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Analytical formulae and computer simulation results are presented for the emittance growth
caused by small asymmetries of the beam-beam force, caused by small fluctuations of the
phase, small offsets between the beams and fluctuations in the size of the opposite beam.
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1 INTRODUCTION

Consider an ensemble ofparticles such that the phase is uniformly distributed
over the whole range 0 ~ 1/1x ~ 2n amongst this ensemble. Then the phase
average ofthe beam-beam force (F (x) } 1/1x over this ensemble vanishes. In this
paper we will consider the diffusion and emittance growth that result if we
destroy this symmetry a little. This symmetry of the beam-beam force can be
destroyed by small fluctuations in (i) the phase, (ii) offsets between the beams,
and (iii) size of the opposing beam. The main source of tune fluctations are
the quadrupole strength fluctuations, either directly by power supply noise in
quadrupoles or indirectly through closed orbit fluctuations through non-linear
magnets and mechanical vibrations of non-linear magnets. There are also
sources of "pure" tune fluctuations which arise when the chromaticity is
non-zero and there is momentum diffusion either due to Intra-beam scattering,
RF noise or beam gas scattering. Offset fluctuations between the beams at
the interaction points can occur due to power supply noise either in the
dipoles or in misaligned higher order multipole magnets, especially the high
fJ quadrupoles in the interaction regions. Beam size fluctuations can occur
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for example due to RF noise and dispersion in the RF cavities. An example
of this occurred during the November 1993 luminosity run in HERA.1

The principal source of random variations is noise in the power supplies
which can have a fairly complicated spectrum. Analysis shows2 that the
output power noise density falls as 1//2 over a wide range of frequencies
for a high quality oscillator which can be modelled as a linear oscillator.
At the lowest frequencies the spectrum has a 1//3 dependence due to
the intermodulation of carrier noise and flicker noise while at the highest
frequencies, the output noise has a flat spectrum. For our analysis we will
consider Ornstein-Uhlenbeck noise which has a 1//2 spectrum so as to
reasonably model the noise spectrum that particles are subjected to and also
because it is the only stationary Gaussian Markov process.3

Simulations of the emittance growth with a linear lattice and the beam
"beam force in the strong-weak approximation show a dramatic influence of
noise, specially near low order resonances. Figure 1 shows the emittance
growth of 1000 particles over 107 turns with the tune set to VQ = 1/4, both
without and with noise. Without noise, there is no evidence of any emittance
growth. With tune noise of amplitude ~Vr = 10-4 there is a large emittance
growth. Most of this emittance growth occurs due to a small fraction of
the total number of particles going to large amplitudes. Notice also the fact
that the emittance grows only slowly over the first 106 turns and increases
substantially after that. In one space dimension, the emittance growth seen
with noise is significant only for low order resonances (less than 1Oth order)
while in two space dimensions, the emittance growth is significant even for
high order resonances such as the 14th.4

2 TUNE FLUCTUATIONS OFF RESONANCE

In action angle (J, 1/J) variables, the Hamiltonian describing the beam-beam
interaction is

(1)

where VQ is the nominal tune, U is the beam-beam potential and Dp is the
periodic delta function. The beam-beam potential experienced by a proton
due to a Gaussian bunch with Nb particles of charge e is
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FIGURE 1 Relative change in the emittance of 1000 particles due to the one dimensional
beam-beam interaction at the fourth integer resonance Vo = 0.25. Top: without external noise.
Bottom: with tune noise of amplitude Ll Vr = 10-4

.

Substituting x = J2f3* J cos l/t where f3* is the beta function at the
interaction point, we obtain the Fourier expansion

(3)

a = f3* J /(20'2) is a dimensionless measure of the particle amplitude and
C = Nbrp/Yp. The Fourier coefficients are Fo(a) = foa[l- e-zIo(z)]/z dz,
Fk(a) = (_l)k+l f; e-Z1k(Z)/Z dz. Integrating the equations of motion
over a tum, we obtain the one tum beam-beam map, ~ l/t = 21l'vo +au/aJ,
~ J = - au/al/t. As mentioned earlier, in the absence of time dependent
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effects and far from resonances, the phase averaged change in action due
to the beam-beam force vanishes (~J) = 0, so that J can be considered a
conserved quantity in the averaged sense.

Now we suppose that the phase advance 1/1 has a fluctuating component
from turn to turn. At turn n the phase is 1/I(n) = 2nnv(J) + 1/10 +
E7=0 ~1/Ir(i) where v(J) accounts for the action dependence of the tune due
to the beam-beam potential, 1/10 is the initial phase and ~ 1/Ir (i) is the random
contribution at turn i. The change in action to first order in the random phase
is

d
D.]r(n) = d1/r D.](n)D.1/rr(n) + O(D.1/r;)

a2

= - a1/r2 U(1/r(n))D.1/rr(n) + O(D.1/r;) (4)

We will assume that (i) ~ J « J and (ii) the noise process is stationary so
that we can define a correlation function K v (n) as

(5)

where ~vr is the amplitude of the tune noise. The correlation function K v

is related to the spectral density S(f) by the cosine transform, Kv(n) =

2J~ S(f)cos(2nfn/fo)df, where fa is the revolution frequency. The
diffusion coefficient due to the fluctuating tune is defined as D v (J)

limN---.+oo [J(N) - J(0)]2 / N. We obtain

00

Dv(J) = 128fo(nC~vr)2 Lk4 FlS(2kfov)
k=1

(6)

This result states that tune noise at only the even harmonics of the
betatron frequency cause diffusion in the action when the nominal tune va is
sufficiently far from resonances.

For the Ornstein-Uhlenbeck process the correlation function for random
variables with unit variance is Kv(n) = e-n/ rc , Tc is the correlation time
measured in units of the revolution time of the particle around the ring. The
spectral density S(f) r-v 1/(4n2f2 / f5 + l/T;), falling to half its maximum
value at a frequency fl/2 = fa / (2n Tc ). Substituting in this correlation
function leads to
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The diffusion coefficient can also be calculated by a simulation. The
simulation model is a linear lattice with the beam-beam force at a single
interaction point. 100 amplitudes are chosen from an exponential distribution
and at each amplitude 10 particles are chosen with different initial phases.
The diffusion coefficient at each amplitude is obtained by averaging the
ten diffusion coefficients of these particles. Chirikov's method5 is used to
calculate "diffusion coefficients" Dl, D2 over two intervals f1Nl, f1N2 as
follows:

where Nlf1Nl = N2f1N2 = N, N being the total number of turns. Jk(m)
is the average of J over the mth interval of f1Nk. For motion that is only
oscillatory and bounded, these coefficients differ by two or three orders of
magnitude while for true diffusive motion these coefficients are fairly close.

With an external noise source present, one expects the motion to be
diffusive and indeed the two coefficients Dl, D2 we calculate with f1Nl =
105 , f1N2 = 105, N = 107 are within 10% of each other. Figure 2 shows a
comparison of D2 with the analytically calculated diffusion coefficient from
Equation (7) at a correlation time of Tc = 1.1 (corresponding to nearly white
noise). The agreement is very good. The simulations have been repeated for
larger correlation times of 10, 100 and 10000. The agreement between the
analytical and numerical diffusion coefficients is reasonably good in all cases,
with the analytical coefficient larger at all amplitudes.

3 EMITTANCE GROWTH DUE TO TUNE FLUCTUATIONS

Simulations show that with tune noise for example, there is emittance growth
of say 1000 particles over a few minutes. The emittance growth of a bunch
with 1010 protons over the storage time ofa day cannot however be estimated
by simulations. If we make certain assumptions about the noise process,



1.5 2 2.5
Turns

[298]/52 T. SEN and lA. ELLISON

1e-20 l..---'--'-_---I.-_--'---_-'-_~~_ ____l.__ ____'

o

FIGURE 2 Comparison of the diffusion coefficient from Equation (7) and the numerically
calculated Chirikov diffusion coefficient due to tune flucutations with amplitude LlV r = 10-4

.

Correlation time of the Omstein-Uhlenbeck noise process is!c = 1.1, the tune is Vo = 0.291.

then the evolution of the beam density and hence moments of the beam can
be followed by integrating the Fokker-Planck equation. Assuming then that
the diffusive growth in the action J is Markovian, the evolution of the density
p is given by

(9)

where for D(J) the diffusion coefficient we use the analytic expression given
by Equation (7). We will use the method of lines to numerically integrate
this ID Fokker-Planck equation.6 The boundary condition is that particles
are lost at an action Jb corresponding to the position of the beam pipe,
i.e. p (Jb, t) = 0 at all times. The diffusion coefficient Dv (J) and its first
derivative (from Equation (7)) both vanish at the origin. From these properties
it follows that the density at the origin obeys

p(J = 0, t) = Po(J = 0), !-p(] = 0 t) = eD
t/
tI2 !-po(] = 0)aJ ' aJ

(10)

where Po is the initial density. We introduce dimensionless time, action
and density variables (r, X, U) respectively defined as r = t / to, X =
J / ]b, U = JbP. The parameter to is interpreted as the number of revolutions
around the ring per time step ofthe numerical integration. The scaled diffusion
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FIGURE 3 Change in the relative action (J) due to tune fluctuations with nominal tune
Vo ==== 0.291 over a time of 30 hours obtained by integrating the Fokker-Planck equation.
Shown are the changes due to noise at three correlation times Tc == 1.1 (nearly white noise), 10
(/1/2=750 Hz) and 100 (/1/2=75 Hz). Tune noise amplitude is /:;,. V r == 10-4

.

coefficient is VeX) = toD(J)/J;. The Fokker-Planck equation in the
dimensionless variables is numerically integrated for the required number
of turns by appropriately choosing to.

Once the density p(J, t) is known, the average action of the distribution
at any time is found from

Jb

(J) = 1 / Jp(J, t)dJ.
foJb P(Jb, t)dJ o

(11)

Figure 3 shows the relative change in the average action (J) due to tune
noise at three different correlation times with the higher correlation times
corresponding to noise with less high frequency content. With ~Vr = 10-4

and nearly white noise (Te = 1.1) acting on the beam we see that the emittance
doubles over a period of 10 hours before decreasing due to particles being
lost at the beam-pipe. Diffusion is slower for the other two noise realizations
so particles do not reach the beam-pipe in 30 hours and the emittance grows
nearly linearly to a maximum ofabout 70% forTe = 10 and 10% forTe = 100
respectively. Due to both filtering of power supplies and attenuation in the
metallic lining of beam pipes, a correlation time of Te = 100 is likely to be
the most realistic model of the noise spectrum experienced by the beam. At
Te = 100, the spectral density at twice the betatron frequency (the part of the
noise spectrum responsible for the diffusion) is smaller by a factor of7 x 10-6
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than the spectral density near zero frequency. The emittance growth increases
nearly linearly with the tune noise amplitude 1::1 Vr since Dv (J) <X (1::1 Vr )2. At

Tc = 100 and 1::1 Vr = 10-3, the emittance increases initially by 90% in about
7 hours before decreasing and reaching a value about 70% greater than the

initial value at the end of 30 hours.

4 TUNE FLUCTUATIONS NEAR RESONANCE

The dynamics with noise near low order resonances are significantly different
than that far away from such resonances. A detailed analytical treatment of
the effects of noise near resonances will appear elsewhere.7 The phase space
structure is specially important when the noise is sufficiently weak that the
details of the resonance islands have not been completely smeared out. For
noise strength below a certain value, particles can be trapped within these
islands and be thereby transported in phase space as the islands move, leading
to emittance growth. Trapping occurs when the time for a resonance to diffuse
a distance equal to its width is greater than the time period of motion around
the resonance island. Let 1::1 Vr be the rIDS amplitude of tune fluctuations, then
trapping occurs for 1::1Vr < 1::1v;,where the trapping limit amplitude is given
by

T 2 1 2(1::1 Vr ) = -VisZ(l::1vW) .
2

(12)

VisZ is the island tune and 1::1Vw is the island width in tune space. For the
beam-beam interaction, these parameters for a resonance island of order 2k

are given by

VisZ = k~vw (13)

where Is is the action at the stable fixed point. Putting these back we obtain
the trapping condition

For typical HERA parameters, ~v; rv 2.5 x 10-4 for the 4th integer
resonance (k = 2).
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In the other extreme limit, the tune fluctuations may be strong enough to
wash out the resonance structure. When the phase is completely random from
tum to tum, the random contribution is of the same magnitude or more than
the nominal tune, ~vfR > Ij(2k). In this situation the random tune can move
a particle from one resonance island to the neighbouring .resonance island
and beyond in one tum. In the not so extreme limit but still fast diffusion is the
case when the random tune causes the particle to diffuse from one resonance
island to the next in the time it takes for a particle to go around the first island.
This occurs for ~Vr > ~vI where

(15)

For typical HERA parameters, the maximum value of the island tune is 0.008
at the 4th integer resonance. The corresponding lower limit for fast tune
diffusion is ~vl rv 0.016.

The frequencies of the tune fluctuation are also important in determining
the dynamical response. When resonance islands are present, motion in the
vicinity of these islands slows down and the island tunes are much smaller
than the nominal tune. Exactly at the resonance tune the islands disappear
(because the fixed points are at infinity) but the periods keep increasing with
amplitude. Figure 4 shows the phase portrait of two particles at the 4th integer
resonance. The emittance growth seen in Figure 1 is due to particles diffusing
from the inner regions onto the curves with long extensions along the axes in
Figure 4. Since the motion on these latter curves has a long period, it can take
a long time before the emittance growth is observed, as is the case in Figure 1.
A detailed analysis7 shows that near resonances, low frequency noise which
is resonant with the slow motion of the linear invariant is responsible for
diffusion. This is in complete contrast to the off-resonance case. A similar
topological reason should also explain the emittance growth in the two degree
of freedom case.

5 SUMMARY

We have analysed the effects of tune fluctuations on the emittance growth
of a hadron beam colliding with another beam. Off low order resonances,
tune noise at even harmonics of the betatron frequency is responsible for
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FIGURE 4 Phase portrait of two particles at the tune Vo = 0.25 without external fluctuations.

particle diffusion and emittance growth. Near low order resonances, low
frequency noise causes diffusion. Other fluctuations which lead to emittance
growth include beam offset fluctuations and fluctuations in the size of a
beam. A detailed analysis can be found in a forthcoming publication.7 Briefly
stated, we find that off resonances, offset fluctuations at odd harmonics of the
betatron tune and beam size fluctuations at even harmonics of the betatron
tune lead to diffusion. Both of these fluctuations lead to greater emittance
growth than tune fluctuations in the off-resonance case for reasonable
values of the fluctuating amplitudes. These three fluctuations which are
almost always present might explain a large part of the observed emittance
growth. They also underline the importance ofchoosing high precision power
supplies, especially for quadrupoles and dipoles in the interaction regions.
Future work will focus on understanding the effects of these fluctuations in
the two degree of freedom case.
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