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Analyzing stability of particle motion in storage rings is an interesting question in the general
field of stability analysis in weakly nonlinear motion. A method which we call pseudo invariant
estimation (PIE) is used to compute lower bounds on the survival time in circular accelerators.
The pseudo invariants needed for this approach are computed via nonlinear perturbative normal
form theory. Differential Algebraic (DA) techniques are essential to manipulate the Taylor
expansions required in this theory. Using the new method ofDifferential Algebra with Remainder
(RDA), the remainder terms in Taylor expansions can be bounded rigorously during numerical
calculations, which will ultimately lead to a rigorous bound on the survival time. The lower
bounds on the survival times are large enough to be relevant; the same is true for the lower
bound on the dynamic aperture of a storage ring, which can also be computed.

Keywords: Long-term stability; nonlinear dynamics; Nekhoroshev; Ljapunov; RDA; interval
arithmetic; global optimization.

1 INTRODUCTION

Estimating the time of stable motion for planetary systems has first started
the interest in the stability of weakly nonlinear mechanical systems about
100 years ago; in our modem days this question became important in
accelerator physics with the analysis of the dynamics in storage rings. One of
the prominent current examples, the Large Hadron Collider (LHC) at CERN,
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will have to allow particles to circle the 27 km long tunnel for one day at one
millionth of a percent less than the speed of light in order to make effective
high energy physics experiments; this corresponds to 109 orbits around the
ring.

In the past, the question of long-term stability in storage rings has been

analyzed by various methods including kick tracking, 1 element by element
tracking and one-tum map tracking,2,3 symplectic long-term generating
function tracking,4,5 approximately symplectic tracking;6 evaluation of

Lyapunov exponents and tune shift analysis,? as well as Nekhoroshev

estimates.8

The principle underlying the proof of the Nekhoroshev estimate9 as well
as similar approaches based on conventional Ljapunov stability theory is to
numerically obtain estimates of the quality of pseudo invariance, which then
translate into bounds for survival time. IO We call this the pseudo invariant
estimation (PIE) method. 11 Although some of these methods are useful
analysis tools, they all fail to give mathematically rigorous lower bounds on
the time particles stay inside the storage ring, because ofthe need to determine
bounds of highly complex functions and the difficulty in accounting for all
approximation errors. We here describe an application of the PIE Method13

which, when combined with the so-called RDA methods currently under
developmentl4,15 will ultimately yield strict and rigorous bounds on the
survival time.

The one tum transfer map Mof a storage ring maps initial phase space
coordinates Zi of a particle into final coordinates Zf after one tum around
the ring. This transfer map can also depend on a set of parameters 8of the
accelerator, Zf = M(Zi, 8). The Taylor expansion to some order n of the
transfer map in respect to Zand 8can be computed by the so called DA
method.16, 17 '

By a normal form transformationl8,19 A, a map M is transformed into a
normal form map N = A0 M 0 A-I. The nqrmal form transformation A
is chosen to let the Taylor expansion of Nhave as many vanishing Taylor
coefficients as possible. For symplectic maps, the normal form transformation
also yields functions! (z) which are invariants of the map Nt up to order n+1.
This means that the Taylor expansions of ! oM(z) and !(z) agree up to order
n +1. For weakly nonlinear dynamics, where the Taylor expansion represents
the map Nt quite well, these functions are approximate invariants, or so:-called
pseudo invariants. This is the case for particles moving close to the central
periodic orbit in a storage ring.
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A pseudo invariant f (z) can be used as a measure for the distance from a
particle with coordinates zto the central periodic orbit. In linear accelerator
theory, such an invariant could be the sum of the different emittances.
The pseudo invariant can be used to describe a region in phase space
A = {zlf(z) ::s E}. In an application of the map M the so described distance
from the origin changes by the deviation function d(z) = f(M(z)) - f(z).

If an upper bound 8 on d (z) in the phase space volume A can be found,
it can rigorously be said how far a particle in A can move away from
the closed orbit in one tum. It can also be stated rigorously that particles
in the phase space volume 0 = {zlf(z) ::s E - No} will not leave the
volume A for N applications of the map. Or if 0 = {zlf(z) ::s EO}, one
can state that no particle in 0 has left the region A after N = (E - Eo)/O

applications of the Map. One can now try to improve the dynamical properties
of a storage ring by maximizing the number N of turns thus guaranteed to
be stable.

2 RIGOROUS PSEUDO INVARIANT ESTIMATION

The PIE method relies on a suitable pseudo invariant f (z) which describes
a particle's distance from the central orbit, on the deviation function d (z) =
f(M) - f, and on an upper bound on d(z). The main challenge dealt with
in this paper is to find an upper bound 8on the increase d (z) of f (z) during
a particle's motion once around the ring.

Conventional interval arithmetic is very useful for rigorous and verified
global optimization.20-23 If a function d is defined on an interval I and
can be evaluated on a computer, then interval arithmetic can be used to
find an interval D(I) :) {d(x)lx E I} which contains all the values of d
on I. The upper bound of D(I) is therefore a strict bound on the global
maximum of d. Unfortunately, often D(I) overestimates {d(x)lx E I}

substantially, a phenomenon known as interval blow-up. In the early stages
of this work, several methods of standard interval. optimization have been
studied. However, it turned out that the function d = f 0 M- f for
which we have to find an upper bound is far more complex than those
in typical applications of interval optimization. The deviation function
d(z) is a multivariate polynomial of order n x (n + 1), when n is the
evaluation order of the normal form transformation. This complexity leads to
estimated computation times of several million years if conventional interval
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arithmetic is applied and blow-up is suppressed sufficiently by subdividing
the phase space region A into many intervals. Nevertheless, the use of
interval arithmetic seems imperative for any rigorous treatment ofthe stability
problem, since any tracking method only tests a small part of phase space of
measure zero.

In the weakly nonlinear systems of interest, the blow-up in the con­
ventional methods is mainly due to the fact that computing d(z) involves
subtraction of the ·two big numbers / 0 £1(z) and /(z), an operation
which is especially prone to interval blow-up. There is a very large number
of operations required for the evaluation of d, which provides additional
but very much smaller blow up. The method of Differential Algebra with
Remainder allows to avoid almost all of the blow up, since the bulk of the
functional dependencies are carried in the form of Taylor coefficients, and
blow up is limited to the Taylor remainder terms, which are many orders of
magnitude smaller. Finally a bound for the Taylor polynomial itself has to be
found. However, for the special case of normal form invariants, a significant
simplification arises from the fact that the Taylor polynomial of the invariant
defect d vanishes completely up to order n. In this case, another method that
is more straightforward to implement yet far less flexible can be used, namely
the method of Interval Chains. 13

3 PARAMETRIZING THE REGIONS OF PHASE SPACE

To avoid interval blow-up, it is advisable to perform as few operations as
possible. We therefore try to minimize the computations required to represent
the initial region 0 and the allowed region A. The conventional invariants
'f1i of linear motion in D degrees of freedom define the invariant tori of first
order. We now write the tori in linear normal form space where the section
of the tori in the Z2i-1 x Z2i coordinate planes are circles

(
COS(cPi)) .

= ~. ,cPi E [0, 2:rr], "til E {1, ... , D}} .
sln(cPi)

(1)
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The allowed region in normal form space with acceptances Ei for the i th

degree of freedom is then written as

d

A .... .... " .... '"'" 'Ii I}NF = {zlz E -lNF(rJ),~ -~. .
i=1 Ei

(2)

With the linear normal form transformation AI, we get the allowed region

(3)

To bound the deviation function 8 on the surface of the acceptance, we have
to find

8 = max{f 0 if - flA}

.... .... 1
= max{(f 0 M - f) 0 Al IANF}

The map Al 0 if 0 A11 is the transfer map in the first order normal form
space and is to first order a rotation in every Z2i-l x Z2i plane in phase space.
Call this linear rotation map Rand let if = Al 0 if 0 AIloR-1; if is the
identity to first order. Write g = f 0 All to get

8 = max{g 0 if 0 R- gIANF}. (5)

The polynomial g of order n + 1 does not contribute to the Taylor remainder,
which is bound by RDA; and therefore the second appearance ofg in equation
(5) can be omitted. The rotation Rleaves the tori invariant and can therefore
be avoided; we finally get the simple RDA evaluation of

(6)

Now the intervals [0, 21l'] in the definition of TNF in equation (1) have to be
covered by many small intervals. The maximum upper bound of all intervals
is a rigorous upper bound for d (z). All blow-up due to linear transformations
and to low order compensations is avoided in this way.



198 G.H. HOFFSTATTER and M. BERZ

TABLE I Predictions of the number of stable turns for the Henon map at tune·O.13, strength
parameter 1.1, and starting position (x, a) = (0.01,0) as a function of the order of the normal
form transformation

Order of Interval DA with Conventional
Invariant Bounding Remainder Rastering

(guaranteed) (guaranteed) (optimistic)

2 895 891 1,086

3 1,736 9,926 11,450

4 1,668 54,016 65,667

5 1,674 678,725 809,612

6 1,670 3,389,641 4,351,679

7 1,671 42,640,927 52,474,387

8 1,671 192,650,961 263,904,035

4 COMPARISON BETWEEN INTERVALS AND RDA

Several nonlinear systems were studied using the RDA method to provide
upper bounds for the invariant defects. In order to get a sense for the quality
of these upper bounds, the numbers are compared with approximations for
the maximal invariant defects obtained by a rather tight rastering of d (z) in
real arithmetic. Because of the large number of local maxima, this method
proved to be the most robust non-interval approach to estimate the absolute
maxima of the functions involved. Lower bounds on the number of stable
turns obtained by conventional intervals are given in the Tables I and II in
order to illustrate the usefulness of RDA. When conventional intervals were
used, the deviation function was simplified as much as possible by accounting
for cancelations up to second order analytically. The number of conventional
intervals and the number of RDA vectors used in the bounding are
equivalent.

To provide a first illustration of the method, we chose the Henon map,
which is often used as crude model of a storage ring. The results of these
calculations are shown in Table I. The number of predicted turns increases
with order, since the quality of, the pseudo invariance increases. In the
case of interval bounding, the number of guaranteed turns saturates around
1700 and does not increase further with order since low order cancelation
dominates the blOW-Up. The superiority of rigorous bounding with RDA is
obvious.
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TABLE II Predictions ofthe number ofstable turns as a function ofthe order ofthe approximate
invariant for the Los Alamos PSR II storage ring. The emittances were 100 mm mrad

Order of Interval DA with Conventional
Invariant Bounding Remainder Rastering

(guaranteed) (guaranteed) (optimistic)

3 179 16,137 38,385

4 179 18,197 38,857

5 173 309,356 560,309

6 173 347,312 613,135

7 171 925,531 2,184,998

8 171 1,004,387 2,248,621

For Table II, a realistic accelerator, the Los Alamos PSR II, was analyzed.
The same data are shown as for the previous, more academic example;
however, a limitation arises from the fact that the remainder terms in the
transfer map are ignored. In Section 6 it will be described how this limitation
can be overcome with RDA. To limit the calculation time for our example,
the intervals were 5 times as wide as the intervals used for the previous table.

5 CONSIDERING UNKNOWN PARAMETERS OF THE SYSTEM

So far, the normal form method assumes that the one-tum map of the storage
ring in question is well known. Since this is rarely the case, the theory has
been extended to maps which depend on an unknown parameter. Neither
particle energy nor the magnet parameters are known exactly and have to be
treated as parameters which can not be accurately specified. If the map it is
a function of a parameter, then the nonlinear normal form transformation A
also depends on a parameter. With DA programs one can compute the Taylor
expansion of this parameter dependent map A. The pseudo invariant fez)
then also depends on the parameter. Changing the parameter changes the
transfer map and the pseudo invariant simultaneously, such that f (z) stays a
good pseudo invariant for a wide range of the parameter.

Without parameters, the volume was covered by 8,000,000 intervals; for
the parameter dependent case, 50,000,000 intervals were used. The results are
shown in Table III. Instead of the field strength, also other parameters could
have been used, like the uncertainty of the particle's energy or uncertainty in
the length of an element.
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TABLE III Lower bounds on the turns of particles for an initial emittance
of one half the acceptance, obtained by the RDA-PIE method

Lower boundfor

Simplest application

Field uncertainty 1% /0.01 %

IUCF Ring

19,500,358

10,768,020

PSR II

58,680,622

45,819,009

6 OUTLOOK: USING TAYLOR MAPS WITH REMAINDER
BOUND

So far we were only concerned with nonlinear motion which is described
by Taylor maps. The number of interest was the survival time of particles in
an accelerator. This time was formulated as the number of map applications
for which no phase space point of the initial beam distribution is mapped
into a forbiqden region. A method was presented with which rigorous lower
bounds on this number can be obtained. In the phase space regions which
we analyzed, the Taylor maps usually describe the accelerator well and the
limits obtained are valuable for storage rings, however, strictly speaking they
are not rigorous, since the transfer map of an accelerator is not a polynomial
map, but itself has a remainder.

While it can be estimated that this missing remainder term does not have a
significant effect, a fully rigorous treatment of the stability question requires
its complete consideration. This is only possible using a full implementation
ofRDA as well as efficient methods to bound the remainders in the integration
process, which are currently under development. In order to provide estimates
on whatremainders to expect, we compare an 8th order map with the 12th

order map, and find an interval bounding the difference. The results for the
examples are shown in Table IV.

The influence of this remainder term on the actual stability estimate is
minor; Table V shows the results of the same calculations shown in Table III,
but with inclusion of the estimated remainder bound.

TABLE IV Maximum estimated error ofthe Taylor map in the phase
space region of interest

IUCF Ring

[-0.248, 0.248] . 10-13

PSRII

[-0.282,0.282] . 10-11
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TABLE V Results of the RDA-PIE bounds on the survival time of particle
motion for rigorous description ofthe systems by a Taylor map with estimated
remainder bound
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PSRII
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