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Pacman bunches, in storage rings, experience two deleterious effects: anomalous tune
shifts and orbit displacements. The anomalous tune shifts result in larger effective tune
spreads which, as is known, can be compensated by arranging crossing planes 90° relative
to each other at successive paired interaction points (IPs) separated by half the ring
circumference. This paper evaluates the associated anomalous Pacman orbit displace-
ments for such paired interaction points. The anomalous orbit displacements can in turn
be minimized by setting the phase advance between the paired IPs to half the overall
phase around the machine. Numerical results are evaluated for the LHC design
parameters. The resultant displacements are small and should not significantly affect the
LHC performance.
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1 INTRODUCTION

It is believed that the attainable beam—beam tune shifts in hadron
colliders may not be limited by bunches in a standard environment, but
by “Pacman” bunches, bunches that in the interaction regions (IRs) are
circulating past “gaps” of missing bunches in the counter-circulating
beam. Such bunches will suffer anomalous tune shifts and orbit dis-
placements different from the “average” bunches circulating relative to
a locally fully filled beam. Therefore if the machine is optimized for
average bunches the Pacman bunches will not be in an optimized
environment and may suffer enhanced losses. However, loss of a
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Pacman bunch will create new Pacman bunches in the counter-circu-
lating beam, and over the course of time holes will develop in both
beams and eventually the beams may be destroyed. Only for the special
case (in practice the usual configuration) of beams interacting at IPs
symmetrically placed with separations of half the ring circumference,
does a circulating bunch encounters the identical pattern of counter
circulating bunches at each IP. For this special case the Pacman effects
at the paired IPs are related and the IPs can be configured to cancel or
minimize the Pacman anomalies. Irrespective of the phase advance
between the IPs, the anomalous tune shift is cancellable. For example,
in the LHC, this is easily accomplished for equal Bi*p (B-function at the
IP) by crossings planes at 90° relative to each other at the two high
luminosity IPs 1 and 5. The anomalous tune shift and associated
enhanced tune spread is the primary limitation on potentially achiev-
able bunch currents and luminosity, and the anomalous orbit dis-
placements are a secondary effect. Therefore the need to cancel out the
anomalous tune shift is the primary consideration, and for this reason
we confine our considerations to machines with symmetrically paired
IPs. Unfortunately, while it is relatively easy to remove anomalous
tune shifts, the anomalous orbit shifts can at best be minimized by a
“best” choice of phase separations between the IPs, and this is the
problem examined below. Not perhaps surprisingly, the optimum is
found for paired IPs symmetrically separated in phase by half the phase
advance around the ring. Obviously if the crossings are successively in
horizontal or vertical crossing planes orbit cancellation is no longer
possible. However even for this case equal phasing minimizes the
combined horizontal and vertical displacements at the paired IPs.

Finally we evaluate the physical magnitude of the expected orbit
anomalies in the LHC and find them to be small.

2 THEORETICAL DERIVATION

The derivation uses a number of straightforward properties for finding
eigen-solutions for the equilibrium orbit in a machine. We first assume
a machine with two identical interaction regions, IRs A and B, at the
start and midpoint of the circumference around the machine. The IPs
are at « (slope of the 8-function) equal to zero, and are assumed to have
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equal ﬂi*p. In units of x/ ﬁi*p the transfer matrix R around the machine
from IP A back to IP A is given by

R= < cos(u)  sin(u) >’ (1)

—sin(p) cos(p)

where p is the phase advance around the machine. We shall use the
shorthand notation

R = M{(p), (2)
and this has the standard property that
M(p)M(¢) = M(p + ). 3)

Orbit displacements are only significant for bunches that suffer head-
on collisions. The missing “Pacman gap” in the counter-circulating
beam can then be encountered before collision (“IN” configuration) or
after collision (“OUT” configuration). In a single passage across the
IR to the IP the gap will cause the bunch to deviate from its
equilibrium orbit by a deflection as it passes the missing bunch(es). We
will content ourselves with the following case (which is a good
approximation for the LHC and for other envisaged machines,' see
Section 2.3 below): The missing parasitic crossings are ~90° in phase
away from the IP and the net effect is for there to be a transverse
displacement at the IP and a close to zero angular displacement. In
units of the net displacement (see Section 2.3) we can represent the
single pass displacement as a vector, V,

p!
e~ fu/L, (5)

where L is the distance of the missing bunch from the IP.

In the following we define the phase separation between IPs as ¢. As
an example application we evaluate the orbit displacement, x, at IP A
(the first IP) where the second crossing, at IP B, is in the same plane as
for A. The “vector” displacement, X, is defined by

X= <’0§> (6)
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Then in matrix notation the eigen-solution for X is found by equating
the X at each sequential turn with the X at the previous turn. We then

find
X=MuX+Mup-—o)V+V.
This can be rearranged as
(M(0) — M(1))X = M(n— §)V + M(O)V.
X is then specified by
X = (M(0) — M() ™ (M(s— ¢) + M(0)) V.
The previous result can be simplified by noting that the term

1 —cos(p)  —sin(u) )

M(0) — M(p) = ( sin(p) 1 — cos(p)

or

([ sin(p/2)  —cos(u/2)
Mi0) () = 2sin(8) (S72) s

Taking the inverse

(M(0) - M(n)) = 2sin(1/2) (—cos(u/Z) sin(u/2)

This in turn can be written as

- —1 poom
(M(0) - M(p) ™" = WM(—E -2).

Substituting this into Eq. (9) we get

X:ﬁim(}”(g*(ﬁ‘g+M(‘§‘§))V:SV’

where S is a matrix defined by the above equation.

sin(u/2)  cos(p/2) ) .

(7)

(10)

(12)

(13)
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A small change in the angular component, 6, of X has an insignificant
effect on the deflection at the IP, and the only quantity of interest is the
spatial component, x, of X. Remembering V is approximated by Eq. (4)
and therefore

x =~ 811+ €S2, (15)

or substituting we obtain the simple and final result

X~ m (—sin (g) + sin (g - qS) —€ <cos (g—) + cos (g — qﬁ))) .
(16)

In Section 2.1 we generalize the above result to paired IPs with
“coherent” cancellation, namely those with a horizontal/vertical
crossing plane followed by a horizontal/vertical crossings plane, or
those with successive 45° tilted crossing configurations.

In Section 2.2 we examine the configurations for which cancellation
cannot occur, namely a horizontal/vertical crossing plane followed by a
vertical/horizontal crossing plane. These cases are identified as “inco-
herent crossings”.

2.1 Paired Coherent Crossings

We have evaluated above the offset at IP A for a gap in parasitic
crossings on the incoming side of the IP. There are four cases, incoming
and outgoing gaps and IPs A and B. We summarize the basic equations
and solutions for the four cases. Successive crossings may both start
from above, same sign crossings, or may start from above/below before
the IP and below/above the IP, opposite sign crossings. A similar
convention applies to crossings in the horizontal plane. The results are
evaluated for same sign crossing angles at the two IPs. The four
additional cases for opposite sign crossings can be found by replacing ¢
by ¢ + . These additional cases are degenerate to an interchange of IPs
A and B and therefore do not modify the following results:
IN for IP A

X = (M(0) — M(p)) ™" (M(u - ¢) + M(0)) V; (17)
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IN for IP B
X = (M(0) — M(i)) ™ (M(¢) + M(0)) V; (18)
OUT for IP A
X = (M(0) — M(p)) ™ (M(p) + M(p— 9)) V; (19)
OUT for IP B
X = (M(0) - M)~ (M(p) + M(9)) V. (20)

The results evaluated for these cases are

XinA 2_511_1_(_/%7—2_) (—sin (g) + sin (% — ¢) —€ (cos (g) + cos (g — ng))) s

s = s n() - 5n( - ¢) - cos(3) oo (3~ 0)

(22)

XoutA ™~ ﬁl/z) <+sin (%) + sin (% - ¢) +€ (cos (g—) + cos (g — ))) ,

(23)

XoutB & ﬁ/ﬁ/@ <+sin (g) — sin <% — qS) +e€ G:os (g) + cos (g — ¢))> .

(24)

Using the approximation that ¢ is small, order € terms in cosine can be
neglected. We then obtain the following simple results:

XinA + XigB = +1 (25)
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and
Xouta + Xoun =~ —1. (26)
Equivalently, for either the IN or OUT case
|xa| and/or |xg| > 3. (27)
For the symmetric case where ¢ = p/2
|xal = |xs| = 3. (28)

The symmetric case represents the optimum configuration.

2.2 Paired Incoherent Crossings
If the crossing planes are 90° relative to each other, horizontal or
vertical, then the resultant orbit displacements in the two planes add in
quadrature and not linearly. Assuming a horizontal crossing for IP A
and vertical crossing for IP B the horizontal orbit displacement at IP A
will be given at A from

Xa = M(p)Xa + M0)V (29)
equivalent to

Xa = (M(0) — M(w))™'V, (30)

or evaluating as in the previous subsection

xA:%<1+6-cot(§)>, (31)

or neglecting terms in €

xa 1. (32)
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The corresponding displacement at B is

Xg = M(%)XA. (33)

The horizontal component xp that adds in quadrature to the vertical
orthogonal deflection at B is again set close to zero for equal phases A
to B and B to A. For this optimal phase choice

%o = g G M5 - 9

or equivalently
€

Xg = T5n(a/2) ~ 0. (35)

Thus for symmetric phasing, in units of V, the deflection at the IPs is
one half, and is identical to the orbit deflection obtained for the
coherent cases in Section 2.1.

2.3 Numerical Results for the LHC

The units of V are easily evaluated for the LHC. The orbit displacement
at the IP in a single pass around the machine is'

_ 8’/TNpAl/ho

GCI'OSS

Axg R (36)

where Ax; is in units of o, (the rms beam transverse size), Avy, is the
head-on tune shift per IP, 0., is the full crossing angle in units of o
(the rms beam angular size), and N, is the effective number of parasitic
crossings, evaluated below. For a circulating beam the equilibrium
orbit displacement at the IP for equal phasing between IPs is 1/2Ax;.

The number of parasitic crossings in the drift space around the IP is
12, within the high beta quads is 16, and in the space prior to separation
is 8. Therefore, the actual number of parasitic crossings is 36. To obtain
the effective number of crossings we must modify these numbers to take
into account the varying ratio of 3,/3,. Following Irwin'

- Xy _
Np =) —5 =38 37)

=1 Fy/x




PACMAN EFFECT ON THE CLOSED ORBIT 165

Thus the effective number of crossings is increased by roughly 5%.
However for simplicity in the following argument we neglect this 5%
effect and assume all 36 crossings are equally effective, an approxi-
mation good, on average, to 5% (though for individual bunches it can
be in error by ~+25%).

At the LHC circulating particle bunches pass one another about
every 3.75m as they approach and depart the IP. For a nominal i of
50cm the closest parasitic crossing corresponds to 81° in phase from
the IP and the next closest to 85° in phase from the IP. There are in all
18 parasitic crossings prior to beam separation on either side of the IP
with phases increasingly close to 90° and therefore, to a good
approximation for the LHC, the missing parasitic crossings are ~90° in
phase away from the IP.

The effects of anomalous orbit displacement are small compared to
the beam separation for the parasitic crossings and only minimally
modify the forces on a given bunch. However at the IP, small anom-
alous offsets comparable to the IP beam size will qualitatively modify
the effective potential of the IP beam—beam forces. If for any given
bunch at the IP the corresponding counter circulating bunch is missing,
the bunch will not of course suffer the direct beam—beam interaction
and such a bunch will in general be stable.

Consider a beam 1 and a counter-circulating beam 2 and label the
bunches in beam 1 with indices i —n, ..., i,...,i+ n and that in beam 2
with indices j—n,...,J,...,j+n such that bunch i in beam 1 encoun-
ters bunch jin beam 2 at the IP and bunch j+ 1 at the next downstream
parasitic crossing, etc., as shown in Figure 1. A maximal Pacman effect
will occur for bunch 7 in beam 1 when bunch jin beam 2 is present but a
gap in the bunch pattern occurs either before or after bunch j. This is
equivalent to all bunches in beam 2 being missing from j + 1 through to
j+ 18 or beyond or alternatively to bunches in beam 2 are absent from
j—1 through to j— 18 or beyond. If the beam intensity is only suffi-
ciently large to render an unstable condition then indeed bunch i in
beam 1 will be lost. But the existence of a single missing bunch in beam
1 will be far from a worst case and will not cause further losses in
beam 2. However if bunch i is unstable when half or more of the cor-
responding parasitic crossings on one side of the IP are missing in beam
2 then missing bunches from j+ 1 onwards in beam 2 will cause not
only bunch i to be unstable in beam 1 but also bunches i — 1 through to
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Beam 2 Beam 1

FIGURE 1 Beams 1 and 2 are two counter-circulating beams. There is a gap in
Beam 2: bunches from j+1 through to j+ 18 or beyond are missing. Depending on
machine parameters, this gap may cause two different types of Pacman effects: (1) The
localized effect, when only bunch i in Beam 1 will get lost; (2) The run away effect,
when bunches i, i — I through to i —9 or beyond will be lost. The latter could destroy
the machine luminosity.

i—9. Now beam 1 will have a gap sufficient to destabilize bunch j— 10
in beam 2 and the process can continue. This is a run away Pacman
effect that will eventually destroy the machine luminosity. Provided
that the machine parameters, for operation at maximum luminosity, do
not result in a run away Pacman effect, anomalous orbit displacements
are not a problem. We therefore calculate below for the nominal
parameters the orbit displacement at the IP corresponding to a pattern
in the counter-circulating beam with half the bunches missing, or
N, ~9 on one or other side of the IP and show that it is small.

Using the LHC parameters in Table I and the number of parasitic
crossings equal to 9, the spatial component of %V (the symmetric case)
is 0.060, or 1pm. Such an orbit displacement is very small and will
contribute minimally to instability. For all practical purposes it is
negligible and the orbit displacement will not contribute to any
appreciable extent to a Pacman effect. Of course the additional tune
spread from Pacman bunches, comparable to the head-on beam—beam
tune shift, do play a major role and we assume that the machine design
will permit the use of crossing planes rotated by 90°.

Herr? has previously investigated the impact of the Pacman effect on
LHC running. Our results agree with his with the exception of our
distinction of a localized loss of bunches (where we agree with Herr)
and a run away Pacman effect, where two times higher bunch currents
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TABLE1 LHC parameters

Bunch spacing 7.5m
Crossing separation 3.75m
Emittance 5x 107" m-rad
[B-function at the IP ﬂi*p 0.5m
Head-on tune shift per IP Awy,, 0.0034
Full crossing angle O oss 200 prad (60y)
RMS beam transverse size o, 16 um
RMS beam angular size oy 32 prad

are required to initiate losses. Herr points out that if more IPs than IPs
1 and 5 are run simultaneously at high luminosity the Pacman orbit
effects are substantial and might require a bunch by bunch feedback
control system. However it is presently envisaged that high LHC
luminosity running will only occur simultaneously for IPs 1 and 5.
Therefore with symmetric phasing both our and Herr’s results
show that feedback control of Pacman orbit displacements will be
unnecessary.

3 CONCLUSIONS

Minimization or cancellation of anomalous Pacman induced tune
spread and orbit displacement requires the use of paired IPs separated
symmetrically by half a circumference and in phase by half the phase
advance around the machine. The spatial separation by half a cir-
cumference is required so that the patterns of missing bunches in the
counter-circulating beam as seen by a given bunch is identical at the
two IPs. For crossing planes 90° relative to each other the anomalous
tune spread is cancelled. The requirement of symmetric phasing mini-
mizes the anomalous Pacman orbit displacements.

For LHC parameters the orbit displacement contribution to Pacman
instability is small and, even for a 200 prad “worst case” crossing angle
is, for all effective purposes, negligible.
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