Particle Accelerators, Vol. 63, pp. 79-103 © 1999 OPA (Overseas Publishers Association) N.V.
Reprints available directly from the publisher Published by license under
Photocopying permitted by license only the Gordon and Breach Science
Publishers imprint.

Printed in Malaysia.

FREQUENCY MAP ANALYSIS OF
AN INTENSE MISMATCHED BEAM IN
A FODO CHANNEL

A. BAZZANI#* M. COMUNIAN? and A. PISENT®

3INFN Sezione di Bologna and University of Bologna, Via Irnerio,
46, I-40126, Bologna, Italy; YINFN Laboratori Nazionali di Legnaro,
Via Romea 4, I-35020, Padova, Italy

(Received 14 July 1998; In final form 18 November 1998)

The comprehension of the mechanism that leads to small beam losses is one of the key
points for the feasibility of the next generation of high power linacs. In this paper we
study the nonlinear dynamics of the beam halo particles in a FODO channel, by using
the Frequency Map analysis. This tool provides a picture which allows to detect the
regular, resonant or chaotic regions also in the phase space for a mismatched beam in
two degrees of freedom. Moreover we introduce a criterion for single particle stability
and we make comparisons with tracking results.
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1 INTRODUCTION

Proton linacs with beam intensities between 10 and 120mA, for a
beam power up to 100 MW, are under study in various laboratories,
for applications that go from fundamental physics to energy produc-
tion and nuclear waste transmutation.' These performances will repre-
sent a big step forward with respect to the present linac technology,
and one of the most critical aspects is the control of beam losses. Typi-
cally, losses lower than 1 W/m are needed to allow hands on main-
tenance in case of fault.> Moreover a significant reduction of beam
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losses simplifies the problem of the stocking of activated parts and
causes a smaller environmental impact.

These losses are associated with the presence of a beam halo, popu-
lated by very few particles but with a radius significantly larger than
the beam root mean square (rms) radius up to the bore hole. A great
theoretical effort is presently devoted to the understanding of halo
formation.*~®

A realistic simulation of an intense beam in a linac, able to follow
108-107 particles in a self-consistent way, taking into account the var-
ious scattering processes, the interaction with the vacuum pipe, and
whatever happens in a real linac, is a too formidable task even for
modern computers. Some simplifications are generally introduced, in
order to determine more handy systems that include anyway the most
relevant physical aspects. Many theoretical and experimental studies
have concentrated on the two degrees of freedom problem determined
by a collisionless continuous beam propagating in a FODO focusing
channel. This problem involves many features of the three degrees of
freedom system which describes the propagation of a bunched beam
in a linear accelerator.

The space charge forces, acting on single particles, mainly determine
this behavior, due to the nonlinear forces. The problem can be simpli-
fied considerably considering the space charge forces as generated by
the core of the beam (particle—core model), and calculating the core
evolution using the method of the equivalent KV (Kapchinsky Vladi-
mirsky) beam.” Leaving the self-consistency, the single particle prob-
lem can be treated using the dynamical systems tools. In particular,
particles immediately outside the core can reach big amplitudes and
form the halo due to nonlinear resonances and chaoticity in the phase
space. The mechanism for the spill of a few particles from the core to
the halo could be, for example a small nonlinearity of the space charge
force inside the beam (deviation from KV distribution,’ image charges
on the pipe. ..) or a low probability scattering process.

In this paper we have studied the beam dynamics in a FODO
channel using the particle-core model. We have faced a specific
problem: many simulations show that the halo formation is enhanced
by the mismatching of the beam core. In this case the Hamiltonian
system associated to the betatronic motion of the test particle is not
periodically dependent on the longitudinal coordinate due to the
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non-periodicity of the envelope of the beam. The direct plot of the
phase space obtained by using a Poincare section does not allow to
distinguish regular orbit from chaotic ones. In this paper we use the
method of the frequency map analysis to represent the phase
space.®71° This method has been applied to celestial mechanics® and
accelerator physics,!! 1 to study the stability of the orbits, and turns
out to be very efficient to detect the location of resonances and the
chaotic regions. Moreover it is not affected by the non-periodicity of
the Hamiltonian systems and can be extended to two or three degrees
of freedom systems.

To apply the frequency map analysis in a linear magnetic lattice we
assume that the FODO cells repeat identically, whereas small differ-
ences are unavoidable in the real machines. These differences could be
treated as random perturbations of an average dynamics and the
informations provided by the frequency map (FM) are useful for a
statistical analysis.

In Section 2 we describe the particle—core model, we introduce the
equation of motion for a test particle, the periodic beam envelope and
the envelope breathing modes.

In Section 3 we describe the focusing channel used for this study.

In Section 4 we describe the method of the frequency map analysis
and we discuss its application to our case.

In Section 6 we show the numerical results of our FM analysis of
the two degrees of freedom system, describing a beam propagating in
a FODO cell. We compare the FM results with tracking, and there-
fore, choosing the initial points on the basis of the FM, we show a
systematic study of the maximum particle amplitude as a function of
envelope mismatch.

2 THE PARTICLE-CORE MODEL

An intense proton beam propagating in an accelerating structure can
generally be treated as a Poisson—Vlasov problem. The particle dis-
tribution generates a field (self-field) that can be computed by solving
the Poisson equation in the beam frame, and the distribution evolves
according to a Vlasov equation, in which the superposition of external
fields and self-fields is introduced. A solution of such a system is
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called self-consistent beam evolution. This approach is approximated,
since collisions and effects of the complete electromagnetic system are
neglected, but it is generally adequate for proton linacs.

However, when we look at very small beam losses, it is reasonable
to assume that these losses are associated with the irregular behavior
of a few particles in the field generated by the regular particles, which
form the “core” of the beam. This distinction between core and test
particles is clearly a short cut, and gives solutions that are rigorously
not self-consistent, but are practically correct if irregular particles are
a few.

This approach gives a single particle system and the possibility of an
accurate analysis of the nonlinear behaviour of the particles, using all
the tools offered by the Hamiltonian mechanics. This method assumes
that there exists a self-consistent periodic distribution for the beam
propagating in a periodic focusing channel, like the KV distribution.
For this distribution the charge density inside the beam is uniform and
the single particle equations are:

£

1
"+ Ki(s)x; — ——
g ](S) / (dl + ﬁz)flj

=0, j=12 (1)

where s is the longitudinal coordinate, ' indicates the derivative

respect to s and x; are the single particle transverse coordinates, with
x1 horizontal and x, vertical displacement with respect to beam axis;
& =[e/(meo)l[l/(mc>B~*)] = I)(I.B3°4%) is the space charge parameter,
with / beam current (peak current for a bunched beam), I.=
7.8 x 10® A proton characteristic current, § and + relativistic factors;
K;(s) is the external focusing, and for a pure quadrupole channel
Ki(s) = —K>(s) = K(s). Moreover we define
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with a; = 2, /(x}> semiaxis of the elliptical beam cross section, where
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(i.e. the test particle is inside the beam core) or x positive solution of:
xt X3
2+ 2 =
1tXx a+Xx

3)

otherwise. It should be noted that for large amplitudes the beam ellip-
ticity can be neglected (a;~ay); therefore from Eq. (3) 4y =dr =
\/x3 4+ x3. As a result the space charge force in Eq. (1) reduces to the
well-known &£x;/[2(x3 + x3)).

The forces inside the beam are linear, and the equations of the
envelope can be found with the substitution in (1) of the Floquet func-
tions x; = a;(s) exp(i); (s)) with

¥ ==, 4

where the constants ¢; are the emittances. The resulting envelope equa-
tions are:

d + Ki(s)gy— ——~ L <o, (5)

These equations, together with the single particle equations (1), give a
coherent description of the dynamics and a self-consistent solution of
the Poisson—Vlasov problem.

Equations (5) can be applied to more general cases than the KV
distribution; indeed they are valid for any distribution if interpreted
statistically, with |/(x?) = @;/2 and € = 16((x?)(p}) — (x;p))?). How-
ever for distributions different from a KV they are not a closed set of
equations, since the space charge forces are not linear and the rms
emittances are not constant, but determined by independent equations
involving higher order momenta. Nevertheless for many distributions
of practical interest the emittance can be considered constant or as an
adiabatic invariant, and the envelope equations (5) can be used as a
good approximation of the rms behavior of the beam.!>'® We shall
adopt this point of view.

In a focusing channel with period L one is interested in taking
the initial beam conditions in order to follow the periodic (matched)
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solution of the envelope equation a; (s 4 L) = as), since this allows the
regular transport of the beam for an infinite (in principle) number of
periods. The phase advance per period can be calculated from Eq. (4)
according to:

s+L G/dS

2y =+ D - = [ L (©)

the ratio v;/1,, with v; phase advance corresponding to £ =0, called
tune depression, gives a measure of the importance of the space charge
in a specific case.

If d(s) is periodic the single particle equations (1) are periodic and
the Poincaré sections can be used for the analysis of the orbits. But in
a real machine the beam will be matched to the channel with an error,
and the envelope will be a,(s) + 6(s), with 6(s+ L) # &(s). In this case
the equations of motion are not periodic and the Poincaré method is
not well-grounded. In the next section we shall discuss a possible solu-
tion to this problem.

If the deviation from periodicity is small, it can be calculated from
the linearized equations, giving rise to envelope modes that enter
single particle dynamics. In particular if the focusing is smooth (v; < 1,
Jj=1,2), one can directly calculate the equilibrium envelopes

aj = sL (7)

2
2my;

and the zero space charge tunes:

2
— 2 iLi 8
o \/yj T (a1 + a)a; ®)

The envelope modes are solution of the system

8!+ Hyty + h(61 + 62) = 0. 9)
with H,; = ng + 3yj2 and

(10)
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The mode eigen-frequencies are:

H +H Hy — Hy\?
o = —1—J2r—2+hi\/<%) +h? (11)

and the corresponding eigenvectors are

§_ = (—sing, cos¢), &, = (cos ¢, sin ), (12)
with
1 2h
o= Earctanl_ll—_j_]—2 (13)

mode mixing angle. In particular, if the focusing strength is equal in
the two directions, the mixing angle is 7/4 (taking the limit of Eq. (13)
for positive H; — H,) and the two modes, called respectively odd and
even envelope modes,'” have frequencies a_ = /3 +30% and oy =
\/2(12 + 1?). On the contrary if the difference in focusing strength is
large the mixing angle tends to zero. The lattices of practical interest
are smooth enough so that the two modes calculated in smooth
approximation can be recognized.

3 ANALYSIS OF A FODO

Our reference focusing is the FODO shown in Figure I; the geome-
trical lengths and the emittances €, = ¢, = 10~%m are kept constant.
In the following we vary &, Ky and Kp, corresponding to the two cases
listed in Table I. The consequent frequencies are in Table II, where v
are calculated with the usual matrix composition, and the other fre-
quencies in smooth approximation. The envelope mode mixing angle
is calculated according to (13).

These values are in the range considered for high intensity linacs;
for example if we consider a proton beam at 100 MeV, the case #1 cor-
responds to a normalized emittance of 0.5mm mrad, a gradient of
18 T/m and a beam peak current of 0.8 A (22 mA of beam current with
a bunch length of 10°). Strictly speaking a tune depression of 80%
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FIGURE 1 Geometry of the nominal FODO cell 1m long; the focusing function

K(s)=K,(s) = —K(s) is plotted, together with the matched enveiopes a; and —a, in
arbitrary units.

TABLE 1 Nominal cases

Case 13 Kr (m™?) Kp[m™2
1 107° 12 12
2 107 122 11.8

TABLE II Frequencies and mode mixing angles

Case Vor Vo2 v 2 a_ oy 4¢/m
1 0.168 0.168 0.136 0.136 0.29 0.31 1.0
2 0.179 0.165 0.145 0.129 0.28 0.32 0.34

does not correspond to a space charge dominated beam, but it is in the
range of tune shift values interesting for the particle in core analysis;
indeed in such a case the rms emittance of the beam, calculated with a
multiparticle code, is not affected by the space charge and the emit-
tance growth is negligible.

The tracking, which has been used for numerical simulations, is a
kick code, which integrates both the envelope equation (5) and the
single particle equation (1). Each element (quadrupole or drift space)
is divided into 10 segments and the nonlinear force due to space
charge is computed by means of a kick map which uses the envelope



FREQUENCY MAP ANALYSIS 87

amplitude at the center of each segment. The linear motion is com-
puted exactly.

We have checked the precision of our tracking by comparing it with
a Runge—Kutta of order four. We have computed the initial condi-
tions for the periodic envelope with the bisection method, using the
smooth approximation as an initial guess.

4 FREQUENCY MAP ANALYSIS

The analysis of the phase space by using the FM has been introduced
by Laskar®® to study the Hamiltonian systems in celestial mechanics.
More recently the FM has been used to study the betatronic motion in
hadron circular accelerators.!! '* The theoretical foundation of the
FM goes back to the KAM theory'®! which states the existence of a
regular mapping between the set of invariant tori of a symplectic map
M and the frequencies space. More precisely the KAM theory proves
the existence of a transformation 7 from the action angle variables
(6, 1) to the initial variables such that the iteration of the map M cor-
responds to a shift in the angle variables

—

Mo T(6,T) =T+ 7(I),T) (14)

where ' are the frequencies associated to the invariant torus of the
map M and have to satisfy some technical conditions (i.e. not too
close to resonant values). As a consequence the set of invariant tori is
the complement of a dense set that contains the resonant or chaotic
orbits. When the perturbation is small the measure of irregular orbits
is small too. We define the FM as the map which associates to each
invariant torus the frequencies 77 according to Eq. (14). If the map M
is linear, all the invariant tori have the same frequencies and the FM
reduces to a single point.

If we choose a transverse section of the phase space (i.e. a section
which intersects all the invariant tori in a single point) the FM turns
out to be a map from the points of the section and the space of fre-
quencies. There is no general procedure to find a transverse section for
a generic Hamiltonian system, but in the case of a perturbed system,
the transverse section of the unperturbed Hamiltonian is usually a
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good choice for the complete system. Then we consider a uniform grid
of points in the transverse section; in a region mostly filled by invar-
iant tori, the image of the grid points in the frequencies space given by
the FM is a smooth deformation of the initial grid since almost all the
points belong to invariant tori. Of course if we reduce sufficiently the
grid step, at a certain scale we can detect the effect of resonances or
chaotic orbits.

The numerical computation of the frequencies ¢/ uses an algorithm
proposed by Laskar. Each initial point is iterated N-times by applying
the map M and the projections of the orbit on the coordinate planes
(x;, p;) are considered. In the case of a regular orbit (i.e. an orbit which
belongs to an invariant torus) the projections are a discrete sampling
of a quasi-periodic signal and their Fourier transform contains the
integer combinations of a finite number of frequencies. By using the
Hanning filter and an analytical interpolation of three points around
the maximal value of the FFT it is possible to achieve a precision in
the position of main frequency which scales according to 1/N* with
the iteration number,'* if the distance between the relevant frequencies
is > 1/N. As a consequence it is possible to get a high precision in the
measure of the main frequency with a relative small number of itera-
tions of the map M. If M is the Poincaré map of the transverse
dynamics in a particle accelerator and the nonlinearity are not too
strong, the main frequency in each coordinate plane is the betatronic
frequency associated.with that plane.

The numerical computation of the FM can be extended to the orbits
which belong to the resonant regions and to the chaotic regions. In the
first case we get the resonant values of the betatronic frequencies and
the phase locking phenomenon occurs in the whole resonant region;
the grid points in the resonant region are mapped on the resonant line
k- 7= n, where k and n are integers. In the second case the result of the
FM is very sensitive to the initial condition and the image of the grid
points in a chaotic region is a fuzzy cloud of points in the frequencies
space. As a consequence the computation of the tune gradient turns out
to be a good parameter to distinguish between regular and chaotic
orbits and it is possible to introduce a threshold for the gradient, which
could be related to the local diffusion velocity in phase space.

The previous properties allow to use the FM to get a global picture
of the phase space, where the effect of dominant nonlinear resonances
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FIGURE 2 Poincaré¢ map and frequency map for a matched beam propagating in
our nominal FODO; the initial conditions are restricted to the plane x, =p, =0 so that
we recover a one degree of freedom system and the parameters used in the simulations
are (=3 x107% Kp=K,=12).

is pointed out and the presence of chaotic regions is detected. Of
course the information of the FM becomes more precise, if we
increase the number of points in the grid and the number of iterations
for each point.

In Figure 2 we illustrate the FM analysis for a one degree of
freedom system: we consider the single particle dynamics in our refer-
ence FODO channel, taking the section x, =p,=0; the value of the
space charge parameter £ is enhanced to the value 3 x 107% in order to
amplify the effect of nonlinear terms. In the left part we show the
phase space of the Poincaré map and the stars on the positive x;-axis
are the uniform grid of 500 points where we have computed the
FM; the positive xj-axis is clearly a traverse section of the phase
space. In the right part of Figure 2 we plot the horizontal tune v as a
function of the initial condition and the image of the grid is shown by
the stars on the vertical axis: from the distribution of the points one
can distinguish among the regular orbits, the resonant regions and the
chaotic orbits.

Another advantage of the FM is the possibility of an extension to
an almost periodically time dependent Hamiltonian systems where a
Poincare section cannot be defined. For example we consider a sym-
plectic map M(X) periodically dependent on the parameters X. The
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parameters are changed at each iteration according to X—A+a,
where the frequencies & do not satisfy any resonant condition. In this
case the KAM theory proves the existence of a transformation T from
the action angle variables (5: T) to the initial variables, which depends
on the parameters X and such that

Mo T(O,IN) = T(0+ o), X+ a). (15)
All the frequencies 7, & do not have to satisfy any resonant condition
k-U+h-@=n (16)

where k and / are integer vectors.

Then we can define the FM by associating with each regular orbit
only the frequencies 7, which still characterize the orbit. When the
frequencies v; correspond to the main component of the FFT of the
projections of an orbit on the coordinate planes (x;,p;), the same
algorithm which has been previously described, can be applied. If we
choose a uniform grid of points in the transverse section of the phase
space, the grid points in the regular regions are smoothly mapped in
the frequencies space; the points in the resonant regions are mapped
on the resonant lines (16) since the phase locking still occurs; finally
the points corresponding to chaotic orbits give a fuzzy cloud of points
in the frequencies space.

In the case of the transverse dynamics of a FODO cell when we take
into account the space charge effect due to an intense beam lightly
mismatched, the Poincaré map turns out to be a two degrees of
freedom symplectic map which is modulated by the envelope fre-
quencies «_ and « . The domain {x; >0, x, >0, py=p,=0} is a
transverse section of the phase space, if the space charge effect is not
too big. The betatronic frequencies of the motion (v, v,) correspond
to the maximum in the Fourier transform in each coordinates planes
and the algorithm of the FM can be applied. This fact is illustrated in
Figure 3 where the FFT of the projection of a regular orbit on the
(x1, p1) plane is shown. We have considered the case #2 of our FODO
cell with a 30% mismatched initial condition for the beam envelopes;
the highest peak in the FFT corresponds to the horizontal betatronic
frequency, whereas the other peaks give all the linear integer combina-
tion between the betatronic frequencies and the envelope frequencies.



FREQUENCY MAP ANALYSIS 91

1000 T

1000
-1001

100

-2-13-1
0-33-2

1001

FFT
o
il

o

0.001 | E

0.0001

19'05 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Frequency

-

FIGURE 3 FFT of the projection of orbit on the coordinate plane (x;, pq) in the
case #2 when the beam envelopes are mismatched. The initial condition corresponds to
a regular orbit outside the beam core. The peaks are characterized by four integers (k;,
ko, h_, h) according to the linear combination k-7 + /& - & (only a few are indicated
in the plot, but 15 resonances are recognized by our code). The strongest resonance
(1,0,0,0) is the horizontal tune computed by the FM; the second frequency (0,1,0,0) is
determined by the FFT of the projection on the vertical coordinate plane (xy, p2).

5 NUMERICAL ANALYSIS

The FM analysis of the two nominal cases has been performed, taking
into account matched and mismatched initial conditions. We have
computed the FM for a grid of 14 400 points, uniformly distributed in

polar coordinates r = y/x? + x3, ¢=arctan(x,/x;), in the domain
{r<5, ¢ €[0,7/2], py=p,=0}. The amplitudes x; and x, are plotted
in matched beam envelope units, so that our domain corresponds to
10 times the rms beam envelope. Each orbit corresponds to 1024 itera-
tions of the Poincar¢ map and the accuracy in the betatronic fre-
quencies given by the FM algorithm has been evaluated by checking
the numerical stability of the results when we increase the iterations
number. For the regular orbit we have a numerical precision of
the order O(10™*). Then for each point we have evaluated the tune
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gradient according to

9E 4 5%) - 93]
A =" an

where 6X is a random vector of length 0.0175, which corresponds to
half the radial step. The threshold Ay, to distinguish regular and
chaotic orbits has been chosen by calculating the maximal value of the
gradient (17) in the region of the regular orbits in both the cases. The
value Avy,,=0.03 is provided by our analysis as it is illustrated in
Figure 4; the stability of the regular orbits has also been checked by a
tracking program. The relation between the diffusion in the phase
space and the different regularity criteria, which can be introduced by
the FM analysis or the evaluation of the Ljapounov exponent has
been studied in the paper®® for the circular accelerators. In the linear
accelerators, where we are interested to detect the diffusion of few par-
ticles in a limited numbers of iterations, the introduction threshold
Auvy, has the purpose to distinguish the regular regions where no dif-
fusion can be detected from the chaotic regions where there exist
orbits which perform large excursions in the phase space. The

08 ° ¢ 08 i

04 °

02 PR
H

0

0 50 100 150 200 250 300 350 400 450 500
Grid partictes Grid particles

FIGURE 4 Tune gradient computed according to Eq. (17) as a function of the grid
points; the points are ordered from left to the right by increasing the polar angle
¢ €[0, /2] and the radial coordinate r; we have plotted the points near the beam core
up to the appearance of large fluctuations of the tune gradient which indicates the
beginning of a chaotic region. The line corresponds to the chosen threshold for Av. In
the left part we consider the case #1 with 30% of mismatch for the envelope solutions;
in the right part we consider the case #2 with the same amount of mismatched.
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dynamics of the particles at the boundary of the regular regions can be
carefully studied by tracking programs considering a high density of
initial conditions in the phase space.

In Figure 5 left we plot the FM for the case #1 for the matched
beam. The bottom-left point corresponds to the particles inside the
beam core, which suffer the maximum tune depression due to space
charge, and the upper-right point corresponds to the particles far from
the core, which do not feel any space charge. The intermediate points
are the particles that can suffer nonlinear resonances and stochastic
behavior. The phase space is dominated by the resonance v; = vy,
which creates a channel able to connect the region outside the beam
envelope and the region at large amplitude. A chaotic region is visible
at large amplitude where both tunes are resonant and several resonant
lines cross each other. In Figure 5 right we plot the initial conditions
used for the FM, which satisfy the condition Av < Avy,,. As a con-
sequence, the missing points characterize the region where the diffu-
sion could appear according to our criterion. We have a small
region of chaotic particles near the beam envelope due to the vy =v,

0.17

0.165
0.15).
01551

0.15¢
01451

014+

FIGURE 5 Frequency map analysis for the case #1, matched envelope. On the left
side the frequencies corresponding to 14400 initial conditions are plotted; the
distribution is uniform in polar coordinates, with radius ranging between 0.8 and 5.
Some resonance lines can be recognized (high peak density surrounded by vacuum);
the resonance lines with |k;| + |k, <6 are plotted. On the right side the regular initial
conditions (Av > Awy,) are plotted; the profile of the beam core is drawn in thick
black. The axis unities are normalized to the matched beam envelopes d(s) and the
same convention is used in the other figures.
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FIGURE 6 FM for the case #1, with 30% beam mismatch (§; =0.3, §,=0). On the
left side resonance lines with |ky|+ |ka| + [i_| +|h 4| <3 are plotted. The initial beam
envelope is drawn on right side, together with regular points.

resonance, which could become unstable when we consider the mis-
matched case.

We have then mismatched the envelope initial conditions, by taking
61=0.3. In this way both the odd and the even envelope modes are
excited, since the initial conditions can be decomposed as
(6,0) = 8(—6_ + 64))/v/2, and new resonances are present in the FM
plot (Figure 6) due to the integer combination (16). We have therefore
an enlargement of the chaotic region of the v; =, resonance because
of the overlapping with the new resonances (see Figure 6 left). The
bigger chaotic region is clearly visible in Figure 6 right, where we have
plotted the stable points according to our criterion and the diffusion is
more severe.

We have then chosen a different working point (case #2), so as to
avoid the v, =wv, resonance, but at the same time with tunes close
enough to satisfy approximately the equipartitioning design criteria,
generally adopted for high current linacs.?*!

In Figure 7 left and right the FM analysis is shown for the matched
beam. The FM still shows several resonant channels, which are well
separated and therefore without relevant chaotic regions. The chaotic
region due to the vy = v, is visible in the left part of the picture.

In this case the stable points cover almost all the analyzed region
with the exception of very small chaotic areas where only a bounded
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FIGURE 7 FM for the case #2, matched beam; in the left plot resonance lines with
|k1] + k2| <6 are plotted. In the right plot regular points and beam cross section are
shown.
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FIGURE 8 FM for the case #2, §; = 0.3/v/2, § = 0.3/v/2. On the left side resonance
lines with |ky| + |ko| +|h_| + |k 4| <3 are plotted. The initial beam envelope is drawn
on right side, together with regular points.

diffusion could be detected. When we consider the mismatched case
two big resonances appear, creating a large chaotic area in the ana-
lyzed region (see Figure 8 left). As a consequence we have chaotic
orbits starting from the envelope border (see Figure 8 right), but the
maximal amplitude reached by the unstable particles is smaller than
the one in case #1.
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6 TRACKING RESULTS

We are interested in beam diffusion after 1000 periods, that is a typical
number for a long linac.

We therefore choose initial conditions (typically 40000) in a
annulus immediately outside the beam core, between 1 and 1.4 times
the beam envelope, and we follow their evolution. The parameter ry,x,
maximum of r during the particle evolution, is used to check the diffu-
sion. In particular in Figures 9—12 for the different cases described in
the previous section, we plot the initial conditions used for the
tracking, and with a different marker we characterize the particles that
have diffused up to an amplitude larger than 2. In each case this plot
is compared with the plot related to the Aw criterion with the same
scale. The comparison confirms our criteria; indeed for the matched
case #1 the x=y channel is very small, and there is no diffusion.
Whereas, when a 30% mismatch is added, a large region with
Av > Avy,, appears (Figure 10 right), and correspondingly many par-
ticles diffuse (Figure 10 left).

For the case #2 matched the FM analysis gives only regular points
and indeed the tracking does not show any diffusion. Adding there-
fore 30% mismatch we can see a diffusive region, foreseen by the FM
analysis.
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FIGURE 9 Results of tracking for case #1, matched. In the left part 10000 initial
conditions chosen for tracking are shown; different markers are used for the points
that diffuse up to rpax>2 (no one in this case). In the right plot for comparison the
result of the FM analysis on the same scale is shown; The annulus used for tracking
initial conditions is also drawn.
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FIGURE 10 Results of tracking for case #1, 30% mismatch (6; =0.3, §,=0). In the
left part 10000 initial conditions chosen for tracking are shown; different markers are
used for the points that diffuse up to rya, >2. In the right plot for comparison the
result of the FM analysis on the same scale is shown.
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Results of tracking for case #2, matched. In the left part 10000 initial

conditions chosen for tracking are shown; different markers are used for the points
that diffuse up to rmax > 2 (no one in this case). In the right plot for comparison the
result of the FM analysis on the same scale is shown.

We can therefore conclude that we did not see any diffusion in the
points that are regular according to FM Auv criterion. This result gives
a powerful means to optimize the tracking.

As an example, we have done a systematic study of the diffusion as
a function of the beam mismatch in both cases. The possibility to
concentrate the test particles in the dangerous regions gives an
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FIGURE 12 Results of tracking for case #2, mismatched (6; = 6, = 0.3/+/2). In the
left part 10000 initial conditions chosen for tracking are shown; different markers are
used for the points that diffuse up to rpax>2. In the right plot for comparison the
result of the FM analysis on the same scale is shown.

enhancement of the sensitivity of these runs, with a reasonable CPU
time. It should be noted that the test particles have been chosen, for
every mismatch, in a region that includes the chaotic region for the
maximum beam mismatch considered. This results in a safety margin
for the cases with lower mismatch.

In Figures 13 and 14 Ry as a function of the mismatch ||§]| is
shown; in this case R,y is the maximum 7., (maximum r during
the 1000 periods tracking) among all the particles of the sample. The
initial conditions correspond to the region between 1 and 1.2 times the
beam envelope. For the case #1 the simulations have been done for
three different kinds of mismatch, 6, = —8,, 6, =8, and 6, =0, corre-
sponding to 85, 86, and 5(—5, + 5;) /V/2. The first condition excites
the envelope odd mode, the second the even mode, the third both
modes. For each mismatch condition we performed 10 runs with
10 000 particles; due to our model each run is clearly independent, so
that the largest of the ten R,,,, corresponds for each mismatch case to
the maximum displacement calculated with 100000 particles, while
the spread gives an idea of the statistical properties of the diffusion
estimate.

In the symmetrical case one can see that the excitation of the
odd mode is more dangerous than the excitation of the even mode.
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FREQUENCY MAP ANALYSIS 101

Moreover we remark that when both modes are excited, so that we
can have resonances due to the linear combinations of all four main
frequencies, the maximum displacements are the largest.

For the case #2 we have done the simulations for initial conditions
corresponding to 56, 661 and (6,6)/v/2(Figure 14). The first two
conditions give normal modes, in the third case we have a significant
mode mixing (5: 0.495_ + 0.86&). We observe that the mode mixing
leads to a condition where resonances, involving four frequencies, can
be excited, and as a consequence it represents the worst condition for
beam stability and diffusion is enhanced. However we observe that the
case #2, which avoids the v; =v, resonance, is anyway better than
case #1.

As a final point we have some remarks about the FODO model.
The representation described in Section 2, which has the advantage of
being self-consistent and largely studied in previous literature, is char-
acterized by a very localized zone of nonlinearity, immediately outside
the beam core. In other words we follow a diffusion (from envelope
surface to large amplitude) driven by a nonlinear force that vanishes
as 1/r. As a consequence at large amplitude the motion is again reg-
ular and bounded; the maximum amplitudes found in this paper are of
about 4 times the beam envelope, i.e. 8 times the beam rms size. These
values would probably increase in a more realistic model, when one
considers other nonlinearities, like multipole errors in the quadrupoles
and Bessel function dependencies of the transverse RF field, that have
a polynomial dependence on transverse coordinates; nevertheless the
same analysis can be applied.

The small differences among the FODO cells typical of a single pass
focusing channel, could be treated as stochastic perturbations of an
average beam dynamics and the results of the FM analysis would be
useful to get a better understanding of the tracking results in presence
of machine errors.

The approach shown in this paper could be extended without major
changes to the 3D problem of a bunched beam propagating in a peri-
odic system (introducing for example the RF cavities with synchro-
nous phases —90°). The study of a linear accelerator, that is not
exactly a periodic system, requires a some where different investiga-
tion, with the choice of appropriate adiabatic invariant variables.
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7 CONCLUSIONS

The FM turns out to be an efficient tool to represent the phase space
of multidimensional hamiltonian systems. It allows to detect the posi-
tion of the resonances and the chaotic regions with a high accuracy
and it can be used for quasi-periodic time dependent systems with two
or more degrees of freedoms when the direct plot of the phase space is
not possible.

Our analysis of the transverse dynamics of an intense beam in a
FODO cell shows very well the role of the beam mismatching in
exciting the various resonances related with the beam modes. The
importance of the initial mismatched beam configuration, in addition
to the mismatch amplitude, is pointed out. The consequent appear-
ance of diffusive zones has been analyzed, and a criterion for the
determination of stable regions has been introduced. This criterion
has been checked with the help of tracking.
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