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The state of the art on definition of dynamic aperture, analysis of nonlinear systems, indicators
of weak instabilities, nonlinear diffusion, noise effects in nonlinear systems is reviewed and
discussed and compared with experiments on particle accelerators, Most remarkable is that
novel tools based on Taylor maps are now widely used for accelerator applications. The
quantitative understanding of dynamic aperture by particle tracking has been further improved
and discrepencies between calculations and observations are now well within a factor of two.
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1 OVERVIEW

The working group on dynamic aperture consisted of the following members:
Y. Alexahin, R. Bartolini, J.R. Cary, J. Ellison, W. Fischer, O. Briining,
J. Gareyte, N. Gelfant, M. Giovanozzi, G. Hoffstatter, B. Holzer, J. Jowett,
J. Lascar, C. Luettge, D. Robin, W. Scandale, T. Toyama, E. Todesco, and
F. Willeke. The following topics were discussed.

• The evaluation of the dynamic aperture may be ambiguous if an over
simplified definition is used. The working group discussed various
proposals for a satisfactory and unambiguous definition of the dynamic
aperture.

• New tools for analysing nonlinear systems have been developed over the
last years, the benefit of which is now becoming evident. The discussions
were focused on the question to what extent it is possible to systematically
design a large dynamic aperture by identifying and manipulating the
most relevant parameters of nonlinear accelerator systems. Especially
methods .based on the analysis of truncated maps are very efficient
and promises considerable progress in the understanding of nonlinear
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problems in accelerators. One of the application discussed is magnet
sorting to optimize the dynamic aperture.

• Early indicators of instability are supposed to speed up considerably
the calculation of dynamic aperture by computer simulations. The
dynamic aperture limit is given by a weak instability of the motion
which is associated with chaotic behaviour. Thus, early indicators are
indicators of chaotic orbits. In the last few years, the criterion of the
nonvanishing Lyapunov exponent has been applied successfully to accel
erators. More recently, the method of frequency map analysis has been
proposed as a new powerful indicator ofchaoticity. The different methods
have been reviewed and compared in the discussion of the working
group.

• A complementary tool to the early indication of instability is the estimate
of survival times. Methods in use in the field of accelerator physics are
based on Nekhoroshevs theorem.! Considerable progress was reported
upon in the working group. The new method provides rigorous lower
bound for the survival times.

• The concept of dynamic aperture is not sufficient to characterize the
stability of orbits in accelerators. A weak instability which manifests
itself by a very slow growth of oscillation amplitude is best characterized
by a quasi-diffusion process. The quasi-diffusion as a consequence of
chaotic orbits in nonlinear systems is in practice indistinguishable from
the effect of external noise which may be enhanced by the nonlinearity.
New approaches to describe diffusion and noise processes have been
discussed.

• The question of how well the border of stability of a real accelerator
can be predicted by a computer model is most relevant for the design of
new accelerators. A series of experiments have been carried out at the
CERN SPS to address this question. More recently, the dynamic aperture
of the complex superconducting HERA proton ring has been studied
systematically and has been compared with simulations. The discussion
of the working group concentrated on these two cases.

2 DEFINITION OF THE DYNAMIC APERTURE

The dynamic aperture may be defined as the size of the amplitude ofa particle
which is close to the border of stability. The problem of measuring dynamic
aperture in a computer simulation or in a beam dynamics experiment is
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the problem of measuring amplitude. To measure amplitude in multidimen
sional nonlinear dynamical systems in a practically feasible way is quite
delicate.

Several ways of defining amplitude in the context of dynamic aperture
evaluation have been discussed.

The initial distance z - zo of a particle from its central orbit, zo, is only
a sufficiently good measure of amplitude if the motion is approximately
harmonic. This is usually not the case for particles near the border of stability.
A complication arises also from the fact the motion takes place in three,
weakly coupled oscillation planes. Particles may depart considerably from
their initial value of z. If too simple a definition is used the result of dynamic
aperture evaluation may depend on the initial conditions, or on the observation
point in the lattice.

Another way to characterize amplitude which is often used is the maxi
mum, minimum or average oscillation amplitude of the particle coordinates
on successive turns. In this way, the dependence from the initial conditions
and the location of the starting and of the observation point can be removed.
However, these pragmatic approaches are in general unsatisfactory for
judging on small improvements and subtle differences of accelerator lattices
in the design stage.

The proper way to define amplitude is to use the Poincare invariants
of motion Ii = 1Pidqi where Pi and qi are canonical variables. In
the linear, uncoupled theory of particle dynamics in accelerators, these
invariants are closely related to the Courant-Snyder emittance Si, namely
Ii = ~(ZrYi + 2aiZiPi + prfJi) = ~Si. In the nonlinear case, the invariants
may be written as Ii = 1d¢iS(Zi, Pi). These invariants however cease
to exist if the motion becomes chaotic and thus becomes unstable. Near
unstable regions, in the vicinity of resonances, particle trajectories constitute
a complex topology in phase space. Therefore it is difficult to evaluate the
invariants from a sample of coordinate data obtained from tracking.

Several methods were discussed and compared. Some methods are based
on averaging particle coordinates·or carrying out the integral over the angle
variable numerically by using the tracking data (see for example 3). If the
oscillation amplitude is just averaged, the amplitude values near the unstable
fixed points are over-emphasized when the phase variables propagate only
slowly. The attempt to use tracking data for numerical integration ofthe phase
space volume suffers from the limited amount of tracking data, especially
if motion with three degrees of freedom is considered. A new approach has
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been presented by M. Giovanozzi2 which is based on normal forms analysis.a

Even in the limit of a chaotic orbit, the normal form analysis provides a mean
to evaluate the effective invariants. Even though the normal form analysis,
which will in practice never be complete but be truncated, will not provide an
exact measure ofamplitude, it is expected to provide in most cases sufficiently
accurate numbers. Giovanozzi has proposed to characterize amplitude by the
corresponding four-dimensional phase space volume

n/22n 2n

A = f f f dad¢xd¢yr4(¢x, ¢Y' a) sin(a)

o 0 0

(1)

where sin(a) determines the ratio between horizontal and vertical amplitude.
In order to evaluate the dynamic aperture, the amplitude parameter r can be
obtained as the radius of a hypersphere formed by the transformed tracking
coordinates. The object which is so defined is only an approximate sphere
depending on the accuracy of the normal form transformation. If F generates
the normal form transformation of the original map M of the tracking

(N generates a rotation), then the dynamic aperture may be obtained by

(2)

2

L(Fzni)2 + (Fpni)2.
i=l

(3)

from coordinate data Zi = x, y; Pi = Px, Py. This measure of aperture may
be considered as a rather unambiguous way to define and evaluate dynamic
aperture. It can be extended in a straightforward way to higher degree of
freedom. However, it is also not completely unproblematic. If resonances
occur a low amplitudes, the normal form analysis does not converge. Then,
the value of the phase space volume becomes arbitrary or, alternatively, the
normal form transformation has to be truncated at low order. Thus resonances
inside the dynamic apertures cannot be handled very well by this method.

aBy transformation to normal form one understands a coordinate transformation of a
nonlinear system. In the new coordinate system, the motion is described by a rotation in phase
space with an amplitude dependent rotation angle. Exact normal form transformations however
do not exist in general since the nonlinear accelerator systems are nonintegrable. If one speaks
about normal forms, one means approximated normal forms which are truncated in some order
of the coordinates.
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In summary, there is no unique way to define dynamic aperture. In many
cases, very simple definitions may serve the purpose. One has to carefully
examine from case to case which definition to use. It is important to be alert
for problems with over-simplified approaches.

3 DESIGN OF LARGE DYNAMIC APERTURE

In order to minimize the detrimental effects ofnonlinear fields, systematically
driven nonlinear resonances of low order and large amplitude dependence of
the tunes are to be avoided in the design of an accelerator. This is - at least
conceptually - relatively easy and many design recipies have been developed
to achieve low resonance strength and minimum amplitude dependence of
the tunes. If the result of such a procedure is not satisfactory any further
optimization becomes unfortunately very complicated. However new tools
have been developed recently which may provide considerable progress.

An approach to dramatically reduce the effect of nonlinear fields was
proposed and presented by D. Cary.4 Since the border of stability is
produced by the chaotic break-down of regular trajectories and since chaotic
behaviour is caused by nonlinear resonances, the dynamic aperture should
be dramatically improved by systematic canceling of the resonance driving
terms. The particle motion in the accelerator may be described by a map
M. The first step in this procedure is to have a fast and reliable way to
detect resonances and to determine their strengths. This is accomplished by
finding the periodic orbits Zel.o. = MnZcl.o. which are associated with each
resonance. There are powerful numerical tools available to find the fixed
points of a given map. The strength of the corresponding resonance is then
characterized by the trace of the Jacobian map In = az~jazo of the periodic
orbit. For a system with one degree of freedom (2 dimensional phase space),
Cary proposes that the strength of a resonance may be characterized by the
residue

Rn = (2 - tr{In })j4 (4)

which tells whether the nearby motion of the periodic orbit is linearly stable.
Rn is related to the eigenvalue A of the Jacobian or tangent map and for one
degree of freedom is given by
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(5)

R = 1 may serve as a threshold value for chaos and instability. This
criterion is easily and quickly calculated in systems with one degree of
freedom. In order to cancel or reduce high order resonance driving terms,
one needs high order nonlinear elements as correctors. Given a set of
multipole lenses, the strength of the resonances R can in principle be reduced
below threshold. Corrector strength may be optimized for example by using
numerical minimizers. This procedure has been tested for betatron motion
in one degree of freedom for a test lattice based on a cell of the ALS
storage ring. In this case the dynamic aperture could be increased by a large
factor by means of additional octupole and decapole lenses. The extension
to higher dimensions, and thus to more realistic models of the accelerator is
unfortunately not trivial. Already with two degrees of freedom, there is the
conceptual problem of how to define the criterion for stability since for each
resonance one has a whole set of periodic orbits. Last but not least there is
an explosion of resonance driving terms in higher dimensional phase space.
More work has to be done to demonstrate whether the proposed method can
be useful.

The evaluation and the analysis of truncated accelerator maps is used as
a design tool for the PEPII B-factory collider rings. This has been reported
by Y. Yan and J. Irwin.12,13 The combination of automated differentiation14

(differential algebra) and the Lie algebra tools18,19 has provided us with a
powerful analysis of the effect of nonlinear field. An important example is
the examination of the truncated map of an accelerator. Based on the work of
Dragt and Finn18 and using the tools which have been developed recently19

this map can be written in the form

M = Rexp(: L :) (6)

where R is a linear map. The exponential operator exp(: L :) = L~1 1/n! :
L :n describes the nonlinear part of the map where : L : denotes a poisson
bracket operator

(7)
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and L is a polynominal in the coordinates Xi, Pi. The coefficients of this
polynominal characterize the degree ofnonlinearity of the accelerator lattice.
This becomes particularly apparent, if L is expressed in terms of angle and
action variables Ji = xl + p; (using for example normalized accelerator
coordinates x ---+ x / ,J"P; x' ---+ P = (xa + x'fJ) / ,J"P). Then the coefficients
are associated with the strength of nonlinear resonances and the strength of
the amplitude dep~ndence of the tunes. These coefficients may be compared
for different lattice options and are helpful in the interpretation of tracking
results. Poor stability ofa lattice may be attributed to the magnitude ofleading
terms. By means of perturbation theory, each of the terms may be recognized
as a result of the interference between nonlinear elements and linear focusing
properties. In this way, the design can be systematically improved. This has
been demonstrated in the PEPII design work. It should be pointed out, that
this procedure is of course not a conceptional innovation. What is important
is that as far as computing speed and computability of high order effects is
concerned, the new tools are much superior to the "classical" methods such
as evaluation of low order resonance driving terms by perturbation theory.
These new tools thus allow a qualitative step forward in the understanding
of nonlinear effects in accelerators. The discussion in the working group
concluded, that the tools should be further exploited. It would be most useful
if general rules and threshold values could be developed. Further work is
encouraged.

A systematic improvement of accelerator lattices which are distorted
by nonlinear field errors is magnet sorting. Sorting means that individual
magnets, which carry the unavoidable nonlinear field imperfections, are
installed in a sequence which minimizes the all-over nonlinear effect. Sorting
consists of two problems: The first problem is to define a criterion for the
sorting. The second problem is to define a sorting procedure which satisfies
the quality criterion. For practical reasons, both, criterion and procedure must
work for a successive magnet installation procedure as necessary for large
accelerators.

The discussions in the working group was concerned mainly with the first
part. It was based on an investigation by W. Scandale on sorting criteria for the
LHC. 17 Three criteria have been proposed. They are based on the evaluation
of truncated accelerator maps

Z · - '"' '"' p. . nm zikl - L.t L.t ]I···}m k=l k
n it+..+im=n

(8)
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These are
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• The norm of the map: Ql = Ln An L] IF]

• The norm of the tune: Qz = f d¢(~v;(A, ¢)+~v~(A, ¢)) where ~Vx,y

are the tune shift with amplitude

• The norm of the resonance: Q3 = Ln An Lm Ihnm I where hnm are the
resonance driving terms of resonances m Vx + pVy = q, which are obtained
by a normal form analysis.

All three criteria seem to correlate clearly with the dynamic aperture
of a LHC model. The most reliable correlation is the one between the
tune criterion and the dynamic aperture. The working group concluded that
considerable improvement can be achieved for the dynamic aperture if sorting
procedures as described are applied.

4 EARLY INDICATORS

The growth of betatron oscillation amplitude near the border of instability
is very weak. This means that the time until a particle leaves the aperture
of the accelerator is very long compared to the revolution time. Typically,
the growth time is between 103 and 108 revolutions. This is a problem for
numerical studies of stability by computer models. Even with present day
computing capacity this remains a difficult problem.

Early indicators of instability are a tool to overcome this difficulty. Since
single particle instability is always related to chaotic motion, early indicators
are indicators of chaotic, quasi-stochastic motion.

The Lyapunov exponent

. . 1 Idnl
a = hm hm - log --::;-

do-+O n-+oo n Ido I
(9)

which characterizes the exponential divergence d: = Zn 1 - ZnZ of initially
close (distance do) trajectories in time (see for example 9) is a well established
tool in accelerator physics. There is quite some experience available from
dynamic aperture calculation for HERA and for the SpS,8 which demonstrate,
that Lyapunov exponents are reliable early indicators with a tendency to
somewhat pessimistic predictions since not all chaotic particles will be lost.
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Recently, Laskar has proposed to consider changes ofthe tune as a criterion
for chaotic motion. Since a variation of the action I is always correlated with
a variation of the tune, ~v(l) = a2H(I, </J)/aI2~I appropriate criteria
can be evaluated by a frequency map. Laskar has demonstrated how to
derive such a frequency map in a rigorous way5 by inverting the relationship
v = v(l) ~ I = lev). Here, v(l) is the amplitude dependent tune of a
nonlinear system. For practical purposes, it is sufficient to detect and examine
changes in the tune of a particle moving in an accelerator. A conceptionally
simple procedure has been implemented and applied to ALS stability analysis
by D. Robin.6 The procedure consists in calculating the tune from tracking
data over a certain number of turns at two different times. The use of
sophisticated procedures to improve on precision of the tunes to be evaluated
from a limited number of turns such as interpolation between peaks and
filtering techniques is essential. Tune diffusion constants may be defined as

Vx ,y(t2) - Vx ,y(t1)
Dx y = -------

, t2 - t1
(10)

where t1, t2 are two different times at which the tunes are evaluated. These
parameters can be plotted as a function of the initial tune. The plot exhibits
a fingerprint of the stability as a function of the tunes in the working
diagram. One can clearly recognize the important resonances by enhanced
tune diffusion constants. The tune diffusion parameters correspond very well
to diffusion parameters in action space and to survival times. Areas in tunes
space which have large tune drift coefficients also exhibit large excursions
and diffusion in amplitude.

Todesc07 has compared the predictive power of a tune diffusion criterion
with one of the Lyapunov exponent. The question of interest is whether
each of the two criteria can be automated by defining a threshold value. The
threshold can be defined as value

. 1 Idnl
a(n) = hm -log~

do-+O nidal
(11)

obtained for regular motion. In regular motion, there is only a linear
divergence of trajectories in time caused by the amplitude dependent tune

1 (av(J) )a(n) = -log --. J . n .
n aJ (12)



[482]/236 F. WILLEKE

This threshold-predict marks the transition from stable to unstable motion
in a simulation study for a four dimensional Henon map with remarkable
precision. In this model, the threshold becomes clearly visible after approx
imately 103 turns. Only a few obviously chaotic particles survive a large
number of turns (106 in the model used) and there are only a few particles
whose chaotic behaviour does not become evident within 103 turns. Thus, the
Lyapunov exponent can be considered as a rather precise, reasonably reliable
early indicator of instability. Todesco verifies the earlier observed trend, that
the method of Lyapunov exponent has a tendency to be too pessimistic.

If the variation of the tunes is considered one does not observe a sharp
threshold value. A threshold value in tune diffusion

D _ Vx,y(Nl) - vx,y(Nz)
x,y - Nz - Nl

(13)

marks a softer transition between stable and unstable motion. But the tune
criterion already reaches its final predictive power after a surprisingly short
number of turns, in the order of a few hundred.

This discussion may be concluded by the statement that both methods are
useful early indicators which may be considered complementary.

5 LONG-TERM BOUNDS

Early indicators of instability are indicators of chaotic orbits. They provide
pessimistic estimates of dynamic aperture. Since even weakly chaotic
particles may survive sufficiently long in the accelerator, one would like to
have an estimate of the survival times of particles near the border of stability.
This is the purpose of evaluating long term bounds. The approaches used in
accelerator physics are based on a scaling law proposed by Nekhoroshevll

IIp(t) - pet = 0)11 < sb for IItll:::; T exp(s* js)a (14)

where a, b, T, £* are parameters to be determined for each dynamical system
characterized by a Hamiltonian

Ho(J) + sH(J, ¢); s « 1 (15)
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(see also for example 10). To make use ofthis scaling law, it may be interpreted
in the following way. For a chaotic trajectory near the border of stability, there
exists an approximate torus from which the particle coordinates deviate only
slightly within a certain time T. Provided that within a domain of size ~ J,
one has found the largest excursion 0J of a trajectory from its approximate
torus,the time the particle needs to leave the domain is at least ~J/oJ . T.
Numerical approaches based on fitted phase space tori have been proposed
to estimate long term bounds for particles traveling in an accelerator. I 1

G. Hofstatter recently presented a rigorous estimate of long terms bounds16

which was discussed in the working group. The method is based on normal
form analysis and an interval arithmetic. The normal form analysis is used
to determine the approximate torus. Consider a mapping Zn+l = MZn with
the normal formN = F- 1MF and with approximate tori Zappr = Fr. r is
the radius vector of a hypersphere in normalized phase space. The excursions
from the torus are then simply found by the 'one-turn-mapping'

(16)

(17)

In order to provide a rigorous bound, one has to make sure, that one has
found the largest excursion from all tori in a given domain {z, z+ ~z}.

This is achieved by introducing an interval arithmetic in the same spirit as
automated differentiation or differential algebra. 14 All numerical operations
are carried out as vector operations to propagate intervals in place ofnumbers.
Each observable obtains an extension with the values of the mimimum I and
maximum values i of an interval {I, i} in this variable. The connections
between these new variables are defined by:

I = {I, i}

I + J = {I + 1.., i + J}

I - J = {I - J, i - 1..}

I . J = {min(l·1.., i .1.., I . J, I . J), max(I .1.., i .1.., I . J, i . J)}

Using these tools, the largest excursion from the approximate torus is given
by

or = {r., f}

= {((IF-1M - l)zl -IF-lzl)min, ((IF-1M - l)zl-IF-lzl)max}
(18)
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The benefit of this procedure for practical accelerator design work was
discussed. It is obvious, that ifa course mesh is chosen to partition phase space
into intervals the outcome of the stability analysis will be pessimistic. If the
phase space is segmented into finer domains, the analysis will become more
realistic. Unfortunately, in large accelerators, the transition between quick
losses and metastability is rather sharp, which means that the segmentation
has to be rather fine. On the other hand, the method includes the effect of any
weak instability in phase space regions which are well within the dynamic
aperture. Thus any tiny unstable region can be detected which is not possible
by any other method. On the other hand, such regions will always determine
the result of the stability analysis, even if they are tiny and unimportant. The
conclusion is, that· the benefit of the method for stability analysis must be
tested for a large accelerator. Long term bound studies for the HERA proton
ring have been suggested.

6 EFFECT OF NOISE AND DIFFUSION

Beam losses due to limited dynamic aperture are rather fast losses. They occur
typically within a minute or within the first 106 turns after the beam has been
injected. However, there are still particle losses after much larger times. In
the HERA proton ring for example, beam losses after injection extend over
hours. The initial beam lifetime r = 1:t aa~ is usually about 15 min. After one
minute, r is about 1 h, after 5 minutes r ~ 3 h and after 60 min r ~ 10 h.
The lifetime expected from scattering at the rest gas in the vacuum vessel is
(20-100)h.

It is not useful, to attribute such slow beam losses to a limited dynamic
aperture. These losses are the result of several effects. There is scattering
at the rest gas or noise in the rf system transferred to the beam. These lead
to emittance growth and beam losses also in perfectly linear systems. In a
nonlinear system, the scattering amplitudes may be enhanced by the distorted
topology of phase space, especially near resonances. Furthermore, there is
some slow growth of particle amplitude due to small chaotic regions in phase
space which are created by tune modulation.

Some aspects of these phenomena have been discussed in the working
group. A. Bazzani22 presented an analysis of stochastic perturbation of
a nonlinear map which he applied to a model of the SPS with strong
sextupoles. In the case of weak noise, it has been demonstrated (see for
example the contribution of Ellison to these proceedings23 ) that it is justified
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to average over the betatron phases. Then the diffusion is only considered in
the action variable. (An effective approximate action variable is used since
nonintegrable systems are considered.) The dynamic aperture is considered as
an absorbing boundary. The corresponding Fokker-Plank equation has to be
solved numerically. With this model, good agreement between the simulated
and analytically calculated time dependent distribution function for the SPS
model with strong sextupoles could be achieved.

T. Sen presented a numerical study of noise effects in HERA beam-beam
interaction.25 The HERA proton beam suffers from noise transmitted by
the electron- (positron-) beam via the beam-beam interaction. This leads to
fluctuation of the tune and fluctuation of the nonlinearity due to beam size
fluctuation of the electron beam. There is also a stochastic beam-beam offset
which leads to coherent excitations. It turns out, that the direct effect ofbeam
size fluctuation, which changes the nonlinearity of the system in a stochastic
manner, is the most detrimental effect for the HERA proton beam.

Some new results were also reported on the effect of tune modulation. The
dependence ofproton beam losses in HERA from tune modulation of a depth
of 10-4 and modulation frequencies of up to 1.2 kHz is theoretically well
understood and has been experimentally verified at the HERA proton ring.20

In the HERA proton ring, tune modulation compensation is meanwhile a well
established method to reduce proton beam losses in colliding beam operation.
Briining has summarized the continuous effort at HERA to gain control of
beam losses.

The classical method of evaluating the diffusion due to tune modulation
has been proposed by Chirikov.26 The motion of a particle near a resonance is
strongly distorted by nearby resonances. The size of the distortion of the orbit
near the separatrix can be evaluated. The diffusion constant can be computed
under the assumption that the phase of the distortion is random since the
motion is chaotic. A. Bazzani presented a statistical approach to calculate
the diffusion coefficients which seems to agree well with simulations.24

7 DYNAMIC APERTURE EXPERIMENTS

How reliable are the predictions of dynamic aperture by numerical simula
tion? This is one of the crucial questions in the design of a new accelerator.
This is the motivation behind a series of experiments which has been carried
out in the SPS accelerator at CERN which extended over more than ten years.
The result of thislarge effort is that the dynamic aperture ofthe SPS with eight
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strong sextupoles can be predicted to within a few percent by simulations, if
the effect of power supply ripples is correctly modeled.

The SPS with strong sextupoles and artificial strong tune modulation
can be modeled quite well since all the relevant parameters are known
with great precision. Much less certain is the knowledge of the relevant
parameters of the HERA proton ring with 416 superconducting dipole
magnets with strong but slowly decaying nonlinear field distortions from
persistent currents. Although, a large effort has been made to measure
the relevant field errors and their time behaviour, the exact distribution of
nonlinearities around the machine can never be completely certain. This
is due to the dependence of persistent currents on even slight changes in
the operation procedures. Therefore it was a very interesting test of the
computer models to compare the measured dynamic aperture of HERA with
simulations. A series of measurements were performed which have been
presented during the workshop.21 The result is that the dynamic aperture
of HERA has been overestimated by 30% by the simulations. Considering
the uncertainties, this can be considered as a good success for the tracking
procedures.

8 CONCLUSION

The presentations and discussions in the working groups demonstrated that
considerable progress has been made in the understanding of dynamic
aperture. A few years ago only a few experts developed and used the
methods of maps which are now widely used. The benefit of these new
tools is becoming evident. Considerable progress has also been made on
the important topics of early indicators and long term bounds. They must
be integrated now in the design procedures. The long term effort of refining
the tracking models by carefully describing the magnetic field errors and
including more subtle effects like tune modulation has paid-off meanwhile.
The result of dynamic aperture experiments differes from the predictions
by tracking calculations only by a 10%-30%. This provides confidence for
specifying magnet field quality for future accelerators.
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