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The longitudinal time structure and oscillation modes of very cold rf-bunched proton beams
were experimentally studied in the IUCF electron cooling ring. Both longitudinal bunch
density and quadrupole oscillation frequency measurements indicate a high degree of space
charge dominance. The non-linear (sinusoidal) rf focusing field normally causes an incoherent
synchrotron frequency spread leading to rapid decoherence of a coherent oscillation. In this
regime of very cold beams, however, the small oscillations instead remain coherent and a
coherent shift in the frequency of small amplitude dipole synchrotron oscillations is observed.
This phenomenon of coherent space-charge tune shift has not previously been observed, nor
predicted.
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1 INTRODUCTION

An electron-cooling system! can reduce the longitudinal and transverse
ion beam emittances, or temperatures, to extremely small values. In this
regime the ion beam longitudinal self-fields, together with the external radio
frequency (rf) focussing field, to first order determine the longitudinal charge
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distribution of the stationary bunch.? The electric field from the beam space
charge acts to cancel the externally-applied 1f electric field for particles inside
this distribution. In this space-charge dominated regime, the measured small
amplitude synchrotron oscillation frequency of the bunch as a whole deviates
from a single particle model prediction and is a function of beam intensity.
We suggest that the non-linearity of the rf voltage, which would lead to a
synchrotron frequency spread inside the bunch in the emittance dominated
regime, leads instead to a coherent frequency shift in the space-charge
dominated regime. To the authors’ knowledge no complete theory describing
this effect exists and therefore only a simple model, which fits the measured
data extremely well, is presented here.

An existing theory for an arbitrary bunch distribution, developed by
F. Sacherer’ and applied in the past (see Ref. [4], for example), treats
space-charge as a perturbation and uses the linear rf voltage approximation.
Thus, no coherent dipole frequency shift is expected. In a particular case of a
parabolic bunch density and linear 1f voltage there exists a theory describing
longitudinal bunch oscillations for any degree of space charge dominance.’
One can show that in this case there exists a simple analytic expression for
the quadrupole oscillation frequency:®

2
Ve
(}{i) = 7E 43 )

where V¢ is the amplitude of the rf cavity voltage, Vg is the effective rf
voltage amplitude inside the bunch in the presence of space charge repulsion,
and f; is the bunch length (quadrupole) oscillation frequency. The symbol
fso is the small-amplitude, stationary, single-particle synchrotron frequency’

given by:
| hin| eVt
fso = fo WT, 2)

where f, is the revolution frequency of the synchronous particle; 4 is the
harmonic of the revolution frequency at which the beam is bunched; e
is the proton charge; E = yMc? is the synchronous particle energy; y
and B are the usual relativistic parameters; and n is the phase slip factor
= —(df,/fo)/(dp/p), where p is the synchronous particle momentum.
Typical values for these and other parameters in the [IUCF Cooler may be
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TABLE I Typical values for beam and synchrotron parameters in the IUCF Cooler ring.

Beam Parameters

Parameter Symbol Value Units
Kinetic energy KE 45 MeV
Beam current 1 1-4,000 HA
Momentum spread (rms) Ap/p (1-10)-107°
Revolution frequency fo 1.03168 MHz
Relativistic parameters B 0.3

y 1.05

Machine Parameters

Circumference 27 R 86.7 m
Phase slip factor n -0.86

1f voltage amplitude Vit 10-400 v
rf harmonic number h 1

Small amplitude synchrotron frequency fso 128-810 Hz

found in Table I. In the absence of space charge interaction (Ve = Vir)
Equation (1) gives f; = 2 f,, which simply corresponds to bunch rotation in
longitudinal phase space; in the case of zero momentum spread (Vg = 0)
we have f;, = /3 fso. Thus a measurement of the bunch length (quadrupole)
oscillation frequency provides a direct measurement of the degree of space
charge dominance, or the degree to which the electric field from the beam
space charge cancels the externally applied linear tf field within the bunch.

2 LONGITUDINAL BUNCH DISTRIBUTION

It is standard to describe the longitudinal dynamics of electron cooled beams
by the Fokker-Planck equation (see Ref. [8] for example):

— o —+5— ASW 4 = —
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where W(¢, 8, ¢) is the longitudinal distribution function, ¢ is the phase
coordinate of the particle within the bunch with respect to the rf cavity voltage
phase, § is the relative momentum of the particle, ¢ is the laboratory frame
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time, A is the electron cooling rate, and D is the diffusion rate. The equations
of motion for a particle experiencing synchrotron oscillations within the
stationary bucket should be modified to include space-charge forces:

¢ = 2mhnf,8, “

Z,8¢’Nf, ch? 3p(¢, 1)
vB°E R 9

8= fofgvz—g sin(¢) + : )
where c is the speed of light, Z,, is the impedance of free space (* 377 Q),
g is a geometrical factor [= In(pipe radius/beam radius) + 1/2 for a perfectly
conductive cylindrical vacuum chamber and a round, uniform density beam],
R is the radius of the synchrotron ring, and N number of particles per bunch.
The unitless longitudinal linear charge density, o (8, t), is defined as

+00

p(@,t) = / W(gp, s, t)ds. (6)

—00

Both W and p are normalized to unity.
For a stationary distribution, the time dependence of W vanishes and the
solution of Equation (3) can be written as:?

W, (¢, 8) = e by ($), ©)

@Qm)i2e

where p,(¢) is the stationary longitudinal linear charge density given by:

Po(@)e™ @ = p,(0)e™*@ exp(k[1 — cos($)]). ®)

The value of p,(0) must be chosen such that p,(¢) is normalized to unity.
The constants « and « are given by the expressions:

gh €*Z,Nf, 1 eV
k= ———————.
v:B3o2n E 2no?B2nh E

o= &)
For a given number of particles per bunch, N, Equation (8) contains two
parameters, which are typically unknown in the experiment: o and g. The first
is a measure of the longitudinal beam temperature, the second is a measure of
the potential energy (or longitudinal space-charge impedance). For vanishing
impedance
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FIGURE 1 Measured (solid) and theoretical (dashed and dotted) longitudinal charge density
for I = 350 uA, V¢ = 13.4V, h = 1. Note that the solid and dashed lines coincide almost
perfectly.
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FIGURE 2 Ratio of the effective 1f voltage to the applied rf voltage derived from the bunch
shape fitting for Vs = 18 V(A) and V; = 126 V (O).
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(o = 0) the linear density p,(¢) is Gaussian-like. In the other limiting case
of zero momentum spread (¢ — 0) the linear density becomes:

yzﬁ Vit

Po(®) = 2ngh? Z,eNf,

(cos(¢) — cos(do)), (10)

where |¢| < ¢, and 2¢, is the bunch length, determined by normalization.
The stationary distribution function, ¥, (¢, 8), is then given by:

Wo(9,8) = po(¢)8(5), an

where §( ) is a delta-function. Note that Equation (10) can also be trivially
derived by merely equating rf and space charge forces in Equation (5).2

Measurements of the stationary longitudinal bunch profiles of an electron-
cooled 45 MeV proton beam were performed in the IUCF Cooler ring as a
function of the rf voltage and beam current. The bunch shape was measured
using a broad bandwidth (0.002 to 200 MHz) longitudinal pick-up electrode
and a 10-bit full scale, 1 GSample/sec digitizing oscilloscope. The data were
transferred to a computer for offline analysis. The analysis consisted of fitting
the experimental longitudinal bunch density to the theoretical prediction
(Equation (8)) using two parameters (o and g). This analysis is thoroughly
described in Ref. [6], where the effective rf voltage within the bunch was
shown to be only 20-30% of applied f voltage. Figure 1 shows a comparison
between the measured bunch distribution of a 45 MeV proton beam (solid
line) with completely space charge dominated, or zero-momentum spread,
beam density (dotted line), given by Equation (10) with g = 3.1 and 0 = 0.
Also shown in Figure 1 is a theoretical bunch density (dashed line), given by
Equation (8) with g = 2.4 and o = 4 x 107 In fact, by fitting the measured
bunched density to the Equation (8) with finite momentum spread and to the
Equation (10) with zero-momentum spread one can obtain the ratio of the rf
effective voltage to the applied rf voltage:

Vet —-1— é
Vit go.

12)

Here g, is a value of g, obtained by fitting the bunch shape with ¢ = 0. In
Figure 2 this ratio is shown as a function of proton beam current.
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3 LONGITUDINAL OSCILLATION MODES

‘We now turn to the dynamics of space-charge dominated beams. It is obvious
that the time-dependent Fokker-Planck equation (Equation (3)) does not have
a simple analytic solution and, therefore, certain approximations are required
to advance our studies into time-dependent domain. One such approximation
is that for the most time-dependent phenomena (such as longitudinal bunch
oscillations) the damping and diffusion in the RHS of Equation (3) can
be neglected such that the Fokker-Planck equation reduces to the Vlasov
equation. Quantitatively, this implies that the angular synchrotron frequency
wso = 27 f5, should be much greater than A /2, which is typically true in the
IUCF Cooler for rf voltages Vi > 5 V.

A general solution of time dependent Vlasov equation, developed in Ref.
[3], treats the space charge as a perturbation and uses the linear rf voltage
approximation. Figure 2 shows, however, that the effective rf voltage inside
the bunch of the well-cooled proton beam rarely exceeds 40% of the applied rf
voltage. Thus, the space charge can no longer be treated as a perturbation and
a model of a completely space-charge dominated (zero momentum spread)
beam can be used instead. First, we will present the time dependent linear
bunch density, p(¢, t), as a sum of the stationary density, p,(¢), and a small
time dependent perturbation p, (¢, t):

P (P, 1) = po(P) + px(9, ). 13)

Limiting our consideration to completely space-charge dominated beams and
with the help of Equation (10) and Equation (5) we obtain:

5 — Zo8€*Nfo ch? dp.(¢, 1)

VBE R 99 14

In addition, using continuity equation and recalling Equation (4) one can
write:

0p« (9, 1)

a
5 T hnwogg(po(tb)cs) =0, (15)

where w, = 2nf,. Taking another time derivative of Equation (14) and
substituting in Equation (15) (p,(¢) is the time independent stationary
distribution given by Equation (10)) one obtains the following equation:
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2px  ,hneVi 3 [0ps
a2 T@oro, 5°E 3¢ g(eosw) — cos(¢o)) (16)
Using a Fourier series expansion
0 .
pe(@, 1) =) pu(p)e™! 17)
n=1

and recalling Equation (2) (n is negative below transition) we arrive to the
final equation:

2
‘;( i —cos(¢o))) (a‘f) pn = 0. (18)

The boundary conditions for Equation (18) are such that the function p, (¢)
must remain finite at ¢ = +¢,. In addition, the integral of p,(¢) on the
interval [—¢,; +¢,] must be zero due to the conservation of total number of
particles.

For small bunch length (¢, < 1) Equation (18) becomes the Legendre
equation:

d d n n 2
= ( Prlx) (g _ xz)) +2 (‘”—) pn(x) =0, (19)
X dX Wso

where a new variable x = ¢/¢, was introduced. On the interval [—1; 1] it
has a finite solution if and only if

wp = n(nz 1)w50a (20)

where n is an integer greater than zero. Thus, the two lowest modes (dipole
and quadrupole) are:

w1 = Wy,

w2 = 3wsp. (21)

These frequencies are exactly what one would expect for a completely
space-charge dominated beam with a linear rf voltage (see Equation (1)).
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As the bunch length increases, the frequencies @, become more complex
functions of ¢,. Nevertheless, these frequencies can be found numerically by
integrating Equation (18). An approximate value of the lowest order (n = 1)
frequency can also be found using the method of Stodola and Vianello!® —
an iterative procedure, which can be useful for the approximate determination
of the eigenvalues and eigenfunctions of a boundary-value problem. To apply
this method we will first notice that one can obtain an equation for §, similar to
Equation (18), by taking a derivative over ¢ of Equation (15) and substituting
in Equation (14):

a2 T\ o) o) —costdn) 22)

de n + <(1)n )2 Jn
where f, = 8,(cos(¢p) — cos(¢,)). This differential equation has the
homogeneous boundary conditions (f,(—¢,) = fn(¢») = 0), and thus the
method of Stodola and Vianello can be directly applied. By choosirig an
initial approximation of f,, & (cos(¢) — cos(¢,)) cos(¢) this method gives
on the first iteration an approximate value for the dipole frequency w;:

<&)2 N S (cos(¢) — cos(g,)) cos(¢)dep

23)
S (cos(9) — cos(@))dg

Wso

The value of w; given by this expression deviates by less than 1% from the
numerically calculated frequency for ¢, < 90°.

4 MEASURED FREQUENCIES

Measurements of the longitudinal oscillation frequencies (dipole and quad-
rupole) of an electron-cooled 45 MeV proton beam were performed in
the IUCF Cooler ring as a function of rf voltage and beam current. The
synchrotron (dipole) oscillation frequency was measured using a phase
detector.!! The synchrotron oscillations were excited by nonadiabatically
shifting the phase of the rf cavity voltage by a fixed value (= 10°) in less
than 40 us — a small fraction of the synchrotron oscillation period. The beam
phase information was stored in a computer together with a measurement of
the bunch longitudinal profile just prior to exciting the oscillation.
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The phase detector measures the phase of the first harmonic of the bunch
charge density, and consequently the bunch centroid, provided that the
longitudinal density stays symmetrical during the oscillation. Often small
modulations in the phase oscillation amplitude can be observed due to
admixture of other (nonsymmetrical) modes. Nevertheless, the frequency of
phase oscillations can be accurately measured. We would also like to point
out that in this experiment, after initial excitation, the synchrotron oscillations
remained coherent for many synchrotron periods (typically 30-40). This
allowed an accurate measurement of the oscillation frequency. “Snap-shots”
of the longitudinal bunch profile during the synchrotron oscillations showed
that no decoherence due to non-zero momentum spread was observed.
In fact, an observed slow decrease in the amplitude of these oscillations
was solely due to the electron cooling, which by itself introduces small
intensity-independent synchrotron frequency shift much like a shift in
damped pendulum oscillation frequency.

A comparison between measured synchrotron frequencies and Equa-
tion (23) is shown in Figure 3, where the FWHM of the bunch is used
instead of ¢, because measured bunch shapes have short Gaussian-like tails
(see Figure 1). Since the bunch length is, to first order, determined by the
beam current, the synchrotron frequency is a function of beam intensity.
This dependence of the synchrotron frequency on beam current has not been
previously observed.

After considering various known mechanisms (e.g. beam loading, resistive
impedance) which could lead to a dependence of the synchrotron frequency
on the beam intensity we concluded that neither of these effects can be
responsible for the magnitude of frequency change we observed. In fact,
any rf voltage amplitude decrease due to beam loading is compensated
by the automatic level control (ALC) whose bandwidth is 5 kHz, which
is much higher than typical synchrotron frequency. Also, any longitudinal
resistive impedance, which could lead to the observed frequency decrease,
would have to be so large (& 10 kS2) that the bunch density would be
significantly asymmetric.!? The observed bunches (Figure 1), on the other
hand, are symmetric for all attainable currents. We, therefore, suggest that
we observed a previously unknown coherent space-charge tune shift. The
mechanism of this tune shift can be described as follows: a high degree of
space-charge compensation leads to a suppression of decoherence in the rf
phase oscillations. Thus the bunch behaves as a single macroparticle and
“sees” the rf voltage averaged over the bunch distribution. This averaged
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voltage can be written as:

o ter
Vassin@) = Vee [ pu@ - a)sin()do. 24)
—¢ota
where « is the rf phase displacement and V,,, can be interpreted as an effective
amplitude which would be seen by the bunch if all the particles were at . For
completely space-charge domindted beams this avefaging can be performed
analytically. The dipole oscillation frequency can be then written as:

(g)z _ Vau _ J%, po@)sin(@ + )dg. 05

SV [% pe(@) sin(@)de

One can prove that this expression is identical to Equation (23) for the bunch
densities given by Equation (10).

We would like to point out that the measured data in Figure 3 deviate
from the theoretical value for longer bunches. There are a number of reasons
for this discrepancy: firstly, the actual bunch is marginally longer than the
ideal space-charge dominated bunch due to non-zero momentum spread,
though both have the same FWHM. Secondly, Equation (25) assumes a rigid
bunch. However, we have observed that the bunch “leans” in the direction of
increasing |¢|. All these effects cause a reduction in the effective rf voltage
and consequently further reduce the dipole frequency.

Quadrupole oscillations were excited in this study by suddenly increment-
ing the rf voltage by a fixed value (= 6 V, a roughly 50% increase). The
frequency of these oscillations was measured by monitoring the power in
one of the higher revolution frequency harmonics as a function of time. The
harmonic number, typically 20—40, was chosen to be sensitive to the bunch
length changes.

The ratio of the measured quadrupole frequency, w,, to the single particle
synchrotron frequency ws, is shown in Figure 4. Note that the value of
quadrupole frequency is sensitive to the proton beam momentum spread. We
have already shown that for the linear rf voltage model this frequency varies
from 2wy, to \/3ws, depending on the degree of space-charge compensation
(see Equation (1)). In the case of sinusoidal rf voltage one has to solve
the Vlasov equation for the finite momentum spread beam. In principle,
this would allow us to determine the momentum spread from the measured
quadrupole frequencies. Such a treatment, to our knowledge, has yet to be
developed.

Wso
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FIGURE 3 Measured synchrotron frequency as a function of bunch length (FWHM) for
Vi = 18 V (A) and Vs = 126 V (O). The solid curve is the theoretical prediction of
Equation (23).

2.0 T T T T
1.9 F =

o a@ 3

E o 3

o E o 3

éﬂ 1.8 | o 3
N ® o ]
3 r ]
1.7 B

1.6 F E

r .

1‘5 o en e aa ty vt bet e n et areds’d

0.0 0.5 1.0 1.5 2.0

Bunch FWHM, (rad)

FIGURE 4 Measured quadrupole oscillation frequency (V4 = 18 V). Solid line is the
zero-momentum spread quadrupole frequency, numerically calculated from Equation (18) for
n=2.
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5 CONCLUSION

The longitudinal time structure and oscillation modes of very cold rf-bunched
proton beams were experimentally studied in the IUCF electron cooling ring.
Both longitudinal bunch density and dipole frequency measurements indicate
a high degree of space charge dominance. In this regime the nonlinearity of
the rf focusing field (which would normally result in synchrotron frequency
spread) leads to a coherent shift in the frequency of small amplitude dipole
synchrotron oscillations. This phenomenon of coherent space-charge tune
shift has not been previously observed.

This new form of beam, in which incoherent synchrotron and possibly
betatron oscillations are suppressed, is of great interest for the future high
brightness accelerators, where space charge effects could play an important
role in limiting beam intensities and beam brightness.
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