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CONTROLLED LONGITUDINAL
EMITTANCE BLOW-UP IN THE SPS
USING A 4tH HARMONIC RF SYSTEM
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The possibility of using phase modulation of the 4th harmonic RF system to produce
controlled longitudinal emittance blow-up in the CERN SPS was studied experimen-
tally. The choice of optimum RF parameters has found to be different from the
case when the frequency of the additional resonator used for blow-up is much higher.
The desired effect was obtained in a regime with large variation of the synchrotron fre-
quency.
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1 INTRODUCTION

The longitudinal emittance of the LHC beam injected at 26 GeV
from the PS to the SPS will be 0.35eV's. The bunch length and longi-
tudinal emittance at extraction from the SPS are defined by the
400 MHz RF system and by intrabeam scattering limitations to beam
lifetime in the LHC. According to the latest information,! the longi-
tudinal emittance can be in the range from 0.5 up to 1eVs with a
preference towards the lower value due to the problems of dynamic
aperture in the LHC. In the SPS for stability reasons, the highest
emittance is easiest to handle, however its transfer to LHC requires
installing an extra RF system in the SPS 400 MHz superconducting
LHC-type cavities. The optimum final bunch parameters will be
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defined after all measures forseen to reduce machine impedance and
improve beam stability in the SPS have taken place.

The purpose of the experimental studies described here, see also
Ref. 2, was to analyse the possibility of using the existing 800 MHz
travelling wave RF system in the SPS with phase or amplitude modu-
lation to produce controlled longitudinal emittance increase. This
procedure has been operational in the PS since 1976,>* where a
200 MHz RF system is used to blow-up the beam bunched at 9 MHz.
Using a frequency 20 times higher than the main frequency for this
purpose ensures a smooth and relatively fast (60 ms) process preserv-
ing the quality of the bunch distribution. This method is also used in
the AGS, Brookhaven, since 1988.% The procedure has been studied
in detail by means of numerical simulation in Ref. 6.

In the SPS, the 800 MHz RF system is proposed for blow-up of
the beam bunched at 200 MHz. Due to the small harmonic ratio of
the two RF systems available for this procedure the optimum choice
of operational parameters becomes more critical.

The effect produced by phase or amplitude modulation of a high
frequency cavity on the bunch can be explained,’ using the theory of
nonlinear resonances. The dependence of bunch blow-up on the dif-
ferent parameters of the system as predicted by theory has been
checked experimentally in the PS.®

In the following section we present a brief summary of the theory
fully described in Ref. 7. We analyse different conclusions which were
checked experimentally. In the following part we describe results
from measurement of the effect produced by phase modulation of
the 800 MHz RF system on the bunch using different sets of RF
parameters.

2 SUMMARY OF THEORY

In general the total voltage seen by the particle in such a system can
be written in the form

V = Vysing + Vi sin[Né + &(¢) + 6], (1)

where V, and V' are the voltage amplitude of the main and high fre-
quency RF systems, N = h,/h; is the ratio of the harmonic numbers
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of the two RF systems, @ is the phase shift between the two RF sys-
tems measured in radians at the higher frequency and the function
d(?) represents the phase modulation:

(1) = asin(wmodt + ). 2

Here a and wpoq = 27fmea are, respectively, the phase modulation
amplitude and frequency. The initial phase 1 is not considered below
since it should not influence the blow-up.’

To produce a significant change in bunch distribution, the reso-
nance condition

kws(r) = lwmod, k,1 are integers, (3)
should be satisfied. Here ws = 2mf; is the synchrotron frequency

which is a function of the synchrotron oscillation amplitude r defined
by the equation

2 ¢
¥ :1——cos¢+2w820. 4

The value of r varies from 0 to 1 inside the bucket.
The high-frequency voltage applied produces a steady-state syn-
chrotron frequency modulation

J] (2Nr)
r

Aw(r) ~ ews(r) Jo() cosé, (5)

which is important to take into account® in condition (3). Here ¢ =
V1/Vo. This modulation is absent when cos@ = 0 (6 = n/2,37/2,...)or
Jo(a) = 0 (a = 2.4,...). The variation of synchrotron frequency inside
the bunch for N=4,¢ = 0.14, a = 1.2 and 0 = 0, 7/2 and = is shown
in Figure 1.

A change of modulation amplitude « also affects the “strength” of
excitation which is proportional to &J;(a)Ji(2Nr). This implies that a
high frequency RF system with low harmonic ratio N (as in our case
N = 4) has little effect for large £ and without precaution will affect
the tail of the bunch more than the centre.
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FIGURE 1 Normalised synchrotron frequency as a function of oscillation amplitude
rfor N=4,¢=0.14, o = 1.2 and 6 = 0 (dotted—dashed line), § = 7/2 (solid line, no
modulation) and # = 7 (dashed line).

The importance of the phase 6 was underlined in Ref. 7 and then
demonstrated in Ref. 8 where the difference in emittance blow-up of
different bunches in the ring due to the noninteger ratio between the
two RF systems was observed experimentally. Indeed for noninteger
N=Int[N]+ AN, the phase 8, seen by bunch number n is AN 27n.
In our case with N = 4, bunches should be identical after blow-up.

For 0 = =/2,37/2 resonances with an even value of (k+/) are sup-
pressed (such as, for example, with /=1 and k = 3,5,... in reso-
nance condition (3)).

3 EXPERIMENTAL CONDITIONS

The main beam and machine parameters were as follows:

Initial parameters of the beam:
e beam energy: 450 GeV,
e bunch length: 1.7 ns,
e longitudinal emittance: 0.38¢V's,



CONTROLLED LONGITUDINAL EMITTANCE BLOW-UP 261

e total intensity: 3-10'? protons,

e number of bunches in the machine: 2 x 2000.
SPS RF system parameters:

e 200 MHz RF system: Vy = 2MYV,

e 800 MHz RF system: V| = 280kV,

e duration of excitation: At = 300 ms.

Other RF parameters defined in expression (2), such as «, 2 and 0,
were varied during the studies.

From the calibration of the instrument only the relative phase shift
between the two RF systems is known. The absolute value of 8 can
be defined using the beam. We used both measurements with and
without phase modulation. The point corresponding to 6 = © was
fixed from bunch shape observation (flat bunches) with the 800 MHz
RF system on but without phase modulation. Later it was checked
by the expected effect of blow-up at § = 7 and § = 7/2 (see below).

The effect of emittance blow-up was estimated from measurements
of change in bunch length and particle distribution. For bunch length
measurements we used longitudinal bunch profiles acquired as moun-
tain range displays with a fast digital scope (4 GSample/s) at regular
time intervals (see examples in Figures 4, 6 later in the text).

To describe changes in bunch distribution the length was measured
at half bunch height (7w, ) and at 10% bunch height (7,.x).- Bunch
lengths before excitation had a 10% scatter around 1.7ns for ..
and 0.9 ns for 7yn, and are not shown in most of the figures. To see
if the bunch still continues to oscillate the final bunch length mea-
surements were taken twice, with a 10 ms interval, at 290 and 300 ms.

The main parameters used for operational blow-up in the CERN
PS and the AGS are shown for comparison in Table I together with
parameters from our studies.

TABLE1 Parameters of RF systems used for blow-up

Machine hy N 5 At (ms) a (rad) k
CERN PS 20 21+ 13/20 0.2 60 ™ 4
AGS 12 22 4+1/3 0.3 50 ™ 2
CERN SPS 4620 4 0.14 300 1.1 3
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4 VARYING THE 800 MHz RF SYSTEM PARAMETERS

4.1 Effect of Phase Shift between the Two RF Systems

In Figure 2 we present measurements of the bunch length as a func-
tion of the phase @ for

fuod =318Hz, a=18.

26 b fmod = 318 Hz
a=1.8 rad

2
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Normalised phase shift © /7
(2

afE fmod = 318 Hz
. oa=1.8 rad
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§
b
N
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Normalised phase shift ©/7c

(b

FIGURE 2 Bunch length 7., (@) and T¢.nn (b) as a function of phase shift § between
the two RF systems at 300 ms (dashed line) and 290 ms (dotted line) together with the
corresponding initial bunch length (crosses).
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The choice of modulation frequency corresponds to the third reso-
nance, fmod = 3fs0, since the linear synchrotron frequency fy = 106 Hz
in 200 MHz bucket with ¥, = 2MYV. For odd values of k£ and / in the
resonance condition (3) the theory predicts an absence of blow-up at
0 = (2n + 1)«w/2, wheren = 0,1,2,... and a maximum effect at § =nnr.
This fact was also used for the absolute calibration of phase 6. The
difference in effect for § = 0,27 and 6/= m can be explained by the
different type of steady-state modulation of the synchrotron fre-
quency, which is proportional to cos 6, inside the bunch (see Figure 1).

4.2 Effect of Modulation Frequency

In this set of measurements we scanned the modulation frequency
fmod from 150 Hz up to 480 Hz with tlie other excitation parameters
being constant and chosen as follows:

a =138, # = 1.57.

The value of € corresponds to the situation where there is no steady-
state synchrotron frequency modulation in the bunch and resonances
with odd k& = f,,04/f;s are suppressed. The measurements of the bunch
length as a function of f,.q are presented in Figure 3. The sharp
resonance peaks corresponding to k/l =1.5,2,3,4 can be clearly
seen. For k = 3, the central part of the bunch (and therefore 7¢ypuy)
is not affected. Some effect coming from higher-order resonances can
be seen in the tails (Figure 3(a)). The strong effect produced with
k = 4 leads to the creation of significant tails in the distribution. The
results of excitation with o= 1.8, § =197 and f,.q = 458 Hz are
shown in Figure 4 as a mountain range display. Note the octupole-
type oscillations of the excited bunch.

4.3 Effect of Modulation Amplitude

The last measurement we made was by scanning the modulation
amplitude . Other excitation parameters were fixed as

0=197, fnoa = 318Hz

The results of this measurement are shown in Figure 5.



264 E. SHAPOSHNIKOVA

YT

T T

5w

3T

1.8
Loaaa 4 ) N PP o . 1. P T N
200 250 300 380 400 480 800
Modulation frequency fmod (Hz)
(a)
2
.. a2 o=1.8 rad
. ©@=15mn
—18 - .
%) -
< *
Py A
s |
= 12 :— \
[ &
1 —1 . -%
o.s :- “-:\%
o.e :
186" 500" "0 o N R
Modulation frequency fmod (Hz)
(b)

FIGURE 3 Bunch length 7.« (2) and 7eonn (b) as a function of modulation fre-
quency fmed at 300 ms (dashed line) and 290 ms (dotted line), 6 = 1.5x.

As one can see, over a wide range of the modulation amplitude
(0.75 < o < 1.75) both the centre of the bunch and the edges are
affected. The excitation parameters in this range correspond to the
case with a strong modulation of the synchrotron frequency inside
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FIGURE 4 Mountain range display for beam excitation with o = 1.8, § = 1.97 and
Jfmoda = 458 Hz. The horizontal full scale is 5ns, the vertical scale is 10 ms/trace.

the bunch. At a~0 the strength of excitation goes to zero as o’ and
for @ = 2.4 modulation of the synchrotron frequency is absent (see
expression (5)). It was found that the desired effect on the bunch dis-
tribution can be obtained for v~ 1. This is the case where, due to the
significant increase of the synchrotron frequency at small r, the addi-
tional effect on the centre can be obtained due to lower resonances
with k = 2 and / = 1. The results of excitation with

a=12, Jfmod = 318 Hz, 0~0

are shown in Figure 6 as mountain range displays. During this exci-
tation sextupole-type oscillations can be observed.

5 DISCUSSIONS

The possibility of using the 800 MHz RF system for controlled longi-
tudinal blow-up on the 450 GeV flat top was demonstrated. It has
been seen that, by resonant excitation, voltages at 800 MHz almost
an order of magnitude smaller than the main RF voltage can pro-
duce sufficient emittance increase.

The choice of parameters suitable for this procedure is limited
by the low harmonic ratio between the two RF systems. Using
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FIGURE 5 Bunch length Tp,x (@) and Tewnn (b) as a function of modulation ampli-
tude « at 300 ms (dashed line) and 290 ms (dotted line), & = 1.97.

resonances higher than third order for the modulation frequency
produces significant tails. The choice of k = 3 makes setting the
phase shift between the two RF systems more critical, since no effect
can be obtained with § = 7/2 or # = 3w/2. Using the regime with
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FIGURE 6 Mountain range display for beam excitation with ¢ = 1.2, § = 1.97 and
Jfmoda = 318 Hz. The horizontal full scale is 5ns, the vertical scale is 10 ms/trace.

steady-state synchrotron frequency modulation inside the bunch, it
was possible to affect the centre of the bunch without creating large
tails. Further studies are necessary to try and reduce the excitation
time as much as possible and to eliminate the tails in the distribution.

We observed a difference in blow-up at higher intensities. With
50% more intensity coupled bunch-type instabilities were present.
This will be a subject for separate study.
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