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A method for external quality factor computation with a lossless cavity simulation
code is derived from a theoretical analysis. The calculation is based on a single code
run and the process is suitable for a very large scale of coupling, excepted for very low
Qext values. The method has been validated experimentally on a simple case offering
one degree of freedom which permitted to vary the Q. value over a six decade
dynamic range. The error was less than 15% as Qex varies from 6 millions down to 12
units. It also yields very good agreement when applied to the existing ELSA photo-
injector cavity.
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1 INTRODUCTION

Impedance matching of an accelerating cavity is important in order
to maximize the power transfer from the line to the cavity and to
maximize the accelerator efficiency. Codes exist to compute cavities
in term of resonance frequencies, quality factors, shunt impedance,
peak field level, etc. But computing the impedance matching (or mis-
matching) of a cavity fed by a line or a waveguide is a different prob-
lem. One can show that it is linked with the external quality factor of
the cavity: matching occurs when the internal Q (including “losses”
due to the beam loading) is equal to Qey;.
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In 1990, Kroll and Yu proposed a method for computing the
external quality factor of a cavity coupled to a waveguide with codes
capable to compute resonance frequencies of lossless cavities." The
principle is to get the frequency of the cavity coupled to a waveguide
for different positions of the terminating short circuit, and to fit the
resulting values to an analytical model of the system. As this method
is based on frequency resonance differences, it becomes poorly accu-
rate in case of high external Q. Practically, Q. values seem limited
to a few hundreds which is too low for our purpose. In order to
improve this limitation, we developed another method in which the
Qext formula is based on a single code run.

Another method, called current—voltage has been used by Hartung
and Haebel.? The authors derive formulas involving the computation
of voltages and currents from a Thévenin equivalent circuit of the
cavity. The Qe value is obtained from two quantities (Q; and Q)
resulting from different boundary conditions. This method is close to
ours, though the calculated integrals are different.

2 DEFINITION OF EXTERNAL Q

Let us consider a lossless cavity coupled to an infinite line (Figure 1).
If the cavity initially contains some energy W at its resonance fre-
quency w, this energy will gradually be driven out of the cavity.
We assume that the coupling between the cavity and the line is not
too high, so that we can consider the energy W as slowly decreasing
with respect to the RF period. We also assume that only one mode
can propagate along the line at w. The power P transported by the

out-going travelling wave

stored energy: W transporting the RF power P
(slowly decreasing)

FIGURE 1 A lossless cavity slowly loosing its energy via an infinite line.
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travelling wave is then also slowly varying, and the external quality
factor coefficient is

wW

Qext:T- (1)

The power transported by the travelling wave is given by

P://<S)ds,

in which the Poynting vector (averaged over one RF period)

(s) = EU]

is integrated over the cross section of the line. Here, E and H repre-
sent the electric and magnetic field phasors, respectively, the factor
exp(jwt) being dropped. Since electric and magnetic field amplitudes
are proportional, one gets

1
P= / / |EPds = mode / / |Hds,
2Nmode JJline x sect 2 line x sect

in which 704e 18 the impedance of the propagating mode, i.e. the
ratio between electric and magnetic field amplitudes. The expression
for the stored energy is

ML ezt =3 [ e
W =— e|lEl"dv == Hl|"dv,
2 cavity | [ 2 cavity 'UIl l
and, Eq. (1) results in

w/// e|E Pdv

Qext:(l/nmodc)/Ane Efds o
or
Qext = Lu///cé,v plH *dv

—. ()
TImode // |H| ds
line
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Unfortunately, these formulas are not helpful in the present form
for computing the external Q: a one-way travelling wave can exist
either in an infinitely long structure or in a match-loaded line, which
are both non-suitable for a finite-geometry and non-dissipative code.

3 FROM TRAVELLING TO STANDING WAVES

The situation described in the previous section is a solution of
Maxwell’s equations which are symmetric with respect to time. As a
consequence, reversing the sign of time gives another possible solu-
tion (Figure 2). A wave transporting the power P (slowly increasing)
at the same frequency w, comes from the line and feeds the same
lossless cavity. The energy W stored in the cavity is then slowly
increasing.

According to the superposition principle, the two solutions men-
tioned above can be added in terms of electric and magnetic fields.
Along the line, the two travelling waves interfere into a standing
wave. Within the cavity, the result depends on the relative phases
between the two original solutions.

Firstly, let us consider the case in which the two added fields are in
phase within the cavity (we consider here either the electric or mag-
netic field). Then, the resulting field within the cavity is twice higher.
Along the line, the maximum field amplitude is located at the anti-
nodes and is twice the amplitude of each of the original travelling
wave fields (Figure 3). One can interrupt the line at any antinode
with the appropriate reflection condition, without changing the fields
at the left-hand side of that reflection plane. Thus, the ratio between
the cavity field and the field on the reflection plane is the same as in

3 vy E3 3 R I

___________

in-coming travelling wave

stored energy: W
(slowly increasing)

transporting the RF power P

FIGURE 2 A lossless cavity slowly gaining energy from an infinite line.
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resulting standingwave .. nodes

... antinodes

¥ P____ perfect open circuit

(magnetic wall)

FIGURE 3 A lossless cavity coupled to a line with a standing wave: equivalent to a
cavity coupled with a finite line with the convenient termination.

the case of a travelling wave (Figure 1). So, one can apply formulas
(2) or (3) with the field resulting from superposition, the line cross
section being located at the reflection plane. In case of an open cir-
cuit, the electric field yields there an antinode and formula (2) is ade-
quate. In case of a short circuit, formula (3) should be used.

Thus, a lossless code can compute directly the external Q, provided
that the line is ended by a convenient reflection condition at the
appropriate location. The next section gives a practical way to check
this condition.

4 CHECKING THE LINE LENGTH

Let us now consider the case in which the two cavity internal fields
(see Figures 1 and 2) are in opposite phase (Figure 4). In a first
approximation, the resulting field after addition vanishes within the
cavity. (In a more careful analysis, the fact that the energy stored
slowly decreases in the case of the out-going travelling wave and
slowly increases in the in-coming case implies that the stored energy
just passes through zero but is not constant.) Within the line, the
nodes/antinodes locations are inverted with respect to the case of
Section 3: the line itself becomes resonant at w.

Inversely, for Q.y, computation, the line should be antiresonant at
w. A simple way to insure this condition is (for instance) to have a
quarter guide-wavelength with the same type of termination at each
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resulting standing wave antinodes

E___ perfect short circuit

(electric wall)

FIGURE 4 A lossless cavity coupled to a finite line ended with the opposite
termination: the line resonates at the same frequency w.

extremity. Approximately, the cavity entrance is seen from the line as
an open-circuit (in case of electric antenna or radiating slot) or as a
short-circuit (in case of magnetic loop). But that is only an approxi-
mation. Moreover, the precise location of the limit between the line
and the cavity is rather arbitrary. So, the antiresonance condition
should be checked out.

A simple way to verify the antiresonance condition is to simulate
exactly the same geometry with just an inverted boundary condition
at the line end, and to check the resonance frequencies of the system.
If the line length is properly chosen, the global system (cavity plus
line) behaves as two coupled resonators owning the same resonant
frequency w. The theory of low-coupled circuits says that the global
system yields two resonance frequencies wo and w, approximately
verifying

_W0+wﬂ'

If the line length is not correct (Figure 5), its own resonant fre-
quency wj differs from w, and the global system frequencies tend to
be w and w;. Then, the average value & of the two frequencies
obtained differs from w and the line length should be corrected
according to

== )
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FIGURE 5 Resonance frequencies of a cavity coupled to a resonant line.

5 LINK WITH THE KROLL-YU METHOD

For more clarity, the link with the Kroll-Yu method will be estab-
lished in a particular case, but the same argumentation could be
applied to any other case. We consider here a cavity coupled elec-
trically to a half a wavelength coaxial line terminated by a short
circuit. We assume that both of cavity and line are under vacuum. In

this case, Eq. (3) gives
w/// |H |*dy
cav

¢ / / |H |ds
line

and the line is antiresonant at w.
As the electric field vanishes on the short circuit, Eq. (5) can be
written as

Qext = (5)

2 2
s J| Gl = coleyas

According to Slater’s perturbation theorem,” the right-hand term sec-
ond factor of Eq. (6), is linked to the frequency variation associated
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with a small displacement dx of the short circuit

a @[ wolt? =l Pras
w e

Equation (6) becomes then

1 dz/)
Qext 2 d (7)

in which the short circuit displacement is expressed in phase unit (i.e;
dy = dxw/c), the antiresonance condition fixing ¢ = .

One can recognize in Eq. (7) the formula given by Kroll-Yu, valid
when — di)/dw reaches its maximum value, which is precisely true (in
the present case) for a half wavelength line. We can conclude that
our method is equivalent to a precise computation of the maximum
slope of the w versus 9 curve. The antiresonance condition checks
that 1) is actually just in the middle between two consecutive cros-
sing points between the cavity and the line resonance frequencies
(Figure 6). Comparatively, the Kroll-Yu method is based on a fit of

@
N\ .
line
resonance
frequencies
cavity
resonance

frequency

‘i\ peak slope
\ Aw/Ay

/2 n

FIGURE 6 Typical resonance frequencies of the coupled system (cavity plus line)
versus position of the short circuit termination.
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one branch of the w versus v curve. This explains why it is more
precise in case of very low coupling (Qex: < 20) for which all our
previous approximations become irrelevant.

6 EXPERIMENTAL VALIDATION WITH A
PILLBOX CAVITY

To validate the method, we used a simple pillbox cavity coupled to a
semi-rigid coaxial cable on its axis (Figure 7). There were several rea-
sons for this choice. First of all, the cavity was available: it had been
used some years ago to calibrate the perturbing beads used for char-
acterizing the ELSA cavities.* Secondly, as the antenna is constituted
by the prominent central conductor of the semi-rigid cable, it is easy
to vary its length. Thus, the external Q can vary over several orders
of magnitude. Finally, as the geometry is completely axisymmetrical,
a 2D code can be used, which makes the computations fast and
efficient.

200 z N
A b 7
' ; P N
i TM 010
i mode:
; 1146 MHz
; Qint=25000
2 i ' 150
P S N ~?, o
\%
antenna _
| length: { ¢ Semi-rigid cable
2=01t0 55 ; $=6.35

FIGURE 7 The pillbox cavity used for experimental validation of the method for
Qext cOmputing.
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Another identical semi-rigid cable situated on the upper plate axis
was used for transmission measurement. Its antenna length was fixed
to zero (non-prominent) in order to minimize the induced perturba-
tion, and this second antenna was not represented in the code simula-
tion. We used a HP8753 network analyzer to measure the frequency
response in reflection and transmission. We measured the global Q as
the inverse of the 3dB relative bandwidth in transmission, and the
coupling coefficient 5. This coupling coefficient is equal to the vol-
tage standing wave ratio in case of over-coupling, or its inverse in
case of under-coupling. The Q.,; was deduced by

Qext = Q(l + 1/5)

The input antenna length was varied from 55mm to Omm by
cutting it step by step. The step was 5Smm above 20 mm length, and
2.5mm below. The semi-rigid cable dielectric had a relative permit-
tivity €, = 2.0, and its external/internal diameters were 5.35/1.65mm,
respectively.

We used MAFIA for code computations, with the same variations
in antenna length. With about 18 000 mesh points and a non-uniform

——— computed Qext

S ooo mesured Qext

10001~

100~

10
0 10 20 30 40 50 60

FIGURE 8 Experimental validation of the method for Q. computation in a pillbox
cavity.
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mesh, the resolution in the most critical area (the vicinity of the
antenna) was below 0.4mm. The line length was originally fixed to
92.5mm (A/2), but checking the antiresonance condition suggested to
reduce it to 89 mm (for short antenna lengths: below 20 mm), down
to 83mm (for the longest antenna). Nevertheless, the antiresonance
condition has not to be tightly respected. A 5% error in line length
leads to a less than 1% error in Q. value.

The results (Figure 8) yields an excellent agreement between mea-
sured and computed values over six decades. The relative difference
is typically between 5 and 10% (in any case less than 15%).

7 3D VALIDATION WITH THE ELSA PHOTO-INJECTOR

In order to check the method against a case which is more repre-
sentative of accelerators (and in a 3D geometry), we applied it on the
ELSA new photo-injector.® This 144 MHz cavity is coupled to a
@230 mm coaxial line via an inductive loop (Figure 9). The internal
Q and the coupling coefficient § had already been measured with a
network analyzer for two orientations of the loop: S=1.5 for
0=27°, and B=1.24 for #=36°, 6 being the angle between the loop
plane and the cavity axis. These values confirm the cos®6 theoretical
dependence of 8 and permit to extrapolate the value 3 = 1.89 for
0=0°. With Q;, =38750, we deduced the external Q: Q. (6 = 0°)=
20 500.

For MAFIA computations, the 6 =0° loop permits to reduce the
computation volume to half a cavity, taking the symmetry with
respect to the loop plane into account. Moreover, we considered a
fictive horizontal symmetry plane, in order to compute just one-
quarter of the cavity volume (Figure 10). The consequence is to
simulate two injection loops instead of one. But, as these hypothe-
tical loops are diametrically opposed, their direct interaction can be
neglected, and the resulting Qe should be doubled to give the value
for a single loop cavity. With 120 000 mesh points, the MAFIA raw
result was: Qex = 10270, which is almost the expected value (20 500/
2= 10250).
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~, @230 coaxial line
T~ 1

PHOTO — >
CATHODE beam axis

FIGURE 9 The RF power injection loop of the ELSA photo-injector cavity.
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FIGURE 10 The ELSA photo-injector RF power injection loop as simulated by
MAFIA.
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8 CONCLUSION

In summary the method proposed to compute the external Q is:

e Enter the geometry of the cavity coupled to the line in the code.
Let the line be a quarter guide-wavelength long (or multiple), and
choose the end of line boundary condition for an antiresonance of
the line.

e Check this by inverting the termination type (end of line boundary
condition) and computing the two resonant frequencies. If needed,
correct the line length according to Eq. (4).

e Run the code with the initial line termination and apply the fol-

lowing formula:
w /// P2 dv
cav ; , (8)
c// |F|~ds
line

in which F is the magnetic or electric field, depending on the line
termination (short circuit or open circuit, respectively), and K is set
(for example) as follows:

Qext =K

e In the case of a cavity coupled to a coaxial line (or any TEM line)
both under vacuum, K = 1.

e In case of dielectric isolator with a relative dielectric constant ¢, in
the coaxial line, K = g2 (+1/2 or —1/2 exponent in case of
short circuit or open circuit, respectively).

e In case of a TM mode waveguide, K = [1 — (w/we)*]™

the waveguide cutoff frequency.

12 0. being

This method for external Q computation is efficient and easy to
use. Its main advantage is that the formula for Qe is straightfor-
ward and requires a single code run (after checking the line length).
Since the results of the code are not used in a differential way, the
calculated value is weakly sensitive to the mesh. It is then reliable
even in case of very low coupling. On the other hand, the method
supposes that the coupling is not too high, and is then not suitable
for very low external Q values.
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The good result of the validation process has increased our con-
fidence in the method. Right now, it is used for studies of the RF
power feeding ports on the future TRISPAL accelerating cavities.
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