Particle Accelerators, 1996, Vol. 55, pp. [329–338] / 83–92 Reprints available directly from the publisher Photocopying permitted by license only © 1996 OPA (Overseas Publishers Association) Amsterdam B.V. Published in The Netherlands under license by Gordon and Breach Science Publishers SA Printed in Malaysia

ON THE EFFECTS OF FRINGE FIELDS IN THE LHC RING

F. MÉOT

Laboratoire National Saturne, Groupe Théorie F-91191 Gif-sur-Yvette Cedex, France

(Received 17 January 1996; in final form 17 January 1996)

The effects of the dipole and quadrupole fringe fields on such machine parameter as chromaticity, anharmonicity, closed orbit, etc. are investigated by stepwise ray-tracing in the Version 4 of the LHC ring. First the ray-tracing method is described, and the relevant LHC fringe field data and corresponding numerical models are given. Then follows a detailed study of the machine parameters which shows the innocuity of the non-linearities introduced by the fringe fields, at injection conditions.

Keywords: Fringe fields; non-linear perturbations; dipole defects; quadrupole defects.

1 INTRODUCTION

The effects of the dipole and quadrupole fringe fields on the machine parameters are investigated by stepwise ray-tracing in the Version 4 of the LHC ring.^{1,2} First the ray-tracing method is described, then follows an overview of the relevant LHC characteristics and in particular the fringe field data and the corresponding numerical models. Then follows a detailed study of the machine parameters.

2 THE RAY-TRACING METHOD

The equation of motion of a particle of charge q and mass m in a magnetic field \vec{B} ,

$$m\frac{d\vec{v}}{dt} = q\vec{v} \times \vec{B} \tag{1}$$

[329]/83

F. MÉOT

is solved by stepwise Taylor expansions of the position \vec{R} and normalized velocity $\vec{u} = \vec{v}/v$,

$$\vec{R}(M_1) = \vec{R}(M_0) + \vec{u}(M_0)\,ds + \dots, \quad \vec{u}(M_1) = \vec{u}(M_0) + \vec{u}'(M_0)\,ds + \dots$$
(2)

with ds = vdt = stepsize from point M_0 to M_1 , $\vec{u}' = d\vec{u}/ds$ and $m\vec{v} = qB\rho\vec{u}$. The derivatives of \vec{u} are given by $\vec{u}' = \vec{u} \times \vec{b}$, $\vec{u}'' = (\vec{u} \times \vec{b})' = \vec{u}' \times \vec{b} + \vec{u} \times \vec{b}'$, etc., involving the derivatives of $\vec{b} = \vec{B}/B\rho$ up to the fourth order.³ A unique generic model for the magnetic field in the dipoles and quadrupoles of the ring is used, namely, the scalar potential⁴

$$V_n(x,z,s) = n!^2 \left\{ \sum_{q=0}^{\infty} (-)^q \frac{\alpha_{n,0}^{(2q)}(s)(x^2+z^2)^q}{4^q q!(n+q)!} \right\} \left\{ \sum_{m=0}^{m=n} \frac{\sin m \frac{\pi}{2} x^{n-m} z^m}{m!(n-m)!} \right\}$$
(3)

where x, z, are the transverse coordinates, $\alpha_{n,0}(s)$ is the longitudinal form factor at x = z = 0, and $\alpha_{n,0}^{(2q)}$ its 2q-th order derivative w.r.t. the longitudinal coordinate s. If several harmonics are present the superposition theorem is applied. The longitudinal form factor writes⁵

$$\alpha_{n,0}(d) = \frac{1}{1 + \exp[P(d)]} \quad P(d) = C_0 + C_1 \frac{d}{\lambda} + C_2 \left(\frac{d}{\lambda}\right)^2 + \dots + C_5 \left(\frac{d}{\lambda}\right)^5$$
(4)

where d is the distance to the effective field boundary, and the numerical coefficients λ , C_0-C_5 are determined from a matching with the numerical fringe field data.

The prime interest of this integration method lies in its good symplecticity.

3 LATTICE AND FRINGE FIELD CHARACTERISTICS

The lattice of concern is the Version 4 at injection conditions.¹ The total machine tunes are $v_x/v_z = 66.28/66.32$. The normalized emittance is $\gamma \varepsilon/\pi = 3.75 \ 10^{-6}$ m.rad in both planes. The four-fold superperiodicity machine is considered in this study.

The fringe fields involved,⁶ for the dipole magnets (\ll White book \gg design)⁷ and the quadrupoles (CEA-Saclay)⁸ are shown in Figure 1, with the fitting models (Equation 4) superimposed.

FIGURE 1 Fringe fields in the dipole (top; \ll White Book \gg design) and quadrupole (bottom; CEA-Saclay design). Solid line: the analytical model (Equation 4) used in the ray-tracing.

The values of the corresponding coefficients λ , C_0-C_5 are

$$\lambda = 0.112 \text{ m}$$
, $C_0 = 0.1553$, $C_1 = 3.875$, $C_2 = -2.3622$,
 $C_3 = 2.9782$, $C_4 = 12.604$, $C_5 = 15.026$

for the dipole (magnetic length = 14.2 m), and also K_1 .Gap = Fint.Gap = 2.1211 10^{-2} m (in respectively the Transport and MAD⁹ notations.) For the quadrupole (magnetic length = 3 m),

$$\lambda = 0.056 \text{ m}$$
, $C_0 = -0.01097$, $C_1 = 5.4648$, $C_2 = 0.9968$,
 $C_3 = 1.5688$, $C_4 = -5.6716$, $C_5 = 18.506$

4 RAY-TRACING

Two means are used simultaneously to evaluate the machine parameters. On one hand multiturn ray-tracing (of the order of 2000 full 8-octants machine turns for one tune value) followed by Fourier analysis to get the tunes, or elliptical fit to get the optical functions, smear, etc. On the other hand, one-turn first order mapping followed by beam matrix computation (by identification with $\cos \mu I + \sin \mu J$.) In both cases the symplecticity is thoroughly checked, in terms of the smear by a calculation of the dispersion $\sigma(\varepsilon_{x,z}/\pi)$ in the first case, in terms of the second order symplectic conditions¹⁰ in the second case. From both survey means, the chromaticity $d\nu/d\rho/p$, anharmonicity $d\nu/d\varepsilon/\pi$, the β functions and their derivatives w.r.t. dp/p, the horizontal closed orbit, the dispersion functions η_x and η'_x , etc., are evaluated. The results of the study are displayed in Figures 2–8 as follows.

The comparison between multiturn tracking and mapping is synthetized in Table I below, which shows the agreement between both means, in terms of the tune values.

$\delta p / p \ (10^{-3})$	ν _x		ν _z	
	Multiturn	Mapping	Multiturn	Mapping
-2	0.48834	0.48881	0.51050	0.51052
-1.5	0.43700		0.45915	
-1	0.38576	0.38577	0.40790	0.40790
-0.5	0.33464		0.35678	
$-10^{-4}(10^{-5})$	0.293811	$(0.28463)^2$	0.31594 ³	$(0.306762)^4$
0	0.28362	0.28361	0.30575	0.305746
$+10^{-4}(10^{-5})$	0.27342^{1}	$(0.28259)^2$	0.29555^2	$(0.304723)^4$
0.5	0.23268		0.25480	
1	0.18177	0.18177	0.20391	0.203908
1.5	0.13080		0.15298	
2	0.07937	0.07932	0.10176	0.10177

TABLE	I
-------	---

 ${}^{1}\Delta\nu_{x}/\delta p/p = -101.96;$ ${}^{2}\Delta\nu_{x}/\delta p/p = -101.95;$ ${}^{3}\Delta\nu_{z}/\delta p/p = -101.94;$ ${}^{4}\Delta\nu_{z}/\delta p/p = -101.96;$

5 CONCLUSION

A thorough, well behaved (symplectic) ray-tracing through the 4-periodic LHC ring in the presence of the dipole fringe fields (White Book data) and quadrupole fringe fields (CEA-Saclay data), at injection conditions, shows that these have no effect on the chromaticity, anharmonicity and other relevant

FIGURE 2 **Chromaticity calculations**, horizontal (top) and vertical (bottom) phase-spaces at S17LO (odd-type arc end), for $-210^{-3} \le \delta p/p \le 210^{-3}$, including $\delta p/p = \pm 10^{-4}$; ε_x and $\varepsilon_z \ll \varepsilon_{inj} \approx 8.33 \ 10^{-9} \ \pi$.m.rad. The ray-tracing provides high precision: the z motion is resolved at much better than $10^{-7} \ m/10^{-7}$ rad.

FIGURE 3 Vertical fractional tunes, depending on $\delta p/p$, after Fourier analysis of the vertical motions of Figure 2 (bottom). Similar results are obtained for the horizontal motion. From the tune values at $\delta p/p = \pm 10^{-4}$, the chromaticities $v'_x/v'_z = -102/-102$ come out.

machine parameters. The only sensitive effect is, as expected, a slight drift of the tunes (ν_x/ν_z : 0.28/0.30 \rightarrow 0.2836/0.3057) when the fringe fields are switched on, which can be fixed by slight re-tuning of the dipole field. More details on this study can be found in Reference 11.

References

- Garren, A., Luo, X., Méot, F. and Scandale, W. (1995). *The LHC Lattice*, Version 4, LHC Note, CERN SL/95–06 (AP).
- [2] The «Pink Book», Design study of the LHC, Report CERN 91-03, 2 May 1991.
- [3] Méot, F. and Valéro, S. (1993). Zgoubi users' guide, Note CEA/DSM/LNS/GT/93-12, CEA-Saclay.
- [4] Leleux, G. (1986). Compléments sur la physique des accélérateurs, DEA de physique et technologie des grands instruments, rapport CEA/DSM/LNS/86–101, Mars (page 117).
- [5] Enge, H.A. (1967). Deflecting magnets in: Focusing of charged particles, volume II, Septier, A. ed., Academic Press, New-York and London.
- [6] Data provided by Russenchuk, S. (1994). CERN/AT/MA, CERN.
- [7] The «White Book» (1993). Large Hadron Collider, the accelerator project, CERN/AC/ 93-03.
- [8] Data from the DAPNIA Departments (1994). CEA/DSM, Saclay.
- [9] Grote, H. and Iselin, F.C. (1993). The MAD program V8.10, CERN/SL/90-13 (AP).
- [10] Leleux, G. (1970). Cours de l'INSTN de mathématiques pour les accélérateurs, Laboratoire National Saturne, CEA-Saclay.
- [11] Méot, F. (1995) On the effects of firinge fields in the LHC ring, Note CEA/DSM/GECA/ GT/95-10, CEA-Saclay.

FIGURE 4 Horizontal (top) and vertical (bottom) tunes v.s. dp/p, from the survey of Figure 3. The tunes at dp/p = 0 are $v_x/v_z = 0.2836/0.3057$, to be compared to the fringe field free case, $v_x/v_z = 0.28/0.32$. Results obtained with MAD⁹ and the FINT value given in Section 3 are provided, for comparison.

FIGURE 5 Horizontal (top) and vertical (bottom) tune derivatives $d\nu/dp/p$, v.s. dp/p. The chromaticities are $\nu'_x/\nu'_z = -102/-102$, identical to the fringe field free case (Figure 3).

FIGURE 6 Dispersion function η_x (top) and its derivative $d\eta_x/ds$ (bottom) v.s. dp/p, at S17LO.

FIGURE 7 Anharmonicities: horizontal phase-space, from the ray-tracing of five particles on x, z invariants ranging in $\varepsilon_{x,z}$: $10^{-4} \rightarrow 200\varepsilon_{inj}$. The smear is negligible $[\sigma(\varepsilon_{x,z}/\pi) < 10^{-4}\varepsilon_{x,z}/\pi]$. The Fourier analysis gives $v_x/v_z = 0.2836/0.3057$, for any $\varepsilon_{x,z}$ that is, zero anharmonicities $dv_{x,z}/d\varepsilon_{x,z}$: whatever the amplitude the non-linearities due to the fringe fields have but negligible effect on the tunes.

FIGURE 8 **Close orbit**: non-zero horizontal closed orbit along the machine as induced by the fringe fields. The horizontal axis represents the pick-up number (from the MAD files). The closed orbit excursion does not exceed 10^{-4} m.