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We present a new class of theoretical designs for cylindrical magnets of circular cross-section
that analytically yield a constant field in the inner bore. We suggest an optimized design and
compare it with the conventional cos edesign. The new design has two attractive features. The
bore is elliptic in shape with the long axis along the field direction. Further, it has a smaller outer
diameter compared with the cos e design for a given dipole field and peak current density and
for a given bore dimension perpendicular to the field axis. We also discuss a scheme for winding
a magnet approximating our design.
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1 INTRODUCTION

Cylindrical superconducting magnets are used in high-energy storage rings
to generate a constant field perpendicular to the cylinder axis inside their
inner bore. Standard text books l ,2 on magnet design discuss two designs
for a dipole magnet, viz., the "cos f)" design and the "intersecting ellipses"
design. A recent article by Schmuser3 presents a detailed review on these two
designs. The outer cross-section of the magnet is circular and a bore of the
same shape, in the case of the cos f) design and a more complicated shape in
the intersecting ellipses design. These designs are based on their theoretical
versions which analytically yield a uniform field in the bore region of the
magnet. In this paper we present a new class of theoretical designs for a
dipole magnet having a circular outer cross-section and an elliptical bore that
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also analytically yield a constant field in its interior. Thus the well-known
cos 8 design is just one member of this class. Each design of the class is
characterized by an arbitrary function which determines the eccentricity of
the cross-section of the bore. This function may be optimized to suit the
desired special requirements. We assume that the maximum current density
that can be passed through the conductor, the desired bore field value and
the bore dimension perpendicular to the field axis are specified. We then
provide an optimum design which has a smaller outer diameter (by up to
17%) compared to the conventional cos 8 design.

The present design is motivated by our recent work on Bean's Critical
State model for hard type-II superconductors as applied to sample shapes
with nonzero demagnetization factors.4- 7 Amongst the sample shapes we
have considered is· that of an infinite cylinder, of elliptic cross-section in
an applied field Haj along one of its principal axes. Both the cartesian and
polar axes used in this paper are shown in Figure 1. The induced currents set
up under application of an external field Haj are J(r, 8) = J(r, 8)k, where
k is a unit vector along the cylinder axis and the function J (r, 8) satisfies
J (r, 8 + Jr) = - J (r, 8). For an infinite cylinder with currents parallel to
the cylinder axis one cannot distinguish between induced currents (as in the
Critical State) and transport currents (as in a magnet). We shall now refer to
J (r, 8) as transport currents and use the mathematical formalism ofour earlier
work.4- 7 Assuming that these currents flow between the outer surface and
an inner surface (called the flux front) r = f(~o, 8), where ~o is a parameter
related to the magnitude of Ha , we have solved4 for f(~, 8) and J (r, 8), such
that B = 0 in the interior of the flux front. If we denote by B] (r, 8), the field
generated by the current distribution then this implies that B] (r, 8) = - Haj
in the interior of the flux front. Our solutions for J (r, 8) and f (~, 8) thus
provide a set of designs for cylindrical dipole magnets of elliptical outer
cross-section and which generate a constant field (along j) in their interior.

In this paper, however, we restrict ourselves to the case of cylindrical
magnets with circular outer cross-section. In Section 2 we present general
results for J (r, 8) and f (~, 8) that generate a constant field Bo j in the inner
bore, i.e., the interior of r = f(~o, 8) (see Figure 1). We then choose that
solution which leads to the largest possible dimension of the inner bore along
the x -axis. This is our optimum design which is the main concern ofthis paper.
In Section 3 we compare our design with the cos 8 design. In Section 4 we
consider the implementation of the optimum design and discuss possible
schemes for practically winding a magnet of our design.
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FIGURE 1 The cartesian and polar axes used are depicted. The unit vectors i andj are along the
cartesian axes X and Y respectively. The magnet axis is along the unit vector k perpendicular to
the plane of the figure. r = a is the outer circular cross-section of the magnet, while r = f(~o, (J)
is the cross-section of the inner bore. The parameter ~o is the ratio of the transverse bore
dimension to the outer radius. The shaded region carries the current density J (r, (J). Flux-fronts
like r = f (~, (J), ~o :s ~:s 1 scan the entire current carrying region. The magnetic induction
B has two components Bx and By and Bx = 0 within the bore.

2 DIPOLE MAGNETS OF CIRCULAR CROSS-SECTION

We consider an infinite cylinder of outer radius a and the inner bore given by
r = f (~o, ()), (Figure 1). The cylinder carries a current J (r, ()) parallel to the
axis, and satisfies the condition J (r, () + Jr) = - J (r, ()). The entire current
carrying region of the cylinder is spanned by r = f (~, ()), with ~ varying
from ~o to 1, and we impose the boundary condition f (1, ()) = a. The current
carrying region generates a field BJ(r) and we require that BJ(r) = -Boj,
for r lying within the flux-front f (~o, ()). Working in cartesian coordinates,
we have
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/-Lo f J(x', y')[-(y - y')i + (x - x')j d d (1)
Bj(x, y) == -2 (')2 + ( ')2 xl ylrr x-x y-y

where the integral is over the current carrying part of the cross-section of the
cylinder. Instead of working with the vector Bj it is advantageous2 to work

with a complex number B(z)

B*(·) == /-Lo f l(x', y')(z - ~) dXld I
z 217: I z _ ~ 12 Y

(2)

where z == x + iy, ~ == x' + iy', Bx == 1mB and By == ReB. Since the
current density is real, one can write2

B(z) == -/-Lo f J(x', y') dx'dy'
2rr (z - ~)

(3)

If z lies in a circular region of radius ro (centred about the origin) such that
~o < 1~ I for all ~ in the current carrying region, we may expand the factor
/ (z - ~)-1 of the integrand of Equation (3) in a power series to get

B(z) = Ito f:zn f ~-(n+l) l(x', y')dx'dy'
2rr n=O

writing ~ == u exp(i¢), we get

(4)

B(z) = Ito f:zn f u-ne- i (n+l)¢ leu, ¢)dud¢ (5)
2rr n=O

We npw change the variable from u to~' by setting u == f(~', ¢) and note
that the current carrying region is spanned by varying ~' from ~o to 1. Thus
we get

1 J[

B(z) = Bo + ~: f:zn f d1;' f d¢f-ne- i (n+l J<!> J(1;', ¢)f~1 (6)

n=l ~o -J[

where we have denoted by f~/, the partial derivative af/a~'. Further, Bo is
the n == 0 term of Equation (5) and is independent of z. It was shown in
Reference 4 and also detailed in the appendix, that if we choose
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f (~, e) = a~ /[1 + p(~) sin2 e] 1/2
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(7)

with p(~) an arbitrary function, [This corresponds to the inner bore being an
elliptical cylinder with the semi axes a~o (perpendicular to the field axis) and
a~o/[1 + p(~O)]1/2, (see Figure 1)], and choose

l(~, e) == alc[f cose + (af/ae) sine]/[f(af/a~)] (8)

then all the terms under the summation in Equation (6) vanish identically
and Bo is real. We will then have Bx = 0, By = Bo in the circular cylinder
of radius roo It follows by analytic continuation that Bi = Boj throughout
the inner bore. It should be mentioned here that the form (8) of the current
density was obtained by imposing the constraint that it generates uniform
Amperian magnetization (resulting from Ampere's equivalent shell theorem
applied to various current loops constituting the current distribution) in the
bore region.4 The details are given in the appendix. This property is exhibited
also by the two afore mentioned magnet designs. An explicit calculation
following Reference 2 shows that the field within the bore is indeed constant
and is given by

1

f {[I + p(~)]1/2 - I}
Bo = fLolca d~

p(~)
~o

(9)

It is clear that in the present frame-work the cos e design corresponds to the
choice p(~) = O. For the optimum design we choose p(~) = ~ - 1. This
maximizes ~o in Equation (9) for a given value of the bore field Bo and a fixed
value of Ic.7 Thus for a fixed transverse bore dimension a~o the optimum
design has the smallest outer dimension a.

We now give an explicit expression for the current density relevant for
the optimum design. It follows from Equations (7) and (8) with optimum
p(~) = ~ - 1 that

Transforming to cartesian co-ordinates we have

(11)
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Hence J(x, y) is constant along the parabola

(12)

It may be recalled that for the conventional cos () design both the outer
cross-section and the bore are circular in shape and J (x, y) is constant along
straight lines passing through the origin.

3 COMPARISON WITH cosO DESIGN

We note that Jc , the current density at () = 0, is determined by the conductor
used and will be assumed to be specified. For a given value of a, the outer
radius and a given bore dimension 2a~o perpendicular to the field axis,
we compare the dipole fields in the two designs. Using Equation (9) with
optimum p(~) we get

Bo[opt] = 2JLoJc"a[1 - ~ -In{21(1 + ~)}] (13)

and for the cos () design (p (~) = 0) we get

Bo[cos ()] = (JLoJcaI2)[1 - ~o] (14)

In Figure 2 we plot (BolJLoJca) for the two designs. Our design gives a
higher value, and the difference increases as ~o (or the bore size) decreases.
The maximum gain in Bo is about 22% at ~o = o. We can invert the argument
and say that if Bo and a~o are specified, the outer radius a is smaller for the
optimum design. We shall come back to this point later.

The second point to recall is that the inner bore is an ellipse with the
semi-major axis b = a~o/[l + p(~O)]1/2 along the field direction. For the
optimum design this simply reduces toa~ while the corresponding value
for the cos () design is a~o. The variation of b with ~o is shown in Figure 3.
The larger value of b may have an advantage when it is desired to have two
vacuum chambers, one above the other, within the same magnet bore carrying
different particles as for a particle-antiparticle collider.
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FIGURE 2 A comparison of Bo/ f.Lo1ca, for various values of ~o for the optimum design and
the cos edesign with the same outer dimension a.
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FIGURE 3 The plot of b/ a, for various values of ~o for the optimum design and the cos e
design having the same outer dimension a and the same transverse bore-dimension a~o. The
dimension of the bore along the field axis is 2b.
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In practice the magnet will be wound to accommodate a beam tube with
fixed dimension. Thus the size of the inner bore a~o and the field Bo within
the bore shall be specified. It would be worthwhile to compare the amount
of conductor required, the field values at the outer surface as well as the total
flux leaking out of the magnet for the cos () and the optimum design.

Let a [opt] and ~o be the outer radius and the ~ -value of the inner bore for
the optimum design and a[cos ()] and ~~ denote the corresponding quantities
for the cos () design. Then we require for comparison hereafter

a[ opt ]~o = a[cos ()]~~

and

Bo[ opt] = Bo[cos ()] = Bo

From Equations (13), (14) and (15) it follows that

(15)

(16)

(18)

~o/~~ = ~o + 4[1 - ~ -In{2/(1 + ~)}] (17)

Let Ra denote the ratio ~o/~~ {= a[cos ()]/a[ opt] (cf. Equation (IS))}.
In Figure 4 curve-B we plot Ra as function of ~o. It is clear that for small
~o(large bore field Bo), a[cos ()] is significantly large compared to a[opt].

Next we compare the volume of the conductor required for winding the
magnet. The required current density may be generated by varying the
conductor density keeping the source current fixed. The volume of the
conductor V [I] required for the current distribution I (r, ()) is then given
by

1

V[l] = L f rdrd() l(r, ())/ Ie = 4a2L f ~d~
Jl + p(~)

~o

where L is the long dimension of the magnet. A simple calculation shows
that for p(~) = 0

V[cos 8] = 2a[cos 8]2(1 - ~b2)L

and for p(~) = ~ - 1

(19)

(20)
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FIGURE 4 A comparison of the optimum design and the cos () design when both are wound
with identical conductor, generate the same bore field Bo, have the same transverse bore
dimension 2a~o and are operated with a current source providing a fixed current density. The
curve B compares the ratio of outer radii a[cos ()]/a[opt]. The x-axis is the ratio of the transverse
inner bore dimension to the outer diameter for the optimum design. With a~o and Ie specified,
~o decreases with increasing Bo as follows from Figure 2. The curve C represents the ratio
V[cos ()]/ V [opt] of the conductor voulmes required. The curve D represents the ratio of the
fields B [cos ()] / B [opt] at r == a, () == O. The curve E represents the ratio F [cos ()] / F [opt] of the
total (integrated over the region exterior to the magnet) flux leaking out of the magnet.

Using relation (11) the ratio Rv = V[cos ell V [optl can be expressed as a
function of ~o. This has been plotted in Figure 4 curve-C. The ratio Rv has
its minimum value (~ 0.96) at ~o ~ 0.5. The optimum design requires less
conductor volume (up to ~ 8%) in the range of 0 :s ~o :s 0.2. Small value
of ~o corresponds to large value of the bore field.

We may also compare the fields (Bl) generated by the current distribution
at a point a~, ~ > 1 in the e = 0 plane. A simple calculation7 shows

1

B - J a f [ [1 + p(~/)l~ - 1 / 1/2J!!L
J -!-to c [{t + p(n}~2 _ p(~'W2F/2 [+ p(~ )] p(~')

~o

(21)
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For p(~/) = ~' - 1 we get Bj[opt] and for p(~/) = 0 we get Bj[cos e]. The
ratio RB = Bj [cos e]IBj [opt] is plotted in Figure 4 curve D. This ratio is
always found to be greater than 1.

Using the expression for Bj we can compute the flux leaking out per unit
length of the magnet and this is given by

(22)

Using the appropriate form of p(~/) we can determine F[cos e] and F[opt]

and hence the RF = F[cos e]1F[opt]. In Figure 4 curve-E we have plotted
RF as a function of ~o. It may be noted that for ~o < 0.5, the ratio RF > 1,
it attains a minimum and rises again.

4 PRACTICAL WINDING SCHEME

The current distribution we desire is given by Equation (10). This can, in
principle, be realized by winding parabolic layers of identical conductor, but
with different current supplies for each layer. This possibility is hard to realize
in practice. A second possibility is to use a common current supply with each
layer having a conductor density such that Equation (10) is satisfied.

The practical method used to wind the cos e design is to put insulating
wedges along the cross-section of the cylinder and wind the magnet with
one particular conductor carrying a uniform current. The current carrying
region is divided into several zones. Each zone is further subdivided into two
parts, one part with area Ac filled with conductor and the other with area
Ai is filled with an insulator. A current of the same density obtained from a
common source is passed through all the conducting zones. The conducting
subzone carries the same total current as would be carried by the full zone as
per the cos e current distribution. The number and location of the wedges is
chosen so as to approximate the cos edistributionl ,3 for the current density as
closely as required within the limits of tolerance for the nonuniformity of the
bore field actually generated. This method can be adapted for our design as
well. We present a schematic of the cross-section in Figure 5. Since lines of
constant current density are parabolas, the various zones and subzones have
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FIGURE 5 A schematic cross-section for a practical realization of the optimum design. The
parabolic zones are to be alternately filled with conductor and insulator. At () = 0 there is a
large conducting zone followed by a wafer thin insulating zone. The size of the conducting zone
reduces and that of the insulating zone increases as () increases. The largest insulating zone
is at () = 11:/2. The wedge structure may be compared with that for the cos () design given in
references. 1- 3

parabolic boundaries. The size of the conducting subzone decreases and that
of an insulating subzone increases as e varies (see Figure 1) from 0 to on /2.

5 CONCLUSIONS

We have presented a new class (characterized by a function p(~)) of
theoretical designs for a dipole magnet. We have provided a new optimum
design for a dipole magnet which will reduce the lateral size of the magnet
for specific practical requirements. We have compared its features with the
conventional cos edesign. The optimum design would be particularly useful
if large internal field is desired. In this field range it has low leakage field in the
immediate (outer) vicinity of the magnet and also small total flux leakage.
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The comparison of the optimum design with the cos e is only incidental.
It should be remembered that the theoretical designs of the new class, in
general, include magnets with elliptical - both prolate and oblate - outer
cross-section. The designers of magnet may possibly choose to optimize one
of these using different criteria. Finally, as noted earlier, the two well known
desi,gns for dipole magnets as well as those of the general class mentioned
in this paper have one feature in common, viz., the appropriate current
density that generates uniform bore field also generates uniform Amperian
magnetization within the bore. Whether such a constraint has any deeper
significance needs to be investigated.

6 APPENDIX

We present a derivation of the expression (Equation (8)) for the current
density. Consider a current carrying region bounded between two cylindrical
surfacesr == f(l, e),andr == f(~o, e) (r == Jx2 + y2)withcurrentdensity
J directed along the cylinder axis (z-axis). The current carrying region can
be viewed as a stack of planar current loops. The Amperian magnetization at
a point (x, y) within the current carrying region is given by

X max

M(x, y) = f Jdu

x

(A.l)

The integral represents contributions from planar loops for a fixed y, and Xmax

is determined so that the point (xmax , y) lies on the surface r == f(l, e). The
magnetization in the bore region would be obtained by replacing the lower
limit x by Xmin such that (Xmin, y) lies on the surface r == f(~o, e). Denoting
this by Min we have

Xmax

Min (x, y) = f Jdu

Xmin

(A.2)

We now change the variable of integration from u == r cos e to ~ through the
substitution r == f (~, e) so that y == f (~, e) sin e is held fixed. This leads
to
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1

f 1 f f~ d~

Min (x, Y) = (f cosO + Ie sinO)
~o
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(A.3)

Thus Min is independent of x, y if the integrand is a function of ~ alone.
This leads to the expression

1 (~, ()) = g(~) [f cos () + (af/ a()) sin ()]/[f (af/a~)] (A.4)

for some function g(~). The choice g(~) = ale leads to Equation (8).
We now show that every term in the sum on the right hand side of

Equation (6) vanishes identically for the choice of the flux-front and the
current density as given by Equations (7) and (8). Let us denote by In the
integral over ¢ on the right hand side of Equation (6). Thus we have for
n=I,2,3, ...

Jr

In =I I-n e- i (n+l)t/J J(~/, <jJ)/~' d<jJ

-Jr

Equation (8) for the current density may be rewritten as

f~1 l(~/, ¢) = [ale/f(~/, ¢)]a(f sin¢)/a¢

(A.5)

Next the integrand may be treated as a product of factors (f sin ¢) -{n+ 1) and
(sin ¢e-i¢)n+1 to facilitate integration by parts. The integrated term vanishes
at both the limits and we have

Jr

In =
(
n +n 1) f f- ne-i (n+2)¢ d¢

-Jr

(A.6)

Since f(~/, -¢) = f(~/, ¢) only the cosine part of the exponential will give
a non zero contribution to In and the range of integration can be reduced to
(0, Jr). Furthermore, for an odd integral value of n, cos n¢ is an odd function
of ¢ about the value ¢ = Jr /2. Hence we conclude that In must vanish for
n = 2k+ 1, k = 0, 1,2, .... For even values ofn, say n = 2k, k = 1,2,3, ...
use of the explicit form of f (c.f. Equation (7)) gives the following expression
for 12k
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7i

hk = (2k:1) (an-2k f [1 + p(~/) sin2 q,]k cos[2(k + 1)q,] dq, (A.7)

o

Noting the fact that

2k

[1 + p(~/) sin2 ¢]k = L YZ (~/) cos 1¢
z==o

where the yz 's are independent of ¢, it is clear that 12k = 0 for k = 1,2,3, ...
etc.
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