
XXVII. COMPUTATION RESEARCH

Research Staff

Martha M. Pennell Heather S. Davis Elaine C. Isaacs
Elaine S. Brown Joan Harwitt Eleanor C. River

A. POLYNOMIAL ROOT FINDING

Work has been progressing on the MAD and FORTRAN IV version of ROOTS, a

polynomial-with-complex-coefficients-root-finding subroutine. Our MAD program is

essentially completed and is being used as a prototype for the FORTRAN IV subroutine,

which is now being debugged on the M.I.T. Computation Center's 360/65.

In the cases that we have tried, we have solved the problem of round-offl by testing

- < 10 - 4
(1)

Ixl

X -4
1- < 10 (2)
lyl

where z = x + iy is the final iterate to which the program has converged as a root of

the polynomial f(z). This testing is done outside the iteration loop, but before the

coefficients of the reduced polynomial are calculated. If neither (1) nor (2) is true,

x + iy is assumed to be indeed a root, and synthetic division continues. If, however,

(1) is true, then If(z=x+iy)l is compared with If(z=x) . If the latter is smaller than the

former, we consider y to be round-off error and synthetic division continues with z = x

as the true root. Similarly, if (2) holds, we consider x to be round-off and z = y to be
4

the true root. This method resulted in the following roots to the polynomial 3x5 -x +

6x 3 - 2x 2 + 3x - 1 = 0:

.3333334 +0 i

0 +.9995337 i

0 -1.00000 i

0 -.9999999 i

0 +1.0000466 i

1 2
whose true roots are 3, ±i (double root).

This same technique is used in POLRT, the SSP subroutine which computes the real

and complex roots of a real polynomial.

*This work was supported in part by the Joint Services Electronics Programs
(U.S. Army, U.S. Navy, and U.S. Air Force) under Contract DA 28-043-AMC-02536(E).

QPR No. 86 371

(XXVII. COMPUTATION RESEARCH)

The program uses the Newton-Raphson technique, which involves no root taking and

consequently must always start with an initial complex guess to find a complex answer.

POLRT fails after no convergence with 500 iterations on the 5 starting values:

-. 1000101 -. 0500101

.500101 1.000101

-10.00101 -5.00101

50.00101 100.0101

-1000.101 -500.0101.

We found that POLRT failed on the following polynomial

3x 3 5 - 4x 5 + 1 = 0,

30 of whose roots are known to lie within the unit circle, and none are double roots.

POLRT succeeded, however, when the polynomial was divided through by the obvious

root x = 1, and also succeeeded when the substitution

5
y=x

resulted in the following polynomial:

3y7 -_ 4y + 1 = 0.

We are planning to study the relative merits of both methods.

Martha M. Pennell, Joan Harwitt

References

1. Martha M. Pennell and Joan Harwitt, "Roots, a Root-finding Subroutine Using
Muller's Method," Quarterly Progress Report No. 84, Research Laboratory of Elec-
tronics, M.I.T., January 15, 1967, pp. 352-354.

2. Ibid., see Eq. 1, p. 353.

3. "System/360 Scientific Subroutine Package (360A-CM-03X) H20-0166-1," IBM Appli-
cations Program, n. d., pp. 84-85.

B. MODIFICATION OF THE IBM SCIENTIFIC PACKAGE FOR GENERAL USE

A basic problem in the IBM Scientific Package for os/360 is dimensioning of two-

dimensional arrays. The manual states that in the main program "If the matrix is smaller

than the dimensioned area, the two forms of storage are not compatible." 1 For example, if

a matrix is dimensioned A(50, 50)and the amount to be used is only A(25,5) or A(25,25) the

QPR No. 86 372

Example 1

Original

Main Program

Dimension A(25, 5)

CALL PLOT (NO, A, N, M, NL, NS)2

Subroutine

Subroutine Plot (NO, A, N, M, NL, NS)

Dimension A(1)

rrI

After Change

Main Program

Dimension B(50, 50)

K= 50

CALL PLOT (NO,B,N,M,NL,NS,K)

Subroutine

Subroutine Plot (NO, B, N, M, NL, NS, K)

Dimension B(K, K), A(5000)

I= 1

DO 39 J= 1,M

DO 39 K= 1,N

A(I) = B(K, J)

I=I+1

39 Continue

Example 2

Original

Main Program

Dimension A(25, 5)

CALL SIMQ(A, B, N, KS)

Subroutine

Subroutine Simq(A, B, N, KS)

Dimension A(l), B(1)

After Change

Main Program

Dimension A(50, 50)

M= 50

CALL SIMQ(A, B, N, KS, M)

Subroutine

Subroutine Simq(A, B, N, KS, M)

Dimension A(M, M) B(1)

QPR No. 86

II

373

(XXVII. COMPUTATION RESEARCH)

routines will not work. An obvious approach is to dimension the matrix exactly, but in

some cases in which the matrix size varies within the program, this is not feasible.

Two methods have been used to correct this problem. In both cases the subroutine

has been altered and one argument added to the calling sequence. This extra argument,

tacked on at the end of the call, is the number of rows and columns in the dimensional

matrix; it would be 50 in the example above. The restriction that the matrix be square

is used to decrease the complexity of reprogramming. The dimensions for the portion

of the matrix actually used are already included in the calling statement as arguments.

In the easier method, Example 1, the name of the matrix in the main program is

changed from A to B. The change must also be carried through in the subroutine. Since

the two-dimensional matrix B(50, 50) is now being brought through the calling sequence,

it must be dimensioned as such in the subroutine. A no longer comes through the calling

sequence, so it must be dimensioned as large as it could possibly be in the subroutine.

Once this is done, a loop is used to place the portion of the B matrix that is to be used in

the A vector. Since the program was originally written to use the vector A and all per-

tinent information is now in A, the subroutine may safely be used from this point on as

it was.

In the second method, Example 2, the name of the matrix in the main program is

not changed, but the dimension statement in the subroutine must be changed, since A is

now brought through as a two-dimensional matrix. Once this is done, the indexing of A

must be changed throughout the subroutine, and A treated as a two-dimensional matrix

rather than a vector. This is a tricky procedure in most subroutines and there is less

chance of error if the first method is used.

Our group is using both methods to alter subroutines from the IBM Scientific Pack-

age and has modified decks for SIMQ and PLOT available for general distribution.

Joan Harwitt

References

1. "System/360 Scientific Subroutine Package (360A-CM-03X), Version II," IBM Pro-
grammer's Manual, n. d., p. 4.

2. Ibid., p. 298

3. Ibid., p. 178.

C. CONFLUENT HYPERGEOMETRIC FUNCTION

Recently, we were presented with a request to evaluate the confluent hypergeometric

function which has numerous applications in various branches of physics.

We were surprised to discover the paucity of published material on this topic. One

of the more complete tables 1 of the confluent hypergeometric function, published in 1948,

QPR No. 86 374

(XXVII. COMPUTATION RESEARCH)

was done by the Joint Computing Group of the Research Laboratory of Electronics.

Miss Elizabeth Campbell informs us that the evaluation of the confluent hypergeo-

metric function had been, in 1948, a fairly large project. At that time, all calculations

were done by hand; all figures were carried on a 10-bank desk calculator.

Several people were involved in the work of evaluating this function. Indeed, they

spent a great deal of time finding ways to reduce the number of calculations needed for

each set of values. Miss Campbell further estimated that to do all of the work would

have taken one person an entire summer.

Today, the entire problem forms a rather short job. Using the series representa-

tion for the function

a(a+l) 2 + IF(y) F(a +n) zn

M(a;y;z) = 1 + az + Z + "'' =

Y y(y+l) 2 n=0 r(a) F(y+n) n!

we found that the Fortran IV program to evaluate the confluent hypergeometric function

took one person approximately 10 hours to write and debug.

The actual computer time needed to run the program was negligible. We used 191

values of a, y, and z to test the accuracy of the program. Convergence occurred in a

minimum of 3 steps for small values of a and z, y being held constant, and in a max-

imum of 21 steps for larger values of a and z, -y again being held constant.

The program was run at the Computation Center, M.I.T., on the IBM 360/65. Com-

pilation and run time for the program was 1min and 14.26 sec.

Admittedly, the existence of the earlier evaluation of the function simplified our

check of the program. We plan to investigate further, however, the relative accuracy

of man versus computer.
Elaine C. Isaacs

References

1. A. D. MacDonald, "Properties of the Confluent Hypergeometric Function," Techni-
cal Report 84, Research Laboratory of Electronics, M.I.T., November 18, 1948.

D. REPLACEMENT OF INFINITE LIMITS OF INTEGRATION BY FINITE ONES -

AN ILLUSTRATION

We wish to integrate the function

E = re-r ey IZr (2) e dy dr
0 0 0 y x

QPR No. 86 375

(XXVII. COMPUTATION RESEARCH)

= re-r L(r, y) dy/(1+p)
0 0

for a given a- , X, and p, where I is an I-Bessel function, and a , X, p > 0.

We do the integration numerically by evaluation of

N r 2 OM(r)
A = re

O 0
L(r, y) dy p/(l+p) dr,

where N and M(r) are chosen to make IE-AI < E for an arbitrary E.

We shall show that we can find N and M(r) such that

P = re -

R re -

2 FOcc y p/(1+ p)

L(r, y) dy dr < 2
0 2

2 00(r)

p/(1+p)

L(r, y) dy dr <

It then follows that E -A I < . (Note that the functions re - r and L(r, y) are always

positive when r and y are positive, so that absolute value signs are unnecessary.)

We first approximate L(r, y) as follows. By definition,

o(x) =
n=O 0

2nx

22n(n!)2 "

By Stirling's formula,

(n!) -- e - n 2rn

2n 2 -2n 2n
2 (n!) e (2n) 2Tn

-2n 2n 2

Therefore (2n)! 22n(n)2 and

Therefore (2n)! < 2n (n!) 2 and

oo o9
2n 2 n

Io(x) = x x
n=O 2 2n(n!)2 n= (Zn)!
n=0n=0

cc
n

x = e x

n=0

QPR No. 86

and

376

(XXVII. COMPUTATION RESEARCH)

Consequently, I (2r Ny) < er 1y)

-(ln y)Z/2Z-2

To estimate B(y) = , we note that it is > 0 on the interval [0, oo) and
yo-x

approaches zero as y - 0 and as y - oo; It must therefore have a maximum on [0, oa).

dB(y)

dy

-(ln y)'/2-T '
e-

2 2
Y av

-ln y

x
- x).

2
dB(y) -Ox

So dy 0 when y= e

Therefore, letting

MAX = B (e"

cr2/2
e

0-
x

we have B(y) < MAX on [0, co),.

We now have

2
L(r, y) <e . e(2r "- y) . MAX = MAX e- (FX y - r)2

Therefore

P 2 ~ rer 0 p/(l+p)

Sr-r L o L(r, y) dy p /(+)

N

< (MAX)p/(1
+ p) rer LK

N 0
e-(y-r)

Letting z = N-y - r, we get

dz = N'J dy;

Q = (MAX)p/(1+p) N

oo 2

Since e- z

-00o

re - r e

L 2 -r

dy = q7,

QPR No. 86

2r
e

e 2_ dy p/(1+p)
dr = Q.

Z yp/(i+p)
-z dyj dr.

377

(XXVII. COMPUTATION RESEARCH)

Q <(MAX
p/(l+p) 00

I N
re(-r 2 /[l +p]) dr

(l+p) ('' P/ (I+ P)

= 2MAX-

It is clear then that for a given E > 0, we can choose N so large that

(1+p) ' p/('+p)
P < MAX -

We have defined R as follows:

R = re - r)
r)

L(r, y) d /(1+p)

L(r, y) dy]

Hence,

R < (MX) P/(P)
R< 0 -

2 F oo
re-r 2 e

(I M(r)-r)

Now we can choose a fixed M > 1 such that
o

S = (l ~)P/(1+P)

This follows, since for M > 1,

SoM
0

-z
e dz < 0

M

-r2 r2 00

(

-M 2
2 o

-z e
dz - .

2M

M 2 P/(1+p)

e
2M/ 0

re[-r
2/(1+p)] dr=(MAX

NIT-

and it is clear that this last quantity can be made arbitrarily small by an appropriate

choice of M M +r

Now if for each r in the range [0, N] we let M(r) =o , then
NTx

QPR No. 86

-N2/(1+p)

-N2/(1+P) E
2<

dr.

Z 2 p / (+ p)

e- z
dr = S.

dr <-2'

-M2
e o
2M o

/(l+p)

l+p
2

S 1< MAX
SM0 (NK

378

2]p/(l+p)
dz

(XXVII. COMPUTATION RESEARCH)

S = MAXP/(1+P) S
S 0

re-r [er2 M(
(M(r) -r)

since M = ,4"M(r) - r.
o

Therefore R < S < E, and we have established that IE - Al < E.

The problem is now in a form that is suitable for the application of numerical quad-

rature techniques requiring finite limits.

Elaine S. Brown

QPR No. 86

-z /(+p)
e- d dr = SM

0

379

