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We propose a method to determine the coefficients of the hamiltonian that represents the
cumulative effect of all sextupoles in a circular accelerator. The method is based on the
low-frequency sinusoidal excitation of orbit corrector magnets and detecting BPM signals at
mixed harmonics of the exciting signals. The method is tested using a realistic model of LEP
and the influence of BPM errors is investigated.
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1 INTRODUCTION

In a recent report! we discussed a method that allows to determine both
phases of the sum and difference coupling resonances non-invasively by
exciting orbit correction magnets and observing the response of the beam
at selected beam position monitors (BPM) at the exciting frequencies. The
beam line used in Ref. 1 was purely linear which entails that only the exciting
signals are visible in the BPMs. In the presence of non-linear elements such
as sextupoles, octupoles, and decapoles this will no longer be the case. The
non-linearities will produce a mixture of the exciting frequencies such as
twice or thrice the exciting frequency and sums of different frequencies. We
will develop an algorithm that reconstructs the hamiltonian from observed
frequencies at a given set of BPM and then diagnose aberrations which
are generated by the cumulative effect of all sextupoles in the machine.
The wobbling frequencies are far away from the tune and we thus perform
measurements which are non-resonant with the beam's betatronic motion.
Therefore we are not limited to the measurement of aberrations which cause
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resonances that are close to that of the beam such as discussed in Ref. 2.
Since the frequency response of the system is very flat, all aberrations are
detected with similar accuracy, whether they are resonant with the beam or
not.

In order to describe the non-linearities in the beam line we employ
a hamiltonian framework and assume that we have a linear beam line
in which point-like non-linear elements are placed. Each non-linearity is
represented by its hamiltonian, e.g. an upright sextupole is described by
H3 = k2L(x3 - 3xy2)/6 which describes the kick caused by that element
with the aid of the Poisson-bracket.3 The hamiltonian of each non-linear
element is then mapped to the end of the beam line (the reference point). This
procedure only requires the linear map between the position of the element
and the reference point. Having accumulated all elements at the reference
point we concatenate them using the Campbell-Baker-Haussdorff (CBH)
formula3 and obtain the following representation of the map M through the
beam line

(1)

where R is the linear transfer matrix through the beam line and H is a
polynomial in the variable (x, x', y, y') that describes the cumulative effect of
all non-linear elements. In what follows we assume that the reference point
is chosen to be in normalized phase space, i.e. to be at fJx = fJy = 1m
and ax = a y = O. In that case R is the direct sum of two rotation
matrices. In the presence of sextupolar aberrations only H is given by
H = hlX3 + h2X2x' + h3x2y + h4x2y' + hsxx'2 + h6xx'y + h7xx'y' +
h8x y2 + h9xyy' + hlOxy,2 + hllX,3 + h12x,2y + h13x,2y' + h14x'y2 +
hlSX'yy' +h16X' y,2 +h17y3+h 18y2y' +h19yy,2 +h20y,3 withthe implied
ordering of the monomials. In the remainder of this report we will show that
all hj can be determined experimentally with good accuracy. Moreover, the
hj can be converted to physically more accessible parameters that describe
the strengths of resonances.4

2 DIAGNOSTIC SETUP AND FILTERING

In order to measure the 20 coefficients of the hamiltonian we need a
sufficiently large number of frequencies to observe. In the simulation used
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in this note we use two horizontal and two vertical orbit correctors, all
oscillating at different frequencies. The frequencies were chosen such that
the smallest difference between two mixed frequencies is maximum. Fixing
one frequency then determines the other three. We choose the following
four !1 = 0.0073722 !o, !2 = 0.0131550 to, !3 = 0.0161366 to, and
!4 = 0.0175514 !o where!o is the revolution frequency which is 11245 kHz
in LEP or LHC. We then choose two horizontal and two vertical BPM which
are used to detect the response of the beam. The BPM need to record the
position of the beam on 32768 consecutive turns which may require special
hardware. For simplicity the wobbling correctors, the BPMs and the reference
point need to lie in a section ofbeam line that contains no non-linear elements.

The four wobbling frequencies !1, ... , !4 can mix to yield the following

17 different frequencies: 0, 2!1, !1 + !2, !1 - !2, !1 + !3, !1 - !3, !1 +
!4, !1-!4, 2!2, !2+!3, !2-!3, !2+!4, !2-!4, 2!3, !3+!4, !3-!4, 2!4.
Observing all frequencies at all BPM we obtain 68 different observables of
which we use all, except the constant term for a total of64 observables, which
tum out to be sufficient to determine the 20 terms in the hamiltonian.

The order of magnitude of the signals can be easily assessed by the
following analysis. Assume that the reference point is in normalized phase
space and that the BPM and orbit correctors are also situated at the same
location. Then the normalized kick effected to the beam is -JP£, where £ is
the kick and the mixing signal is proportional to the square of that, with the
coefficient h of the hamiltonian being part of the proportionality constant.
The observed BPM signal, transformed into normalized phase space, is given
by x / -JP such that we obtain the approximate relation

(2)

yielding the simple relation x ~ hf33/2£2. Inserting typical values for LEP
f3 = 100m, h = 10/,Jnl and £ = 10 JLrad we obtain x ~ 1JLm. We must
remember that this is the amplitude of a harmonic oscillation with a known
frequency and can thus be measured with high accuracy.

In the simulations reported in this paper we use a detuned LEP optics
at high energy labelled K21P46 which contains about 500 sextupoles. The
coefficients of the hamiltonian for this beam line are shown in the top left
of Figure 2. The correctors and BPM were chosen from the RF section
of IR· 1 such that the phase advances between respective elements are
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FIGURE The beam's spectrum at position monitor PU.QL7.Rl, before and after filtering.

around 90 degrees and the corresponding beta functions are maximum. The
correctors are then excited with an amplitude of 10 {trad which generate orbit
deviations of ± 1mm in the arcs.

The left ofFigure 1 shows the Fast-Fourier-Transform (FFT) ofposition of
the beam at the horizontal position monitor labelled PU.QL7.Rl. We clearly
observe the exciting frequencies as large peaks with amplitudes on the order
of 1mm, but also other frequencies which come from the mixing due to
sextupoles. In a separate run we turned off all sextupoles and the secondary
peaks vanished. We observe that the width of the large peaks swamp the
secondary signals which are two to four orders of magnitude weaker than
the primary ones. The width of the primary peaks is a consequence of
the finite number of turns that the beam position is sampled. We know,
however, the exact frequency of the primary signals and can thus construct a
notch-filter to remove them from the raw data. We proceed as follows: First
we generate time series (sine-like and cosine-like) of the same length as the
raw data, namely 32 768 turns, which contain only the primary frequency
and Fourier-Transform them. The resulting spectra are then fitted to the
data points near the primary. peaks (normally 9 frequency bins for the sine­
and cosine-like transform) which yield the amplitudes of both phases. The
primary frequencies with the proper amplitudes are then removed from the
raw data and the resulting time series is Fourier-Transformed which leads
to the filtered spectrum shown in Figure 1. There the primary frequencies
are removed and the secondary frequencies with sub-micron amplitudes are
clearly visible, consistent with the above estimate.

An interesting point to note is that the number ofpeaks in Figure 1 is larger
than that of the secondary frequencies. Most of the observed peaks can be
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FIGURE 2 The original (top left) and the reconstructed coefficients of the hamiltonian with
with O/-Lm (top right), 10/-Lm (bottom left) and 30 /-Lm (bottom right) BPM noise (right).

attributed to the mixing of two frequencies, but there are a few that are left
unaccounted, implying that octupolar effects are also visible in the spectrum
which is consistent with the effect that the hamiltonian coefficients of the
sextupoles in octupolar order are about three orders of magnitude larger than
those of sextupolar order which compensates the extra factor of ,jfic that
comes from mixing three frequencies. The tertiary and higher order peaks
will be investigated in a later report.

3 THEORY

We assume that all dipole correctors and BPM are situated in the beginning
of the beam line with no non-linear elements between them. Moreover we
can back-propagate the kick of the correctors to the start of the beam line
and write £i == Ri1(0, Ci sin (Vi t, 0, 0) where Ri is the transfer matrix from
the start of the beam line to the (here: horizontal) corrector, labelled i, its



[424]/178 V.ZIEMANN

wobbling amplitude is denoted by Ci and its frequency by Wi. If we now
choose the reference point x= (X, X', y, y') at the start of the beam line, we
can write the total map as

(3)

where"£ = :Li= 1 "£i is the sum ofback-propagated kicks ofthe four correctors.
Since the wobbling frequencies Wi are very small the orbit will follow the
corrector kick adiabatically and we can solve Equation 3 for the quasi-static

fixed point xfinal = Xinitial with the result

x = (1 - R)-1 [R"£- :H: (R(x + "£))] (4)

where we expand the exponential to first order. The Lie-operator: H : operates
on the quantity R(x + "£) resulting in a non-linear equation, because H is
a third order polynomial and its application to a state vector x yields an
expression that is quadratic in the components of x. The action of : H : on
the elements of the state vector Xa can be written as a matrix equation

20 10

: H: Xa = [H, xa] = L LaajkhjZk
j=1 k=l

(5)

where we denote the four components of the vector x by Xa and define
z as a vector that contains the ten quadratic monomials of x, x', y, y' in
the following ordering x2, xx', xy, xy' , x' 2 , x'y, x' y', y2, yy', y' 2 and aajk
contains the numeric coefficients. Now we are in a position to solve Equation 4
perturbatively by expressing x = (x, x', y, y') as a superposition of the
wobbling frequencies and their mixing results

4 16

X= xo + L X1,i sin wit + LX2,) COSWjt
i=1 j=l

(6)

where w) runs over the mixed frequencies as shown above. Subscript i labels
the four correctors, and subscripts 0, 1, and 2 label the frequency mixing
order. Note that in Equation 6 we assume that all excitation signals are
sine-like, implying that their mixing products are only constant terms and
cosine-like mixing frequencies, which accounts for the absence of terms
with sine-like mixed frequencies. To first order in the wobbling frequencies
and the amplitude of "8 we obtain
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L X1,i sin wit = (1 - R)-l Rs .

i=l
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(7)

Here the left hand side is first order in the wobbling amplitude and also
wobbles in phase with the excitation frequencies. The next iteration is
obtained by re-inserting the left hand side into Equation 4 which yields a
second order equation in the amplitudes that has components at frequency
zero (xo) and at mixed frequencies (X2,j)

16

xo+ LX2,jCOSWjt=-(1-R)-1 :H: [(l-R)-lRS]. (8)
j=l

The left hand side describes the response of the beam's position at the start
of the beam line to the wobbling correctors due to third order aberrations. In
order to see the response at a BPM we propagate (x, x', y, y') to the BPM
position by left-multiplying with R, the transfer matrix from the start of the
beam line to the BPM. The BPM pattern is then contained in the first (for
a horizontal BPM) or third (for a vertical BPM) component of the vector

,." (~ ,,16 -. --)
R xO+L.Jj=lX2,jCOSWjt.

In Equation 8 the Lie-operator: H : operates on (1 - R)-l Rs where
s is given as the sum of four back-propagated wobbling correctors Si.
Consequently we define the vector Vi that corresponds to a particular corrector
by

(9)

Denoting the four components of Vi by greek indices ex or fJ we can evaluate
the quadratic terms that arise from applying the Lie-operator: H :

4 4 17

L Via sin wit L Vjf3 sinwjt = L bkm coswmt . (10)
i=l j=l m=l

In the previous equation we clearly see how the mixing of two sine-like
oscillations generate a constant term and cosine-like mixing terms of the
sum and difference frequencies. Equation 10 is used to define the 10 x 17
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matrix bkm where k runs over the ten different combinations ofa and fJ which
correspond to the ten quadratic monomials alluded to above and rn runs over
the 17 mixed frequencies.

The presented method can be coded on a computer in a fairly straight­
forward way. First, the definition of the Poisson Brackets in Equation 5 are
stored in an array aajk of dimension 4 x 20 x 10. The first index corresponds
to the a = 1, ... , 4. The second index denotes the hamiltonian coefficient
hj, and the third index k refers to the ten quadratic monomials. Second, the
vectors Vi are calculated. Third, we calculate bkm of dimension 10 x 17 which
is defined in terms of the Vi by Equation 10. The first index k refers again to
the ten quadratic monomials and the second index rn to the 17 frequencies in
the ordering given above. All information about placement and amplitude of
the wobbling correctors is contained in b through the definition of the vectors
Vi. Equation 8 can finally be written as matrix multiplication

4 10

Cajm = L(l - R)-;J LafJjkbkm

/3=1 k=1

(11)

where Cajm is a matrix of dimension 4 x 20 x 17 that contains the information
by how much coordinate Xa at the start of the beam line wobbles at frequency
rom due to the hamiltonian aberration hj • Having found the beam's response
at the start of the beam line we can determine the response at a particular
BPM by left-multiplying C with the transfer-matrix to the BPM R. For a
horizontal BPM we get

4

T(rn, j) = L Rla Cajm

a=1

(12)

for the dependence of the amplitude of frequency rom due to aberration hj .

For a vertical BPM we replace the 1 in the previous equation by 3.
The matrix 1ij relates the 20 hamiltonian coefficients hj to the 68 =

4 x 17 signals Si at different frequencies at the four BPM which allows
us to write Si = Lj Tijhj. The signals Si can be measured using the
filtering technique described in the previous section and the hamiltonian
coefficients can be inferred by solving for the hj in the least-squares
sense hj = ((T t T)-1T t )ji Si. Errors in the BPM response pattern can
be taken into account by left-multiplying T by a weight matrix Ai =
diag (1/0'1, ... , 1/0'68) and observing that the diagonal elements of the
covariance matrix (T t T) -1 are the squares of the errors on the hj •
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We test the reconstruction of the hamiltonian coefficients with the LEP
lattice used for the generation of Figure 1. Raw data for the analysis are
generated in tracking runs over N = 32 768 turns. The recorded BPM data
are filtered in order to reduce the large peak at the excitation frequencies as
described in Section 2. In the next step the amplitudes afall mixed frequencies
are extracted from the BPM data Xi, i = 1, ... , N by cosine-fourier
transformation,

(13)

where Wk are the mixed frequencies and ti is the time elapsed since the
start of the measurement. This procedure guarantees a phase-synchronous
detection of the beam's response to the wobbling excitation. The Sk are stored
in a file and read by the analysis program which calculates the hamiltonian
coefficients according to the theory presented in the previous section. The top
right of Figure 2 shows the reconstructed coefficients which are in excellent
agreement to the original ones presented at top left.

In order to investigate the robustness of the method under the influence of
finite BPM resolution we use the same tracking data that led to Figure 1
and add random numbers with standard deviation of 10/Lm and 30/Lm,

truncated at three standard deviations, and repeat the above analysis. First we
remove the peaks of the fundamental, then we extract the BPM signal pattern
coefficients Sk according to Equation 13 and then feed the resulting BPM
pattern to the analysis program. The hamiltonian coefficients are shown in
the bottom row ofFigure 2. We clearly see that the coefficients are reproduced
rather well.

At first sight the fact that we detect sub-micron signals in the presence
of noise that is on the order of 10 /Lm looks surprising, but the apparent
contradiction is resolved by observing that we detect the small amplitude
wobbling signal phase-synchronously over many (N = 32768) turns. This
detection method is equivalent to averaging and the noise is consequently
reduced. From Equation 13 we find a reduction factor of 1/,JN /2. For BPM
noise of 10 /Lm we obtain an effective error of 0.1 /Lm which explains the
quality of the reconstruction.
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5 CONCLUSIONS AND OUTLOOK

We presented a theory that explains the spectral pattern observed at BPMs
that stem from wobbling orbit correction magnets at low frequencies. The
theory can be used to deduce all third order geometric aberrations in a storage
ring. We tested that method using a standard LEP optics. Using tracking data
with wobbling correctors included and filtering the raw data carefully we
reproduced the coefficients in the hamiltonian to high accuracy. Including
BPM noise of 10 J-Lm in the simulation allows faithful reconstruction of the
hamiltonian aberrations.

The ability to detect and correct geometric aberrations rather quickly
(32 000 turns in LEP orLHC corresponds to a little over three seconds) may be
important during the rather slow ramp in LHC (which takes about 20 minutes).
During the ramp the super-conducting magnets produce large sextupolar and
higher contributions, which may be diagnosed by the described method and
corrected using "knobs" made of linear combinations of sextupoles that affect
a single aberration, only.4,s Moreover, extending the method to higher order
will allow to measure terms that are responsible for amplitude dependent
tune shift.
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