited energy to derive energy corrections aimed
at restoring linearity in the response and improving the resolution. Average corrections can restore the
linearity of the response, but they cannot compensate the calorimeter response on an event-by-event
basis, so they can hardly improve the resolution. Techniques that are spatially sensitive to the difference
between electromagnetic and hadronic energy deposits and their fluctuations are therefore more suited to
produce event-by-event corrections that will also affect the resolution.

The correlations between the energy deposits in the longitudinal development of the shower have
been shown [4] to have information on the electromagnetic and hadronic nature of the shower. An
improvement in resolution is expected to result from capturing more of the properties of the different
fluctuations. In this study a technique for energy compensation is developed that uses the properties of
such correlations to derive a Monte Carlo-based event-by-event compensation technique. The application
is quite specific to ATLAS, but the framework is rather general and it can be tested on any segmented
calorimeter. Layer weighting has already been explored in ATLAS in a different fashion for jet energy
calibration [5].

In section 1 the experimental setup of the ATLAS 2004 Barrel Combined Beam Test is presented.
The data samples and the associated simulated event samples are described. Section 2 describes the basic
selection and reconstruction of the events. The Layer Correlation technique is featured in section 3 in
general terms to provide the basis for its application in the case of a segmented calorimeter. The various
components of the calibration technique are also presented. Then its implementation in the present case
and its validation on simulated samples are illustrated in sections 4 and 5, respectively. The results in
terms of linearity and resolution are finally shown and discussed in section 6.

1 Experimental Setup, Data and Monte Carlo Samples

The 2004 ATLAS Combined Beam Test setup (CBT04) is fully described in [6]. For this analysis the
fully combined data taking period has been used, where in addition to the Liquid Argon (LAr) and
Tile (TileCal) calorimeters, some modules of the ATLAS inner detector were operational, i.e. the Pixel
detector, the silicon strip SemiConductor Tracker (SCT) and the straw tube Transition Radiation Tracker
(TRT). In addition, special beam-line detectors were installed to monitor the beam position and reject
background events. For a beam impinging at a pseudorapidity of η = 0.45 the expected amount of
material in front of the LAr is about 0.44 λI

2). The LAr modules are longitudinally segmented in 3
layers that extend in total for 1.3 λI . The dead material between TileCal and LAr spans about 0.6 λI .
Finally TileCal’s three longitudinal segments stretch in total for about 8.2 λI .

1)Due to large phase space for hadronic interactions in matter.
2)The interaction length λI is defined in [2, 7]. The values refer to interactions caused by protons.
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The data taken during this fully combined CBT04 period consist of single positive pions impinging
on the calorimeters at azimuth angle φ = 0 and pseudorapidity η = 0.45. The runs being used are shown
in table 1. All data were collected without magnetic field around the pixel and silicon detectors. Data
samples were reconstructed using Athena 12.0.7.

The positive pion beams are known to have a sizable proton contamination, fprot, defined as the frac-
tion of the events in a sample that result from protons impinging on the calorimeters. The contamination
is also reported in table 1 and it is estimated 3) by recent Transition Radiation Tracker measurements [8]
exploiting the higher energy losses of protons with respect to pions. This estimate is in good agreement
with measurements performed by a Cherenkov counter in the 2002 test beam [9], except at 180 GeV.

Table 1: Data samples taken in the CBT04 used in the present analysis. 2102225 is nominally an e+ run
where π+ are selected.

RunNumber Enom
beam (GeV) Emeas (GeV) N. ev. bef. cuts N. ev. after cuts Content fprot

2102396 20 20.19 49871 7812 π+ 0%
2102347 50 50.30 81103 15091 π+ 45%
2102355 100 100.54 55589 7250 π+ 61%
2102225 180 179.68 85967 4318 π+ (e+) 76%

Monte Carlo samples were produced simulating both pions and protons impinging on the CBT04
setup at the same coordinates as the data. The interaction of the particles in the detector was simu-
lated with Geant4.7 [10] using both the QGSP [11] and the QGSP BERT [12] physics lists. The QGSP
physics list uses a phenomenological model describing the hadron–nucleus interaction by the forma-
tion and fragmentation of excited strings together with the de-excitation of an excited nucleus. The
QGSP BERT model adds the Bertini description of the intra-nuclear hadronic cascade of the secondary
hadrons deriving from string decay: such a description is not present in QGSP where the secondaries are
allowed to be produced only outside the nucleus.

The full reconstruction of the events used the CBT04 geometry and the full simulation of the detector
read-out in the ATLAS Athena Software version 12.0.5.

Two sets of statistically independent samples were produced by dividing the available sample into
two approximately equal parts: one set (“correction” samples in the following) was used to derive weights
and dead material corrections (see sections 3.1 and 3.2), while the other set was used as simulated data
to derive the performance expectation (“signal” samples in the following). The “correction” and “signal”
samples are shown in table 2.

2 Event Selection and Energy Reconstruction

For each event, cell clusters are derived by adding up the energy in neighboring cells with a dynamical
topological algorithm in three dimensions into “topological clusters”. The algorithm is described in [13].
The energy thresholds used for the seed, neighbor and boundary determination are set to respectively
four, two and zero times the expected noise in the given cell. The reconstructed energy in layer L is
obtained by building all the 3D topoclusters in the event and summing only the energy of the cells in
layer L that belong to a topocluster. The total reconstructed energy is then derived by summing over the

3)With the instrumentation at hand, the proton contamination can be measured only on average, but not on an event-by-event
basis.
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Table 2: Fully simulated Monte Carlo samples used for the present analysis. The “correction” sample is
used to derive the corrections, while the ”signal” sample is used to compare to the data.

“Correction sample” “Signal sample”
Ebeam π+ p π+ p
(GeV) Bef. cuts Aft. cuts Bef. cuts Aft. cuts Bef. cuts Aft. cuts Bef. cuts Aft. cuts

15 50000 33098 50000 32315 50000 33075 50000 32711
17 45000 31352 50000 34991 45000 31452 50000 34975
20 50000 36387 50000 33119 50000 36327 50000 36862
22 45000 33440 50000 37532 45000 33367 50000 37339
25 45000 34053 50000 38160 45000 33899 50000 38293
35 50000 39420 50000 39027 50000 39339 50000 39010
40 50000 39640 45000 35389 50000 39535 50000 39277
45 50000 39947 50000 39426 50000 39871 50000 39481
50 50000 40171 45000 35510 50000 40248 50000 39574
55 45000 36431 45000 35547 50000 40514 50000 39495
60 45000 36509 45000 35668 50000 40647 50000 39537
65 50000 40670 50000 39606 50000 40570 50000 39685
70 35000 28494 25000 19853 35000 28549 30000 23855
80 25000 20448 35000 27919 25000 20337 35000 27791
90 35000 28771 31536 25083 35000 28680 35000 27805
100 25000 20510 20000 15859 30000 24717 25000 19839
110 15000 12362 15000 11948 15000 12313 20000 15736
120 35000 28774 30000 23957 35375 29036 35000 27579
130 25000 20626 44785 35461 30000 24798 45000 35526
150 50000 38556 50000 35979 50000 38538 50000 36248
170 50000 38569 50000 35804 50000 38606 50000 36026
180 50000 38807 40000 28804 50000 38625 45000 32126
190 50000 38701 45000 32308 50000 38740 50000 35847
210 40000 30965 45000 32236 40000 30915 45000 31994
230 30569 23670 21015 14913 40000 31027 30000 21444

Total 1040569 810371 1032336 776414 1075357 833725 1095000 828055

4



Nlay longitudinal layers in the calorimeter:

Erec
L = ∑

cell t3D
Erec

cell t3D,L (1)

Erec
tot = ∑

L

Erec
L (2)

Events are selected, if they meet the following requirements.
A signal in the trigger scintillator and a measurement in adjacent beam chambers that is compatible

with one particle passing close to the nominal beam line are required. In addition, at least one global
track with a least 6 hits in the Pixel or the SCT and at least 20 hits in the TRT is asked for. The track
in the TRT must be compatible with a pion track, i.e. no more than 2 higher-level hits must be present.
Events with a second track in the TRT are rejected: this ensures that the pion does not interact strongly
before the TRT.

In addition, there must be at least one cluster with at least 5 GeV in the calorimeter. This cut rejects
muons contained in the beam. To reject some residual electron background, events with more than 99%
of their energy in the LAr calorimeter are rejected.

The same selection is applied on simulated Monte Carlo events as on data, with the exception of cuts
related to beam chambers and scintillators.

3 The Layer Correlation Method

The Layer Correlation calibration method (LC in the following) is based on a principal component anal-
ysis (PCA) [14] on simulated events of the calorimeter layer energy deposits. The ansatz is that different
fluctuation properties characterize events with different invisible energy content: variables that can de-
scribe the various possible fluctuations should discriminate the different corrections to be applied to
recover invisible losses due to hadronic interactions. In addition, dead material losses will vary depend-
ing on the shower development: fluctuation-sensitive variables should then also help to recover dead
material losses while capturing their correlation with invisible energy fluctuations.

The aim of the LC technique is to derive an event-by-event correction to the energy deposited in
each longitudinal calorimeter layer on the basis of Monte Carlo simulated events. A unified treatment
for compensation and dead material correction is obtained by deriving both corrections from the same
set of variables.

In every event the energy deposited in each layer is corrected by a weight to account for compen-
sation. An additive correction to the total compensated energy accounts for dead material effects. In
formulas:

Eweighted
L = wLErec

L (3)

Eweighted
tot = ∑

L

Eweighted
L (4)

Ecorr
tot = Eweighted

tot +EDM
tot (5)

where wL is the weight correcting for invisible energy in layer L and EDM
tot is the dead material correction.

The Nlay weights and the most important part of the dead material corrections are functions of linear
combinations of the observed layer energy deposits. The idea is to use those linear combinations whose
variance provides the largest contribution to the fluctuations of the total energy, i.e. are more sensitive
to differences in invisible energy content. Such combinations are obtained from a principal component
analysis of the of the Nlay layer energy deposits on simulated events. So, intuitively, the corrections are
functions of the “directions of largest independent fluctuations”.
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In order to derive the corrections, a fully simulated sample of single pions and protons impinging
on the calorimeter is used. In such events the true deposited energy by the pions in each layer of the
calorimeter is available and it is divided into four components: electromagnetic visible, hadronic visi-
ble, invisible and escaped. Visible energy results from ionization of the calorimeter material. Invisible
energy is energy not directly measurable in the detector, such as break-up energy in nuclear interactions.
The escaped energy represents the small contribution from neutrinos, high energy muons and, possibly,
neutrons and low-energy photons escaping the calorimeters. All the terms are defined in [15].

The events in a fully simulated Monte Carlo sample are usually generated at a fixed beam energy
in order to test the calorimeter response. The corrections derived from a fixed beam energy sample
are, in principle, dependent on that information, i.e. they depend on the same quantity (pion energy)
for the reconstruction of which they should be used. Sample mixing and iteration techniques are used
to overcome such dependence and properly define a procedure for converging towards the appropriate
corrections using only the visible energy in the calorimeter. The description of the weighting technique
and the dead material corrections in the following sections (3.1 and 3.2) assumes that simulated events
have a fixed beam energy. Section 3.3 deals with overcoming the beam energy dependence when deriving
the corrections.

3.1 Compensation Weights

Each event is associated with a set of Nlay layer energy deposits (E rec
1 , ... , E rec

Nlay
), one per calorimeter

layer, representing a point in an N-dimensional vector space referred to below as the space of layer
energy deposits. They are reconstructed energies as defined in equation 1.

For each event i, there is also an ideal set of Nlay coefficients that would re-weight each reconstructed
energy deposit in layer L to the true deposited energy (known in Monte Carlo):

wideal
L,i = E true

L,i /E rec
L,i . (6)

Erec
L,i (E true

L,i ) is the reconstructed (true) energy deposited in the Lth layer in the ith event.
The task is to find a set of weights wL that as closely as possible approximate the ideal weights. In

general, for each layer L, the weight is an Nlay-dimensional function of the layer energy deposits.
It is desirable to reduce the number of dimensions that the weights depend on, while still capturing

a large amount of event fluctuation information and maintaining a good separation between events with
different content of invisible energy. This is achieved through the principal component analysis.

The Nlay-dimensional covariance matrix of the layer energy deposits is calculated as

Cov(M,L) = 〈Erec
M Erec

L 〉−〈Erec
M 〉〈Erec

L 〉 , (7)

where

< E rec
M Erec

L > =
∑i Erec

M,iE
rec
L,i

Nev
and < E rec

M > =
∑i Erec

M,i

Nev
. (8)

The sums are performed over all the Nev events in the sample.
A new orthogonal basis in the space of layer energy deposits is derived. It consists of the eigenvectors

of the covariance matrix. The coordinates of the point in the Nlay-dimensional vector space corresponding
to an event i can then be expressed in the new eigenvector basis as:

Erec
M = ∑

eig
α rec

M,eigErec
eig , (9)

where αM,eig is the matrix that performs the rotation to the new basis.
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Projections of events along the covariance matrix eigenvectors represent independent fluctuations.
The variances of those fluctuations are given by the corresponding eigenvalues. The eigenvectors are
put in descending order according to their eigenvalues, meaning that the first eigenvectors determine the
directions along which most of the event fluctuations take place.

Exploiting this property, weights are derived as a function of an N-dimensional subspace of the Nlay-
dimensional space of layer energy deposits, spanned by the first N eigenvectors. In the absence of an
analytic formulation, the layer weights wL are estimated by Monte Carlo sampling: multi-dimensional
cells are built, partitioning the N-dimensional vector space along the directions of the base eigenvectors.
In general, these cells are multi-dimensional hyper-cubes. They are referred to as bins below.

For each bin k one defines the weight as the average of the ideal weights of equation 6:

wk,L = < E true
L,i /E rec

L,i >k =
1

Nev,k
∑

i

E true
L,i /E rec

L,i (10)

where the summation is performed for the Nev,k events in the bin.
If each event has a weight pi

4), the average is modified accordingly:

wk,L = < E true
L,i /E rec

L,i >k =
∑i piE true

L,i /E rec
L,i

∑i pi
. (11)

3.2 Dead Material Corrections

The energy loss in non-instrumented (dead) material between the LAr and the Tile calorimeters is ex-
pected to be the largest dead material effect [16] in the reconstruction of the pion energy. The LC
technique is used also for correcting for this loss (see section 3.2.1).

Additional dead material losses (e.g. due to material in front of the calorimeter) give rise to smaller
corrections. For these effects, a parametrization of the energy loss as a function of the best estimate of
the pion energy is used (see section 3.2.2) .

3.2.1 Dead Material between LAr and Tile

A similar technique to the calorimeter compensation is developed for the LAr–Tile energy loss. Each
event is associated with a point in the layer energy deposit vector space as explained in the last section.
It also has a true total energy lost in the dead material between LAr and Tile: E DM,true

LArTile (i).
The dead material correction, EDM

LArTile, for each event i, is derived as an T -dimensional function of
the layer energy deposits. In general, the subspace chosen for deriving the dead material correction and
its dimension T can be different from the one chosen for compensation, both in content (spanned by
different eigenvectors) and in dimension (T can be different from N). The value of E DM

LArTile is estimated
by Monte Carlo sampling with the same bin definition as in section 3.1. For any T -dimensional bin k
one defines:

EDM
LArTile,k = < EDM,true

LArTile,i >k (12)

where the average is performed for the events in that bin.

3.2.2 Other Dead Material Corrections

While the energy losses between the calorimeters dominate, there are still other regions where dead
material losses can occur. These are losses located in the material upstream of the LAr calorimeter,
between the LAr presampler and the first LAr layer and energy leakage beyond the Tile Calorimeter.

4)For instance, to equalize the number of events for all data sets.
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Figure 1: Mean Dead material losses other than those between the LAr and Tile calorimeters as a function
of the beam energy. Statistical errors are smaller than the markers. Filled circles indicate the mean loss
obtained from Monte Carlo simulation. The line indicates a parametrization to interpolate between the
beam energies.

To compensate for these losses the mean energy loss was determined as a function of beam energy
and the resulting data points were fitted using a suitable functional form:

EDM
other(Ebeam) =

{

C1 +C2
√

Ebeam if Ebeam < E0
C3 +C4 (Ebeam −E0) otherwise, (13)

where E0 = 30000 MeV. The fit can be seen in figure 1. The resulting fitted parameters are

C1 = (−75±31) MeV C2 = (5.78±0.22)
√

MeV C3 = (931±5) MeV C4 = 0.01435±0.0001
(14)

3.2.3 Total Dead Material Correction

The total dead material correction needed in equation 5 is derived from summing the two contributions
derived in sections 3.2.1 and 3.2.2

EDM
tot,k(E) = EDM

LArTile,k +EDM
other(E) (15)

where

• k is the bin in the appropriate T -dimensional space of layer energy deposits used to build the LC
estimate for the energy loss in the dead material between LAr and Tile obtained from formula 12
and

• E is the best estimate for the total deposited pion energy used to estimate Ebeam in formula 13 (also
see section 3.3).

3.3 Beam Energy Dependence

If calculated from simulated pion samples generated at different beam energies, the average weight func-
tion defined in equation 10, the dead material corrections obtained in equation 12, and the associated
eigenvectors are in principle different.
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In order to overcome such a dependence, a single set of eigenvectors and a single set of look-up tables
(one for each calorimeter layer for weighting and one for dead material corrections) are constructed using
all available samples. These sets are used to derive the corrections to any data or Monte Carlo sample
under study.
The procedure can be also be used iteratively: the weighted estimate of the energy is used to make a
new choice of the correction tables until the returned value is stable. This can be coupled (or not) to
the iteration on the dead material corrections (see below) so as to obtain the best energy estimate. The
iteration cut-off is a tunable parameter.

For the LAr–Tile dead material correction the three dimensions of the look-up table are all shown
to scale with beam energy, i.e. a table determined at a given beam energy can be turned into one at a
different beam energy by scaling all the dimensions with the ratio of the two energies (see section 4.5).
The look-up table for LAr–Tile dead material corrections can then be obtained as a function of the beam
energy normalized components of the eigenvectors i.e. each event coordinates are expressed as

Erec,norm
M = E rec

M /E = ∑
eig

α rec
M,eigErec

eig/E, (16)

where the variables have the same meaning as in equation 9 and E is the best estimate of the beam energy
of the simulated pion in that event (see below).

An iteration technique is used for determining all the dead material corrections. At each step the best
estimate of the reconstructed energy, Ecorr

tot , after all corrections, is used to set

• the scaling factor 1/E (equation 16) for the LAr–Tile correction and

• the best pion energy estimate in the parametrization for the other dead material corrections.

This allows one to re-calculate the dead material corrections and to get a new E corr
tot estimate by choos-

ing a new two-dimensional bin in the look-up table and getting a new value from the parametrization. In
the initial step Ecorr

tot is just the pion energy after compensation weights are applied.

3.4 Using the Corrections

The weights can the be applied to any data set by taking the following steps:

• Associate each event to a bin in both the N and T -dimensional spaces defined in sections 3.1
and 3.2 by expressing its energy deposition vector in the new eigenvector basis derived from the
simulated events.

• Extract the corrections for the energy of each given layer from the look-up tables defined for
compensation weights and dead material estimates. Apply them according to formulas 5 and 15.

• Use the iteration for dead material corrections as discussed in section 3.3.

4 Implementation

Five steps are necessary to derive the compensation weights and dead material corrections from simulated
Monte Carlo samples:

• Define the samples for weights generation and performance study (section 4.1).

• Provide the energy deposited in each layer at the electromagnetic scale (section 4.2).

9



• Calculate the covariance matrix (section 4.3).

• Extract the eigenvectors and eigenvalues (section 4.4).

• Build the compensation weights and dead material corrections look-up tables (section 4.5).

The steps for applying the corrections outlined in section 3.4 can the be followed.

4.1 Samples Definition

All the available “correction” Monte Carlo samples are used to build a “mixed” sample, which is input to
constructing the corresponding weight and dead material tables. In order to account for the beam content
mentioned in section 1, at each energy of the interval, a pion and a proton sample generated at that energy,
are considered. If the samples have different numbers of events, a sample-dependent weight is applied
to equalize them. Equalization weights are determined initially so that all pion and proton samples in the
interval are normalized to the same size before selection cuts. Given the proton contamination fprot at a
given energy, pion and proton events for each same-energy pair of samples are assigned a weight of fprot
and 1 - fprot, respectively. The resulting “mixed” samples constitute the global “mixed” sample.

A different choice of the pion–proton mix will result in a different “mixed” sample: weights can then
be derived for each available data set taking into account the measured values reported in table 1.

The pion and proton “signal” samples of table 2 are also paired in energy, normalized and mixed
with the same proportions as in the data as above to obtain a “mixed signal” sample on which to apply
calibration corrections and to compare with data.

4.2 EM Scale Energy Determination

The estimate of the energy deposited in each calorimeter layer derived in equation 1 is expected to
provide the correct reconstruction of the energy electromagnetically deposited in the calorimeters. The
weights are defined in formulas 10 and 11 with this assumption.

4.3 Calculation of Covariance Matrix

The layer energy covariance matrix Cov(M,L) (equations 7 and 8) is calculated using events from the
“mixed” sample. The full seven-dimensional covariance matrix is used i.e. N = Nlay = 7 (see section 3.1.)

In any given event a symmetric energy cut is applied on each layer energy such that the energy for
that layer is re-defined as E rec

M , if |E rec
M | > E thr

M , zero otherwise.
In this way the contribution to the covariance from a layer only containing noise is set to zero. The

energy threshold vector is

~Ethr(GeV ) = (σ(1), σ(2), σ(3), σ(4), σ(5), σ(6), σ(7)) (17)

where ~σ (GeV) = (0.032, 0.108, 0.03, 0.150, 0.039, 0.070, 0.042). The cuts were optimized to obtain
the best expected compensation performance on fully simulated Monte Carlo samples at 50 GeV.

4.4 Extraction and Interpretation of Eigenvectors and Eigenvalues

The covariance matrix Cov(M,L) is then diagonalized: the normalized eigenvectors and corresponding
eigenvalues are calculated for all the samples.

The directions of the eigenvectors are observed to be stable with beam energy and choice of physics
list.
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A physical interpretation of the eigenvalues and normalized eigenvectors can be obtained by looking
at figures 2 and 3 where the eigenvector components are calculated for a fully simulated pion sample
impinging at (η = 0.45,φ = 0) in the CBT04 setup.
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Figure 2: Eigenvector components for the seven layers of the ATLAS combined beam test for simulated
pions.

We find that:

• E rec
eig0 ≈ 1√

6(−2ELAr,middle +ETile,A +ETile,BC)

• E rec
eig1 ≈ 1√

2(−ETile,A +ETile,BC)

• E rec
eig2 ≈ 1√

3(ELAr,middle +ETile,A +ETile,BC)

• E rec
eig3 ≈ ETile,D

• E rec
eig4 ≈ ELAr,strips

• E rec
eig5 ≈ ELAr,presampler

• E rec
eig6 ≈−ELAr,back

So in more qualitative, but suggestive, way we can maintain that:

• E rec
eig0 ≈ “Difference between Tile and LAr”

• E rec
eig1 ≈ “Difference between Tile second (middle) layer and Tile first layer”

• E rec
eig2 ≈ “Total Energy”

• E rec
eig3 to E rec

eig6 ≈ “Individual layers”
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Figure 3: Eigenvector components for the seven layers of the ATLAS combined beam test for a simulated
mix of protons and pions with 45% proton contamination (lower plot).

4.5 Preparation of Look-up Tables for Compensation Weights and Dead Material Cor-
rections

Look-up tables for compensation weights and dead material correction are derived using the information
from the covariance matrix. A set of eight tables is built: one for each layer of the calorimeter and one to
derive the dead material correction between Tile and LAr. For compensation weights, the wk,L functions
defined in equation 11 are estimated in bins of the two-dimensional space spanned by the eigenvectors
corresponding to the two highest eigenvalues i.e. N = 2 (see section 3.1). Thus, each layer is associated
with a two-dimensional look-up table. For a given layer the average weights in each two-dimensional bin
are calculated using only the energy values that passed the cuts defined in section 4.3. The table has the
same number of equally spaced bins along the two dimensions: 128× 128. Weights for the presampler
layer of the LAr are not calculated, even if the presampler is kept in the covariance matrix. No weights
are applied to the energy deposited in the presampler layer, and energy deposited in the presampler itself
is taken as part up the upstream dead material losses.

For LAr–Tile dead material corrections, the average corrections defined in equation 12 are calculated
in bins of the two-dimensional space spanned by the eigenvectors corresponding to the first and third
eigenvalues i.e. T = 2 (see section 3.2.1). Correction tables are derived from a same-size 128×128 bins
look-up table.

In addition the proton weights and corrections are corrected by the factor Ebeam
Ebeam−mproton

for the fact that,
for a proton, the sum of the total true deposited energy in the calorimeter is Ebeam - mproton.

For both look-up tables, the coordinates of the vector of energy deposits in the chosen eigenvector
basis are obtained according to equation 9. Typical compensation weight tables for pion–proton mixed
samples are shown in figures 4 and 5: they illustrate the look-up tables for the second (middle) layer of
the LAr calorimeter and for the first and second layer of the Tile calorimeter for a pion–proton mixed
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sample with 45% contamination.
A clear separation is achieved between regions dominated by electromagnetic events (average weights

close to unity) and those where hadronic events are predominant (average weights significantly larger
than unity). The functions depend on the layer being described.

The dead material look-up table is shown in figure 6 for a pion–proton mixed sample with 45%
contamination. The plot shows the distribution of the rescaled dead material energy as a function of the
rescaled event coordinates. The different dead material fractions are clearly separated. In addition, the
samples at different energies behave very similarly as a function of the re-scaled variables.

4.6 Correcting the Data

The corrections to the data can be applied as described in section 3.4. In order to derive the total energy
before corrections (corresponding to equation 2) at the electromagnetic scale, a series of additional inter-
calibration factors are applied to the energy depositions in the data events.

The LAr calorimeter energy depositions are scaled by a factor 1.03 derived from studies of the re-
sponse to electrons. A re-analysis of TileCal 2002 beam test data results in scaling each TileCal energy
deposition by a factor 1.018 to correct the pC to GeV calibration constant. No additional inter-calibration
factors are applied. In addition, Monte Carlo for energies up to 100 GeV were simulated with an erro-
neous overall Birks’ law factor, pushing down the response in the LAr calorimeter by a few per cent. To
compensate for this, and additional overall factor of 1.0176 is applied.

5 Method Validation on Monte Carlo

The weighting technique is validated on Monte Carlo samples in separate steps:

• Reconstruct the true deposited energy in the calorimeters (compensation validation).

• Reconstruct the full energy of the incoming particles, including dead material corrections, and
quantify the performance in terms of linearity and resolution.

The performance is evaluated in terms of bias and resolution. The weights and dead material cor-
rections are derived from the “correction samples” and applied on the statistically independent “signal
samples”. The results in this section are derived for pions only.

5.1 Compensation

The event-by-event difference Eweighted
tot −E true

tot (calo) is considered, where E true
tot (calo) is the true total

energy deposited in the calorimeter. The bias is defined as the average value < E weighted
tot −E true

tot (calo) >

and the resolution is obtained by calculating the standard deviation σ (E weighted
tot −E true

tot (calo)).
The performance of the LC technique is compared to a simple calibration scheme (called fcomp in

the following) which uses beam energy information: each event in the sample is weighted with the same
factor fcomp = < E true

tot >/< E reco
tot > where < E true > (< E reco >) is the average true total (reconstructed)

energy deposited in the given sample in the whole calorimeter, but not in the dead material. The fcomp cal-
ibration scheme provides a reference/scale to which the improvement in resolution of the LC weighting
can be compared.

The results of the validation procedure are shown in figure 7. The bias is zero by construction for the
fcomp weighting. The LC weighting mostly gives a slight positive bias of about 0.6%. At the edges of
the energy range studied, the bias instead turns slightly negative.

The resolution improvement increases with beam energy. It is 10% at 50 GeV and 20% at 230 GeV.
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Figure 4: Weight table for simulated pion–proton mixed events (45% proton contamination) in LAr third
(middle) layer and Tile first layer.
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Figure 5: Weight table for simulated pion–proton mixed events (45% proton contamination) in Tile
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5.2 Dead Material Corrections

Figure 8 again shows the bias of the weighted energy, and also the bias of the dead material corrections.
Contrary to the weighted energy, the LAr–Tile dead material correction mostly has a slight negative bias,
with a positive bias at low energy. This cancels out most of the bias from the weighting.
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Figure 8: Bias (reconstructed energy minus true deposited energy, divided by beam energy) for the three
individual corrections: Weighted calorimeter energy, correction for dead material between the liquid
argon and Tile calorimeters, and other dead material corrections. Lastly, the bias of the final reconstructed
energy, which is the sum of the three.

5.3 Linearity and Resolution

The performance for the fully corrected energy reconstruction is finally assessed in terms of linearity
with respect to the beam energy and relative resolution.

The reconstructed energy distribution is fitted with a Gaussian distribution in the interval (µ - 2σ , µ
+ 2σ ), where µ and σ are the mean value and the standard deviation, respectively.

The mean value Efit and the standard deviation σfit of the fitted Gaussian are used together with the
beam energy Ebeam to define the linearity and the relative resolution:

• the linearity is Efit/Ebeam as a function of Ebeam, while

• the relative resolution is σfit/Efit as a function of Ebeam.

Both linearity and relative resolution are derived for the energy distribution at four stages:

• at the electromagnetic scale,

• at the compensated scale, i.e. after applying the compensation weights,
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• after compensating weighting and application of dead material correction for losses between LAr
and Tile, and

• after compensation weighting and all dead material corrections.

The evolution of the energy distributions after applying the subsequent corrections are shown in
figures 9 and 10. Figure 11 shows linearity and relative resolution for the (20 GeV, 180 GeV) interval for
fully simulated pions.

The linearity plot shows that the electromagnetic scale is reconstructing only two-thirds of the beam
energy. The compensation weights push the recovery to about 90% of the beam energy. Finally the dead
material corrections allow beam energy to be recovered within 1% for pion energies above 40 GeV and
within 3% for lower energies 5).

The relative resolution improves when applying the different correction steps. At high beam en-
ergies (above Ebeam = 100 GeV) the contribution of the compensation weights to the improvement in
resolution has the same magnitude as that of the LAr–Tile dead material corrections. At lower beam
energies dead material corrections account for about 70% of the relative resolution improvement down
to about Ebeam ' 30 GeV. Below Ebeam ' 30 GeV all the corrections account for a similar fraction of
the improvement: other dead material corrections than those for LAr–Tile account for about 20% of the
resolution improvement, they are marginal above that threshold.

6 Results

The distributions of the fundamental inputs to the calibration corrections are compared in data and Monte
Carlo. The weights and dead material corrections derived from Monte Carlo “mixed correction” samples
are finally applied on both data and “mixed signal” Monte Carlo samples.

6.1 Data to Monte Carlo Comparisons

The pion–proton “mixed signal” samples are used to compare data and Monte Carlo for the distribution
for the first three components of the layer energy vector along the basis of covariance matrix eigenvectors
as defined in section 4.4. Figure 12 shows such a comparison for a proton contamination of 45%. Very
good agreement is obtained between data and simulation.

The normalized energy distributions (in unit bins of energy and events) for data and Monte Carlo are
compared for all energies in figures 13 and 14. The four stages of corrections are shown. The quality
of the initial description of data by Monte Carlo is not modified by the application of the compensation
weights and dead material corrections (also see section 6.2).

5)The apparent discontinuity between the results at energies below 150 GeV and those above might be due to a geometry
change in the description of the beam test setup: three cm of aluminum were included in the Inner Detector system for energies
larger or equal than 150 GeV.
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Figure 9: Evolution of reconstructed energy distribution at the different correction stages mentioned in
the text: from electromagnetic scale to full dead material and compensation correction. The upper plot
shows the simulation of 20 GeV pions, while the lower plot features 50 GeV pions.
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Figure 10: Evolution of reconstructed energy distribution at the different correction stages mentioned in
the text: from electromagnetic scale to full dead material and compensation correction. The upper plot
shows the simulation of 100 GeV pions, while the lower plot features 180 GeV pions.
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Figure 13: Normalized energy distribution for Ebeam = 20 GeV (upper plot) and Ebeam = 50 GeV (lower
plot) after applying subsequent corrections for compensation and dead material effects. Data (filled
circles) are compared with Monte Carlo simulation (solid lines) .
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Figure 14: Normalized energy distribution for Ebeam = 100 GeV (upper plot) and Ebeam = 180 GeV
(lower plot) after applying subsequent corrections for compensation and dead material effects. Data
(filled circles) are compared with Monte Carlo simulation (solid lines) .
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6.2 Linearity and Resolution

The linearity and relative resolution are extracted at all energies for both data and “mixed signal” Monte
Carlo samples. Figure 15 shows that weighting recovers from 80% to 90% of the incoming beam energy.
The dead material between LAr and Tile accounts for an additional 5% to 8%. The remaining dead
material corrections allow linearity to be recovered within 3% (within 1% above 20 GeV). Weighting
results are more important at high energies. Dead material effects play a more significant role at low
energies particularly at 20 GeV where other corrections than LAr–Tile dead material are important to get
to within 3% of the beam energy.

Figure 16 shows that the relative resolution is improved by about 17% to 22% in data when evolving
from the electromagnetic scale to the fully corrected energy scale. A similar relative improvement is ob-
tained in the Monte Carlo expectations: from 17% to 29%. The relative resolution is however smaller in
Monte Carlo than in data: the discrepancies, at each correction stage, vary between 6% and 24% depend-
ing on the energy. The discrepancies in the shape of the total energy distribution are more pronounced at
lower energies and they are already present at the electromagnetic scale (see figures 13 and 14).

The effect of the calibration technique on the energy reconstruction can be explored by considering
the following double ratios:

DRatioLin =

(

Efit,data
Efit,MC

)

rec
/

(

Efit,data
Efit,MC

)

corr
(18)

DRatioRes =

(

(σfit/Efit)data
(σfit/Efit)MC

)

rec
/

(

(σfit/Efit)data
(σfit/Efit)MC

)

corr
(19)

They represent the variation in the data-to-Monte Carlo ratio when corrections are applied to bring
the reconstructed energy from the electromagnetic (rec) scale to the fully corrected hadronic (corr) scale.
The ratio is considered both for the linearity and for the relative resolution as defined in section 5.3. The
deviation of the double ratio from unity is a measure of the effect of the weighting technique on the
description of the data by the simulation.

Figure 17 shows the evolution of the double ratio at three different stages of energy correction. The
double ratio for linearity and resolution are consistent with unity within 0.7% and 5%, respectively.

For linearity such changes are of the same order of magnitude as the discrepancies between data and
Monte Carlo at the electromagnetic scale: the agreement between data and Monte Carlo simulation is
the same for all correction stages. This means that the Monte Carlo is able to predict the corrections that
should be applied on the data. The ability of the Monte Carlo to reproduce the data at the electromagnetic
scale (i.e. before any correction) seems to be the most critical limiting factor. The non-statistical nature
of the fluctuations in the double ratios is affected by systematic effects such as the details of the peak
determination in fitting and the different levels of proton contamination at different energies.

The sensitivity of the results to the assumed proton fraction at each beam energy was estimated by
varying the fraction used to calculate the corrections. With the assumed fraction adjusted up or down
one standard deviation of the TRT measurement, the relative variation in linearity and resolution in data
and Monte Carlo was found to be of the order of 1% for Ebeam = 20 GeV and 50 GeV and less than 0.5%
for other energies.

For the relative resolution the changes are small, if compared with the discrepancies at the (rec) scale:
the discrepancies do not get worse when the corrections are applied to the data. From preliminary studies
the new Geant4 version (4.9) is able to provide a better description of the resolution in the data and it
should be used for future analyses.
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Figure 15: Data and Monte Carlo “mixed” samples are compared for linearity at all stages of the correc-
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the data-to-Monte Carlo ratio. See text for details.
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Figure 16: Data and Monte Carlo “mixed” samples are compared for relative resolution at all stages of
the corrections. The upper plot shows the superposed absolute values, while the lower plot shows the
evolution of the data-to-Monte Carlo ratio. See text for details.
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Figure 17: Double ratios of data to Monte Carlo for response and resolution as defined in equations 18
and 19, at three different correction stages, as functions of beam energy. The uncertainties on the elec-
tromagnetic and corrected ratios are assumed to be fully correlated.
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7 Conclusions

An energy calibration technique was developed to deal in a coherent manner with both compensating
the response to hadrons and their most significant dead material losses in a segmented calorimeter. The
technique is based on the sensitivity of the correlation between the deposited energies in the different
calorimeter layers to hadronic and electromagnetic deposits.

The calibration technique was applied to the energy reconstruction of pions impinging on a subset
of the central ATLAS calorimeters during the ATLAS combined beam test in 2004. When taking into
account the beam composition, linearity is recovered within 2% for Ebeam > 30 GeV (3% overall) and
relative resolution is improved by 17 to 22%. Consistency with the expectation from Monte Carlo studies
is good for both the linearity and the percentage improvement in relative resolution. The absolute value
of the relative resolution (after all corrections) is larger in data compared to Monte Carlo by 6% to 24%.

The discrepancies between data and Monte Carlo are inherited from the reconstructed energy at the
electromagnetic scale and they are not altered significantly when applying the calibration. Additional
improvement in the data description by Monte Carlo simulation can help to fulfill the expected absolute
value for the relative resolution.

References

[1] C. Leroy and P. Rancoita, Physics of cascading shower generation and propagation in matter:
Principles of high-energy, ultrahigh-energy and compensating calorimetry, Rept. Prog. Phys. 63
(2000) 505.
C. W. Fabjan and F. Gianotti, Calorimetry for particle physics, Rev. Mod. Phys. 75 (2003) 1243.

[2] R. Wigmans, Calorimetry : Energy Measurement in Particle Physics), (Oxford:Clarendon Press,
USA, 2000).

[3] D. E. Groom, Energy flow in a hadronic cascade: Application to hadron calorimetry, Nucl. Instrum.
Meth. A 572 (2007) 633 [arXiv:physics/0605164] and references therein.

[4] N. Nakajima, H. Miyata, A. Sanchez, H. Ono and S. Iba. Correlation Matrix Method for
Pb/Scint Sampling Calorimeter in Proceedings of the 2005 International Linear Collider Work-
shop, 18th-22nd March 2005, Stanford, California (USA) and references therein. Available at
http://www.slac.stanford.edu/econf/C050318/papers/1023.PDF.

[5] A. Gupta, F.S. Merritt and J. Proudfoot, Jet Energy Correction Using Longitudinal Weighting, ATL-
COM-PHYS-2006-062.

[6] B. Di Girolamo et al., Beamline instrumentation in the 2004 combined ATLAS testbeam, ATL-
TECH-PUB-2005-001, ATL-COM-TECH-2005-001 (CERN,2005).

[7] C. Amsler et al., The Review of Particle Physics, Physics Letters B667, 1 (2008).

[8] T. Petersen et al., Inner detector electron ID, presentation at the ATLAS Trigger and Physics
week, 7th November 2007 available at http://indico.cern.ch/materialDisplay.py?

subContId=4&contribId=17&sessionId=8&materialId=slides&confId=20504e̊lax .

[9] H. Hakobyan, M. Simonyan, T. Carli and A. M. Henriques-Correia, Measurement of Pion and
Proton Longitudinal Shower Profiles up to 20 Nuclear Interaction Lengths with the ATLAS Tile
Calorimeter, ATL-TILECAL-PUB-2007-008.

29



[10] S. Agostinelli et al., Geant4-A simulation toolkit, Nuclear Instruments and Methods in Physics
Research A 506 (2003) 250-303,
J. Allison et al., Geant4 developments and applications IEEE Transactions on Nuclear Science 53
No. 1 (2006) 270-278.

[11] G. Folger and J. P. Wellisch, String Parton Models in Geant4, in Proceedings of Computing in High
Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California and references therein. Avail-
able at http://www.slac.stanford.edu/econf/C0303241/proc/papers/MOMT007.PDF.

[12] M. P Guthrie, R.G. Alsmiller and H.W.Bertini, Nucl. Instr. and Meth. 66 (1968) 29;
H.W. Bertini and P. Guthrie, Nucl. Phys. A 169 (1971) 670;
N. V. Stepanov, Preprint: ITEP-55 (Moscow) 1988.

[13] See https://twiki.cern.ch/twiki/bin/view/Atlas/TopologicalClustering.

[14] J. E. Jackson, A User’s Guide to Principal Components (p.505), (Newark, NJ: Wiley, USA, 2005).

[15] See
http://www.nevis.columbia.edu/~lelchuk/DeadMaterials/M.LeltchoukJan20

04.pdf

http://www.nevis.columbia.edu/~lelchuk/CalibrationHits /P.Loch_Note.txt

Notes collected at http://www.nevis.columbia.edu/~lelchuk/CalibrationHits.

[16] See A. Maslennikov and G. Pospelov Dead material Corrections Status, talk presented at the
Calorimeter Calibration workshop, 5th-8th September 2006, Costa Brava available at
http://indico.cern.ch/materialDisplay.py?contribId=49&sessionId=s4

&materialId=slides&confId=a062339.

30


