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GEOMETRY OF ORBITS AND ACTION
DIFFUSION FROM NORMAL FORMS IN
NONLINEAR BEAM DYNAMICS
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The betatronic motion in a nonlinear magnetic lattice is described by the normal forms on the one
turn map. The geometry of the orbits emerges from 3D sections or projections of the invariant
manifolds. Methods to compute the invariant actions are presented and it is shown that the noise
induced diffusion is described by a Fokker-Planck equation whose coefficients are analytically
determined.
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1 INTRODUCTION

Nonlinear effects in charged beams optical systems are introduced by the
multipolar errors of the superconducting magnets.! The one turn map
is known either by evaluating step by step the single elements transfer
maps (tracking) or by a polynomial truncation. For hadron colliders with
strong nonlinearities the normal forms have been proposed to recover a
symplectic map with explicit symmetries from the truncated map.> The
normal forms, first introduced in celestial mechanics for the long term
analysis on comparable time scales, are complementary to tracking. The
former is tailored to describe analytically the quasi-integrable dynamical
structures, the latter to explore the strongly chaotic regions. The normal forms
define a hamiltonian H, whose flow interpolates the orbits of the map just as
the Fourier analysis on the tracking data; the interpolation by H is defined in
the whole region where the normal forms hold, whereas the Fourier analysis
has to be repeated for every orbit. The interpolation allows to compute the
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tunes and the invariant actions, which are needed to investigate the resonance
network. The interpolating hamiltonian H is also the starting point to treat the
diffusion induced by stochastic perturbations of the lattice (ground motion,
RF noise,..) or by a slow modulation (ripples of current in the quadrupoles).
The evolution of the density distribution in action space is determined by
a Fokker-Planck equation, whose coefficients are analytically determined
by H.3 The agreement found between the simulation and the Fokker-Planck
solution for nonresonant 2D maps with noise and preliminary positive results
on the resonant 2D maps suggest that the treatment of a 4D map describing
a realistic lattice is possible.

2 ONE TURN MAP

We consider the transverse motion of particles near a reference closed orbit
in a horizontal plane. In a frame (x, y, s), where s is the curvilinear abscissa
and x, y are the horizontal and vertical coordinate, the orbit is defined by
x = x(s),y = y(s) and py, = dx/ds, p, = dy/ds are the corresponding
momenta. The phase space vector x(s) = (x(s), px(s), y(s), py(s)) at the
entrance of a magnetic element of length £ is transformed into the vector
x(s + £) at the exit of the same element by a symplectic transfer map M,

X(s +£) = M(x(5)) ey

since x(s) satisfies Hamilton’s equations. If the lattice consists of m magnetic
elements sitting in the arcs [0, 51], ... , [Sm—1, Sm], the one turn map M, is
obtained by composing the corresponding transfer maps My, ... , Mp

X =M®X)=MuoMu_io...oMyoM(x), x=x(0), X' =x(s,) (2)

The orbit {x, x;, X», ... , X;, ... } on the chosen s = 0 section of the lattice is
obtained by iterating M. Approximating the transfer map for any magnet of
length £ with one or two symmetric kicks preserves the symplectic character
of the map and the errors are of order £2 and £° respectively. We recall that a
map M (x) is symplectic if its jacobian matrix L;; = dM;/dx; is symplectic,
namely if it satisfies

LIL=1J 3
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where J is an antisymmetric matrix whose nonvanishing elements are
Ji2 = J3a =1, Jo1 = Jsz = —1. Low order truncations of the polynomial
map M may be computed by composing and truncating subsequently at
order N all the transfer maps. Tracking with the truncated map is much
faster, but the errors grow by approaching the dynamic aperture A, and
crossing a resonance. A scaling law (|[x||/A)V*! is expected for the error
after one turn; the most visible effect of the truncation error is the loss of
symplecticity. We considered a 2D model of SPS with strong sextupoles
(the set up of the machine for diffusion experiments) described by 8 Hénon
maps with an overall linear tune v = 26.637. The truncation from order
10 to 20 gives comparable results; orders higher than 25 cannot be reached
because of round off errors and at lower orders the scaling law for the error is
confirmed. On the big chain of islands before the dynamic aperture the loss of
symplecticity is quite evident after a few thousands of iterations as shown by
Figure 1.

Various methods have been proposed to recover a symplectic map from
a polynomial truncation: they are based on the direct use of Lie series*> or
on normal forms.%” Codes to compute the truncated map and the normal
forms have been developed.®? A symplectic map with linear part L has the
representation

M(x) = LePrx = Pox )

FIGURE 1 Comparison of tracking on 4000 turns between the SPS map (left) and its order 20
truncation (right).
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where K (x) is a scalar function and Dy denotes its Lie derivative. Fast
recursive algorithms allow to compute K from L™'M, and algebraic
procedures are used to evaluate G. The map e”¢ has trivial iterations and
G is its invariant; for a generic map M the series defining K and G are
asymptotic'® (the map (x, p + x?), for which K = —x3/3, is generic if
we compose it with (x + p?, p)). A truncated map of order N determines
uniquely the functions K and H up to order N + 1 and leaves their higher
order terms arbitrary.

3 THE NORMAL FORMS

The basic idea of normal forms is to find a change of coordinates such that
the map exhibits an explicit symmetry group G: this is the group generated
by the linear part of the map or any of its subgroups. For a 2D map written in
the Courant Snyder coordinates G is just the group of continuous or discrete
rotations R(w) in the phase plane (x, px). For a 4D map G is the group of
the continuous or discrete rotations in the phase planes (x, p,) and (y, p,).
Assuming that the linear part L of the one turn map M is in block diagonal
form L = L; & L,, a similarity transformation T = 77 @ T brings L to a
rotation R(w1, w2) = R(w1) @ R(w»), where the standard parametrization
of Ty is (T = B,%, Tm = B2, T = 0, T = —apy 2
for k = 1, 2. After the change of coordinates x — T ~!x the linear part of
themap M - TMT —1 {5 a rotation; a FODO cell with a thin sextupole is
described by the 4D Hénon map. The normal form with respect to the group
G generated by the linear part R = R(w1, @2), is a map U invariant with
respect to G

U(Rx) = RU(x) — U(R"x)=R"U(x). &)

A symplectic map U in normal form is represented by

U(x) = RePrx (6)

where H(x) = O(|x|%), called the interpolating hamiltonian, is invariant
with respect to U, which has trivial iterations

U°" = R(nw)e™Pr
{ )

H(UX) = H(RePrx) = H(eP#x) = H(x)
Letting ®(x) be a change of coordinates starting with the identity, the
functional equation defining ® and U is
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Mo®d(x)=do (ReDH x) + E(x)) (8)

where @ is a polynomial map of order N and H is a polynomial of order
N + 1. The remainder E of order N + 1 gives the discrepancy between the
map M and its normal form U. Both U and H are determined recursively by
the map M truncated at order N. The higher order terms of M contribute to
the remainder E. The series though divergent as N — oo have an asymptotic
character.':12 Using the action angle coordinates

V2j1c0801, y=+/2)2c086,

Px = —+/2j18in6y, py=—/2)2sin6, )

the hamiltonian H reads

X

H =" hi, 1,1, J2) cos(ki61 + kabs + 8, 4,) (10)
s

where i, i, has a Taylor expansion in ]1 % and ] startmg with ]lkll/ 2 Jkal/z,

The rotation R leaves ji, jp invariant ad translates the angles 8; — 01 +
w1, 62 > 6 + w;. The invariance with respect to the group generated by R
implies that only the Fourier components satisfying

kiwi + kywy =27 £ (11)

do contribute in (10). Letting @ = (w1, w3, —27) and k = (k1, k2, £), one
interprets (11) as an orthogonality condition w - k = 0 and three cases
are distinguished: nonresonant k = 0, single resonance k = £k, double
resonance k = £1k; + ¢2k, where K, k; are integer linearly independent
vectors.

3.1 Nonresonant Case

The tunes v; = w1 /(27), vy = wy/(27) are irrational and have an irrational
ratio. The hamiltonian H has only the ky = k; = 0 Fourier component
namely H = hoo(J1, j2) and the invariants are j;, jp. The frequencies are
given by

oh
Qi1 12) = w; +?°_°<n,m, i=1,2 (12)
1
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3.2 Single Uncoupled Resonance

A tune is rational vi = p1/q1, the other v; is irrational and k = £ (g1, 0, p1).
The hamiltonian H has k; = £q1, k; = 0 Fourier components and the
leading terms are

H = ho(j1, 12) + cj27 cos(q161 + 6). (13)

The invariants are H, j,.For a quasiresonant frequency w1 = 27 p1/g1+ €1
the same resonant normal form may be computed: in this case hog has a linear
termho =€j1+....

3.3 Single Coupled Resonance

Both tunes are irrational and their ratio is rational: v; = qjv, v; = gav with
v irrational so that k = £(g2, —q1, 0). The contributing Fourier components
are k; = £q7, ko = £q1 and the leading terms are

H = ho(1, 12) + 717 122 cos(qa61 — q162 + ). (14)

With a canonical change of coordinate (61, 62, j1, j2) — (¥1, %2, 11, I2)
where 9 = q20; —q16 onehas H = H(%y, I1, L) and b = q1 1 + ¢2 02
is an invariant.

3.4 Double Resonance

The simplest case occurs when both tunes are rational vi = p;/q1 and
V2 = p2/g2 where g1, g2 have no common divisors. The vectors orthogonal
to w are £1(q1, 0, p1) and £,(0, g2, p2). The hamiltonian H is no longer
integrable and its leading term is

H = ho(1, 12) + c178% cos(qi61 + 81) + c278% cos(qabr + 82).  (15)

This hamiltonian has 4q1q> critical points whose stability has been
analyzed.!3 14

Up to the strongly chaotic regions the orbits of the map are close to the
orbits of the interpolating hamiltonian, which belong to invariant manifolds.
In the neighborhood of a double resonance the manifold H = F is 3D.
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FIGURE 2 Orbits of the 4D Hénon map: (x, p,, y) projection The left side refers to v, =
(V3 = 1)/2, v, = (+/3 — 1)/2 and initial point x = .28, y = .2, p, = p, = O the right side
tov, =.202, v, = 5 - 1)/2 and initial points x = .18, y = .0464, p, = .04, p, =0.

For a single resonance, the presence of a second invariant j; foliates H = E
into 2D invariant manifolds. In the non resonant case H = E is foliated by
2D tori labeled by the invariants jq, jp. Intersecting these manifolds with a
moving hyperplane (ordinary 3D space) is a good strategy to visualize them
(a surface of 3D space is well described by its intersections with a moving
plane). Faster procedures such as the projection on a 3D space have been
proposed to analyze the data of tracking.!* 13

The nature of the orbits emerges by considering H as a perturbation of the
hamiltonian hg(J1, j2), whose orbits belong to the 2D torus. Topologically
the 2D torus is a square in the 61, 6; plane with identified opposite sides; its
embedding in a 3D space is a cylinder with identified basis.

The orbit of the time one map 0{ =61 + 21, Gé = 0y + o is dense if
Q1, 2, defined by (12) are nonresonant. The closure of the orbit is a set of
q1 vertical lines or a single line made of diagonal segments with identified
ends or a set of g;¢g> points if €21, € satisfy a single uncoupled, coupled
or double resonance condition respectively. The projection of the torus in
a 3D space is a cylinder with identified basis and the closure of the orbits
is correspondingly the cylinder itself, g; vertical lines, a single line winding
on the cylinder or g1g, points. Adding the angle dependent term to A the
q1 lines split into g; hyperbolic lines and ¢; elliptic lines, surrounded by
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FIGURE 3 Normal forms surfaces for the Hénon map: (x, p,, y) projection. The parameters
are the same as for Figure 2.

FIGURE 4 Normal forms surface H = E : (x, pyx, y) section. The left side refers to the Hénon
map with the same parameters as Figure 2, right side. The right side shows the surface H = .001

of the hamiltonian H = .02 j; — .1 ;24 .001 (1 j 4 j2) +.05 ;;/* cos(56)).

cylinders with base H (61, j1, j» = 0) on planes parallel to the x, p, plane
and |y| < +/22; the q1¢> fixed points split into the 4¢;g critical points of
(15). In Figure 2 we show the projection of the orbits of the Hénon map for
non resonant and quasiresonant frequencies; in Figure 3 the projections of
the corresponding invariant manifolds given by the normal forms are shown.

The surface obtained by section of the invariant manifold H = E with the
hyperplane p, = 0 is shown in Figure 4 (left) for the same Hénon map as
Figure 3 (right); a similar picture would be obtained for frequencies close to
a double resonance. In the case of a single resonance the p, = 0 sections of
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the additional invariant j, are the y =const. planes; they intersect the surface
H = E, p, = 0 on curves surrounding the y axis and on chains of islands.

4 TUNES AND INVARIANT ACTIONS

If the linear frequencies are not doubly resonant the hamiltonian H depends
on one angle H = H(J1, j2, 01)- A locally defined canonical transformation
61,1 - ©1,J1 and ®, = 6,/ = j allows to drop the angle
dependence on the hamiltonian H = bég (J1, J2) and to define the nonlinear
frequencies 21, £2;. The invariant actions J; and the tunes vy = Q/(2m)
are also obtained from a Fourier analysis following a strategy'® proposed for
astronomical models.

4.1 Tunes

The average phase advance APA and the fast Fourier transform FFT
determine the tune with a n~! error. A further averaging kills the APA
oscillations with  and after extrapolation n — oo the error drops to n™2;

combining low order N normal forms with averaged APA one has
sv~ 24+ pH T n? (16)

for an orbit of length n. The discrete Fourier analysis or interpolation of FFT

with a Hanning filter gives a n~* error.!’

4.2 Invariant Actions

Letting x = /2j cos@, px = —+/2J sin8 be the unperturbed action angle
variables, the invariant J of a 2D map is obtained by integration on the orbit
after reordering the angles as an increasing sequence; the trapezoidal rule
gives

1 i
anpxx Zﬂ/J()
0

I
= 5= ) T O~ 6) + O(ne) a7
k=1
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where € = max |§; — 6;| > (27) n~land j, = jo, 00 = 0,6, = 2. The
error achieves its minimum n~? for uniformly distributed angles.

The Fourier interpolation of the data x(f) = ), agekt p.t) =
>4 bre’*@! from integer to real  gives

T
1 .
J= Efp(t)x(t)dt =Im k2>12kbka—k- (18)
/ >

The main source of error is due to the truncation of the Fourier series to order
k max and to sampling. For an invariant curve x(t), p(t) are analytic in ¢
and the decrease of the Fourier amplitudes is exponential with k ,,, on the
invariant curves and like k7., on a separatrix. Approaching the boundary
of a chain of islands the main source of error is the truncation of the Fourier
series. .

In the quasiresonant case letting H(j, 6) be the hamiltonian and E =
H{(jo, 6p) its value for a chosen initial point, the equation of the orbit
J = j(6, E) is defined implicitly by H(j,8) = E. Since H is a polynomial
in 71/2 one has to find its roots and select the real ones. For E < E s
there are two real roots corresponding to the invariant curve in the inner and
outer region with respect to the separatrix; for E > E ., there are either
no real roots or two roots corresponding to the two points where an island is
intersected by the half line of polar angle 6. In the first case the invariant is
given by

n—1

2
1 1 k
J=—fj<e,E)de:—Zj(E,9k), O =27~ (19)
2 ni= n
0

The numerical integration error is 72, since the points are equally spaced; on

the separatrix they are chosen to fall on the hyperbolic points, where are the
cusps. The accuracy is essentially limited by the asymptotic character of the
normal forms: §J ~ n~2+ (¢ Jjo) A comparison of the methods is shown
in Table I for the action of the separatrix of the Hénon map with v = .205.
The accuracy of the Fourier method increases rapidly as we move out from
the separatrix and the relative error drops below 10~ for the parameters of
Table I, whereas it remains stable for the normal forms unless we get close to
the origin. The extension to 4D maps is straightforward for the normal forms
(J1 is defined by (19) and J; enters ji (E, J>, 61) as a parameter) and for the
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TABLE 1 Errors on the invariant J = .0307 of the separatrix (area of islands) for the Hénon
map with v = .205, first 4 lines; errors for an outer curve where J = .0967, last two lines

n Kmax error n error n N error
1000 20 23E-2 100 3.0E-2 100 5 4.8E-3
1000 30 1.6E-2 1000 14 E-4 100 7 48E-4
1000 40 12E-2 4000 24E-5 100 8 1.6 E-5
1000 60 1.0E-2 5000 2.0E-5 100 10 3.1E-5
1000 20 2.0E-5 500 31E-7 50 7 1.2E4
1000 30 33E-7 1000 42E-8 50 8 3.6E-6

Fourier Integration Normal forms

Fourier method. Indeed letting I'y, I'; be the two cycles corresponding to the
periods 71 = 27 /w1, Tp = 27 /w; the invariants are given by

T
1 1 , .
Je= o= f(pxdx + pydy) = — /(pxx + pyy)dt 20)
T 2
Ty 0

Fast and accurate computation of the tune, invariants and resonance param-
eters has several applications: the tune shift minimization allows to correct
the multipolar errors and to define a sorting strategy for the random errors. !

5 THE DIFFUSION PROBLEM

One of the major sources of instability of the beam is the slow diffusion
in action space. The Arnold diffusion has been shown to be negligible in
numerical experiments for the Hénon map. Rigorous estimates show that the
remainder least value in a disc of radius r is exponentially small with r~¢
where o« < 1/3; this implies a lower bound!*?° T = T, exp [(2)®] on the
stability time. However the analytical estimates of the constants r,, « are not
satisfactory and fits on the tracking data are difficult. Significant diffusion
in symplectic maps is observed when the linear frequency is modulated
periodically, or stochastically.
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Consider a polynomial area preserving map whose linear frequency w is
affected by stochastic fluctuations

Fntl ) _ Xn + f (Xn, pn) — o
(pn+1) o R(w + GSn) (pn + g(_xn, pn)> - R(eén) F(xn’ Pn) (21)

where &, are random variables with zero mean and variance . We assume

that the deterministic map has no macroscopic resonances up to the dynamic

aperture and introduce the nonresonant normal form with the transformation

x=®,(0,J), pr = 9,(0, J) where ©, J are the action and angle for

the normalized coordinates. Writing the stochastic rotation as a Lie series

R(e&n)x = exp(eéy D22 )X and performing the change of coordinates one
2

finds that

(®"+1 ) = exp(e£&n Dv(o,1)) © exp(Dry()) ((?:) e

Jn+1

where Hy = wJ + haJ? + ... + hys J '3 . The function V(®, J) is given
by

V(®,J) = %[cbi(@, D+ @%@, ). (23)

The hamiltonian H which interpolates the map (22) is given by

H = Hy(J)+ eE@OH1(O, ]) + 2 E2() Hy(©, ) + O(€?).  (24)

The remainder terms of order J 1% are assumed to negligible with respect

to €2. The stochastic process E(t) is defined according to E(¢) = &, for
t € [n, n 4 1]. The Fourier coefficients /1 ; of H; are related to the Fourier
coefficients vy of V by the following relation

kQJ)

h) = ul)—pegy-  k#0 (25)
sin ——=

The subsequent step consists in writing the Liouville equation for the time
evolution of the probability density
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— =w— Elp, H 2°[p, H>]. 26
o a)a + eE[p, H ]+ € {p, Hp] (26)

The equation simplifies because the autocorrelation (E(t + t)E(¢)) of
the process & (¢) vanishes for all 7 notin the interval [t]—¢ < 7 < ¢t —[t]+1,
where it is equal to o' The separation of the angle and action diffusion time
scales allows to write an equation for the time evolution of the action density.
Indeed from ((A®)?)  (d2/dJ)? €2n® and ((AJ,)?) « €2n follows that
the angle relaxation time is 7, ~ €~2/> while the action diffusion time is
T, ~ €2, Angle averaging is justified as soon as the angle has relaxed and it
has been shown that if we split the density into an average pp and a fluctuating
part, then for ¢ > €%/ the average density py satisfies a Fokker-Planck
equation

300 0 00
—(J,t) = —D(J)—(J, 1),
3t( ) Vi ()BJ( )
2 2 v 2
€0 1 A%
D = — —(\,J 7C] 27
2 2 (a@( )) @7
0

where an absorbing boundary condition is imposed at the action value
J, corresponding to the dynamic aperture. The agreement between the
simulation and the solution of (27) is excellent up to the dynamic aperture
when no big islands are present, as shown by Figure 5 left for the Hénon
map. The theory extends a 4D map and letting J = (J7, J») the equation for
the action density o (J, t) reads

900 0 d00
— (I, 1) = — Dy (J)=—(J, 1),
8z( ) 37 lk()aJk( )
2m
2?1 oV v
Djp=— — | — —d®,d0 2
=T (2n)2[a®,-a®k e (28)

0
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FIGURE 5 Rightside: density evolution p(J, n) for the Hénon map withw = (V3-1), € =
27 1073 against J/J, for n = (0,2, 6, 12)10° (left side). Right side: integrated density time
evolution for the hamiltonian H = —.06 J(1 + .01 £(z)) +.003 J2/2 + .3 J2 cos(4®) in the
outer (top curve), islands ( middle curve) and inner (bottom curve) regions, against / fyax.

The diffusion of action for 2D maps with a chain of islands can be treated by
using the quasiresonant normal forms and the transformation 6, j — ©, J
to the invariant action, illustrated in the previous section. We have found that
the agreement between the solution of the corresponding F.P. equation and
the simulation is still satisfactory?! as shown by Figure 5 right, where we
compare the time variation of the density integrated on inner, outer and the
islands region, for the stochastically perturbed interpolating hamiltonian of
a map with a forth order resonance. Similar results have been obtained for
the diffusion induced by a periodic modulation of the tune?>23 by using the
adiabatic theory.?*
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