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A method for finding integrable four-dimensional symplectic maps is outlined. The method
relies on solving for parameter values at which the linear stability factors of the fixed points of
the map have the values corresponding to integrability. We propose that this method be applied
to accelerator lattices in order to increase dynamic aperture.
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1 INTRODUCTION

Much progress has been made in the problem of determining whether a
dynamical system is chaotic. Poincare! showed that for a general perturbation
of an integrable multidimensional oscillator, there is no invariant analytic in
the perturbation parameter. The problem of small denominators in normal
form theory2 prevents one from finding a convergent invariant in the
neighborhood of a linearly stable fixed point. The understanding of what
happens when an integrable system is perturbed was greatly increased by
the KAM theorem,3-6 which showed that some invariant surfaces remain
(provided the linear frequencies in normal form theory are not linearly related
with integers smaller than 4). Complementarily, Melnikov7 and subsequent
work on the intersection of stable and unstable manifold showed that chaotic
motion was very easy to find. These are the approaches one must take to
determine the stability of a given Hamiltonian system, such as the motion
of the asteroids or the stability of the solar system; one would like to know
whether the motion for given initial conditions is stable, and so one would

151



152 l.R. CARY

like methods for determining whether a trajectory found in given region of
phase space for a given Hamiltonian is, or is likely, to be integrable or chaotic.

In contrast, there is another class of problems in which one has freedom
in choosing the Hamiltonian, and for various reasons one would like to
have a system that is either completely chaotic or uniformly integrable. For
example, one might desire a chaotic fluid flow so that chemicals are mixed
uniformly in a short time. An example of the needing integrability occurs in
the design of systems that must confine particles, such as fusion confinement
devices or accelerators. The goal of this paper is to outline how one might
find symplectic maps with reduced chaos and, specifically, how this might be
applied to accelerator lattices to increase dynamic aperture. A more complete
discussion is elsewhere.8

The restrictions that arise in real systems are what make this problem
nontrivial. Without restrictions, one can write down any number of integrable
Hamiltonians. One need only ensure that the Hamiltonian have sufficient
symmetries such that by use of Noether's theorem one can find a complete
set of invariants. However, the accelerator designer does not have a list of
integrable Hamiltonians to choose from. Instead he has various kinds of
magnets that he must string together in a lattice in such a way that the
beam is confined. As a result, no accelerator is integrable, as the current
procedure for accelerator design (discussed below) requires the insertion of
nonlinear elements, and such elements generically lead to nonintegrability,
as noted above. Hence, to appreciate the present discussion, it is important
to understand not only dynamics, but dynamics as it is limited in a practical
situation, which here is accelerator design.

The basic ideas for finding integrable systems9 were first applied using
fixed-point indicators of integrability lo in the context of finding three­
dimensional toroidal magnetic field with lines lying on nested toroidal
surfaces. Such systems are Hamiltonian of one and a half degrees of
freedom11 and, hence, correspond to two dimensional symplectic maps.
In this case there are no systems known rigorously to be integrable while
having no internal current yet having nonzero winding number. (These
latter requirements arise from physics issues.) However, perturbation theory
indicated that for systems with the latter properties, approximately integrable
systems did exist. Application of methods similar to those discussed in this
paper allowed one to find systems with greatly reduced chaotic regions and,
therefore,larger confined plasma volume. A series of designs found by using
these ideas were published.12
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Subsequently we applied these ideas to the similarproblem ofthe dynamics
in the uncoupled horizontal dynamics of an accelerator lattice. 13 As this is
also a system of one and a half degrees of freedom, the method carried over in
a straightforward manner. The difference was primarily that the parameters
became the amplitudes ofthe nonlinear multipoles in the accelerator magnets,
whereas before the parameters were the fourier harmonics of the winding law
of the coils.

The method proved to be successful here too, .insofar as only one transverse
degreee of freedom was concerned, i.e., for trajectories with initial conditions
(momentum and position) entirely in the horizontal plane (an invariant plane
for the lattices were considered). However, an examination of the dynamics
of the four dimensional system (by considering trajectories with initial
conditions out of the horizontal plane) found that the dynamics was worse.
That is, the four dimensional volume of confined initial conditions was found
to be smaller even though the uncoupled horizontal dynamics was improved.

These results meant that to be able to reduce the chaotic dynamics in
Hamiltonian systems of two and a half degrees of freedom, one would have
to consider the full dynamics. In this paper we discuss how this could be
done. We begin, in the following section, by reviewing why accelerators
must be nonlinear. Then we discuss the linear stability of fixed points in four
dimensional maps.

Our hope is that such methods will allow those who need to develop stable
particle confinement systems such as accelerator lattices to control the chaos
in these systems as much as they now control the linear dynamics. With this
degree of control, large dynamic apertures may be achievable in strongly
nonlinear machines such as synchrotron light sources,14 allowing them to
produce light beams of greater brightness. Alternatively, smaller dynamic
apertures may be puc in place to, for example, collimate the beam, i.e., reduce
its emittance or energy spread.

2 WHY ACCELERATOR LATTICES MUST BE NONLINEAR

In modem high-energy accelerators, particles are confined by the principle of
strong, or alternate-gradient, focussing. IS Quadrupole magnets, which have
transverse magnetic field varying linearly with distance from the center, are
placed with alternating polarities around the machine (in combination with
bending magnets). As this motion is linear, there is a quadratic invariant of the
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motion, known as the Courant-Snyder invariant, for each of the three degrees
of freedom: the horizontal and vertical, or betatron, degrees of freedom and
the longitudinal, or synchrotron, degree offreedom. The magnet strengths and
separations are chosen such that the hypersurface ofconstant Courant-Snyder
invariants is closed for particles having energy near the design energy. That is,
the motion is analogous to that of harmonic oscillators with a restoring rather
than unstable linear force. The particles move on the invariant hypersurface
with three characteristic frequencies, known as tunes, one for each degree of
freedom. We will discuss this in more detail in the following section.

The choice of the tunes is dictated by stability. Linear systems of one
and a half degrees of freedom are typically unstable to arbitrarily small
perturbations (always present due to magnet imperfections or unavoidable
nonlinearity), if the tune is an integer multiple of 1/4, 1/3, or 1/2. The KAM
theorem states that in the presence ofperturbations, there will remain a region
of stable trajectories (more precisely, a region where most of the invariant
surfaces are only distorted, not broken) provided the tune is a "sufficiently
irrational number". This has a technical meaning16 that is roughly that good
rational approximations of the tune v = m / n require the use of large integers
m and n. Moreover, the KAM theory indicates that it is better to choose a
highly irrational tune to obtain the best stability properties.

Unfortunately, the tune has a natural variation with energy due to the fact
that the efficacy of bending of trajectories by magnetic fields decreases with
energy; the magnetic rigidity increases with energy. As a result, the tune
would naturally vary with energy, and so at some energy the tune would
be a low-order rational and highly unstable to perturbations. To eliminate
this chromaticity, proportional to the derivative of tune with energy at design
energy, sextupole magnets, for which the magnetic field varies with the square
of the deviation from the design orbit, are inserted. Then, higher-energy
particles, which circulate on a larger radius orbit, effectively see a larger
quadrupole field so as to counteract the increase in rigidity. By judicious
choice of the strength of the sextupole, the chromaticity can be made to
vanish.

Thus one comes full circle. In spite of the fact that one would like a
stable, predictable linear system, one must introduce nonlinearity to get
stability for small oscillations over a range of energies. As a result, one must
understand the chaotic dynamics associated with such nonlinearity. Given
the present limited understanding of nonlinear systems, much of accelerator
design relies on detailed examination of the dynamics for many proposed



REDUCING CHAOS IN SYMPLECTIC MAPS 155

scenarios. Naturally, the designer begins by restricting himself to systems
with good linear dynamics and small chromaticity. However, from there
the process becomes heavily computational - extensive orbit following
(tracking) calculations are made to determine the limits of the phase space
region (dynamic aperture) in which the trajectories remain confined.

3 HAMILTONIAN DYNAMICS AND THE ONE-TURN MAP OF
AN ACCELERATOR

The motion of particles around an accelerator is governed locally by a
Hamiltonian. However, for understanding the long-term dynamics it is
sufficient to analyze the return map. In this section we review the relationship
between the Hamiltonian and the return map.

We consider the motion defined by a Hamiltonian having N degrees of
freedom plus temporal variation, H (qI, . .. ,qN, PI, . .. , PN , s). In keeping
with the. practice in accelerator physics tracking, the temporal variable
s in an accelerator is a variable that parameterizes the path around the
accelerator ring, while the energy and time form the third canonical pair
(Ref. 17, Section 1.2). The Hamiltonian is then the function that gives the
rate of change of the other variables with respect to s as the. accelerator is
circumnavigated:

dqi aH

ds api
(Ia)

and

dPi aH

ds aqi
(lb)

In fact, for single-particle dynamics in accelerators, N is at most three, and
the coordinates are the transverse coordinates and momenta, the energy, and
the time (which is needed to calculate the temporally varying accelerating
kick).

This Hamiltonian theory neglects the phase-space contracting effect of
synchrotron radiation and the diffusion caused by quantum fluctuations.
These effects are usually neglected in proton machines. In addition they can
be neglected during the first several turns in electron machines, when it is
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nevertheless important to know the dynamic aperture (the region of confined
trajectories in phase space), as that controls the success of the injection

process.
For most analyses of the single-particle dynamics in accelerators, the

energy-time canonical pair is considered separately. The characteristic
(synchrotron) frequency of the energy-time oscillations is much smaller than
the characteristic (betatron) frequencies of the transverse oscillations, and so
can be treated later by adiabatic theory. When this decoupling applies, the
picture of the motion in phase space can be pieced together by understanding
the constant-energy dynamics for the range of energies implied by the
synchrotron oscillations.

For the systems we consider, the temporal variable is periodic. By this we
mean not only that the Hamiltonian is periodic in this variable,

H(s + S) = H(s) (2)

with some period S, but also that phase space is toroidal in the variable s so that
(qI, ... ,qN, PI, ... ,PN, s) and (qI, ... ,qN, PI, ... ,PN, S + S) are the
same point. This obviously holds for the case of the accelerator as described
above. This requirement implies that single-valuedness and periodicity as in
Equation (2) are the same condition.

The integration of the trajectories through one period of the Hamiltonian
gives a map,

z= M(z) (3)

of the phase space of initial conditions at s = 0 onto the phase space at
s = S. Here, is the points obtained by starting at z and integrating the
equations of motion for one period S of the temporal variable. This map
is symplectic (Ref. 18, Section 7-1) because the equations of motion come
from a Hamiltonian. Furthermore, this map is the same for each period, as
the Hamiltonian is periodic. This implies that one can find the trajectory after
going through n periods of the Hamiltonian by applying the map n times.

A Hamiltonian system of N degrees of freedom is integrable if it
has N single-valued invariants J = (JI, ... , IN) in involution (See
Ref. 19, Section 147), known as actions. In involution means that the
Poisson brackets of the actions with themselves vanish. Assuming, as we
will, that the surfaces of constant action are compact, the surfaces must
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be tori in phase-space-time. The variables canonical to the actions are
the angles (th, ... ,eN), which, with time, specify a point on a given
torus. Because the actions are constants of the motion, the Hamilto­
nian does not depend on the angles. Further, it can be shown that the
time-dependence of the Hamiltonian can be eliminated by a subsequent
transformation. Hence, the Hamiltonian for an integrable system has the form,
H (J). Because the Hamiltonian has this form, the angle variables increase
linearly in time,

(4)

Any observable 0 has time dependence only through the evolution of the
angles,

(5)

Furthermore, the dependence on these angles is periodic. This, together with
the fact that the angle variables increase linearly in time, implies that the
time-dependence of any observable is quasiperiodic,

which means, in essence, that the evolution has the form of Equation (6) ­
that ofa function periodic in N +1variables with the evolution ofeach ofthese
variables being linear. Such evolution has N + 1 fundamental frequencies,
one (Wi) for each of the degrees of freedom and one,

Q == 2njS, (7)

associated with the periodicity of the temporal variable.

In fact, the fundamental temporal frequency (7) provides a scale for the
other frequencies. The scaled frequencies,

(8)
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are known as the winding numbers in most of the nonlinear dynamics
literature, as these give the number of times a trajectory circulates around the
torus "the i th way" (i.e., increasing Oi by 2n) per each circulation around
the torus "the s th way", that is, per increase of the temporal variable by one
fundamental period S. In accelerator physics the quantities (8) are known as
the tunes, as they give the number of oscillations of the various degrees of

freedom per circulation around the accelerator.
For practical applications integrable nonlinear systems have many advan­

tages. The simplicity of the motion makes it easily calculated. Moreover,
integrable systems have linear, not exponential, divergence oftrajectories, and
so calculations are not accompanied by the loss of predictability associated
with chaotic dynamics. In addition, the regions oftrajectory loss can be known
precisely as the region inside the separatrix. In nonintegrable systems, the
boundaries of invariant regions tend to be complex with structure at all scales
(Ref. 17, Ch. 3).

Finally, nonlinearity can have a stabilizing effect in at least two ways.
The effect of perturbations on nonlinear systems is guaranteed to be small;
nonlinear stabilization guarantees that the associated resonant regions have
finite size. In addition, the spread in tunes can make such systems less
susceptible to collective instabilities,20 which arise when the dynamical
frequencies of the particles match a natural frequency of a cavity in an
accelerator, and so are strongest when all particles have the same frequency
and resonate together.

4 CHAOTIC MOTION AND RESONANCES

When an integrable system, such as that described in the last section, is
perturbed, resonances (or islands) form. The perturbation generally contains
fourier harmonics (in the unperturbed angles) that do not change for a particle
moving along an unperturbed trajectory. These resonant perturbations cause
large oscillations in the actions.

It is possible to calculate the effect of a single resonance in isolation.21

Such a calculation shows that the oscillations in the action are bounded. In this
calculation the maximum excursion for a particle started at some particular
resonance [the place in action space where 11 VI (J) +12v2(J) = m for integer
11, 12, and m] is called the island width. Hence, a resonance can be illustrated
in. action space by a curve of varying width. A sketch of a collection of
resonances and their widths is shown in Figure 1.
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FIGURE 1 Resonances of varying width in actlon space. The asterisk indicates where a KAM
surface might be.

The resonance width calculation predicts integrability if the resonances
are separated, as they would be at the asterisk in Figure 1. Chirikov21

proposed that once the perturbation is large enough that the above calculation
would predict the overlap of two neighboring islands, the system is chaotic.
Hence, there is chaotic motion at the resonance crossings, the comers of the
resonance triangle of Figure 1.

5 MOTION NEAR FIXED POINTS

Analyzing the resonances for a nonlinear system is problematic, as typically
the underlying integrable system is not known. Instead, we consider the fixed
points. At each of the resonance crossings (cf. Figure 1), there are 2N fixed
points. By studying the fixed points, we will be able to deduce the strength
of the resonances at those points in the action plane.
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The linear stability of fixed points of four dimensional symplectic maps has
been studied extensively by Howard and MacKay.22 The linearized motion

near an L th order fixed point is governed by the tangent map, the derivative

of the L-times composed map. The tangent map M is represented by a
symplectic matrix. The linear stability is determined by the eigenvalues of

this matrix. For symplectic matrices, if A is an eigenvalue, then so are l/A,
A*, and 1/A*. Thus, eigenvalues come in complex conjugate pairs on the

unit circle (A = l/A*), inverse pairs on the real line (A = A*), or complex
quadruplets in other parts of the complex plane.

The eigenvalues can be found by first defining the stability index,23

p = A+ l/A,

for each inverse pair. Given the stability indices, which can be complex,
one can solve for the inverse pair of eigenvalues. From the characteristic
equation for the polynomial, it follows that the stability indices are the roots
of a polynomial,

Q(p) == p2 _ Ap + B-2 = 0, (9)

where

A == Tr(M), (10)

and

B == {[Tr(M)]2 - Tr(M2)}/2. (11)

Our interest is in obtaining maps that are nearly integrable and, further­
more, have invariant surfaces that are simply nested tori. (We do not want
island structures.) Integrable maps preserve vectors of the the form (8e):
two orbits on the same torus separated by some angles initially are always
separated by those angles as the angles increase linearly in time. This implies
that each canonical pair has one eigenvalue that is unity. As the generalized
eigenvalues of each canonical pair are inverses, this implies that all of the
solutions of the characteristic equation for the linearized map of an integrable
system with simply nested tori are unity. This implies that the stability index
must be 2, and so Equation (9) must have a degenerate pair of roots of value
2. This implies that the values of A and B for integrable systems are
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A=4,

B =6.
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(12a)

(12b)

This discussion implies that we will be able to reduce the resonance widths
at the crossings by requiring the conditions (12).

6 METHOD FOR FINDING FOUR DIMENSIONAL SYMPLECTIC
MAPS WITH REDUCED CHAOS

Our analysis leads us to a method for reducing the chaotic region of phase
space. The fixed points corresponding to the relevant resonance pairs are
found. The parameters of the Hamiltonian are varied so as to solve for the
values at which the fixed-point parameters satisfy Equations (12). We now
tum to a discussion of how this might be carried out.

The simplest accelerator lattices are made up entirely ofdipole, quadrupole,
and sextupole magnets. The dipole magnets bend the trajectories so they will
close. The quadrupoles are chosen so that the central tunes are far from low
order resonances. This provides a stable region of phase space for orbits
having the design energy. The sextupoles are chosen so that the derivative
of the central tune with energy vanishes. This prevents nearby off-energy
particles from being in some low-order resonance, and so makes a sufficiently
large confined region in six dimensional phase space.

If it is no longer required that the central tune avoid low-order resonances
to eliminate chaotic trajectories, the standard design principles no longer
apply. One might choose the central tune to have any value. In this case,
the tune is chosen arbitrarily, and any chromaticity would work provided the
tunes remain within the stable region. Hence, the locations and strengths of
the sextupoles are varied freely within the limits of linear stability, and one
attempts to solve for parameter values for which Equations (12) are satisfied
for the design energy, i.e.,

Aj (8 == ~E / Eo = 0) - 4 = 0 (13a)
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(13b)

are satisfied for fixed-point j . In this case we say that our parameters are the
sextupole strengths and locations, while the residuals, the quantities we want
to vanish, are the left sides of Equations (13).

We have no rigorous algorithm for choosing the fixed points to use in
the optimization. In previous work10,13 we have found that it is sufficient
to use a few of the lowest order fixed points that are closest to resonance.
Our experience in two dimensional maps is that in the minimization of the
residues of the low-order fixed points, the higher-order fixed point residues
do not typically increase, but instead decrease also. The explanation may be
that the higher-order resonances are primarily due to nonlinear beats of the
lower-order resonances.

It is straightforward to show from a perturbation analysis, that in the case
where the perturbation of a given resonance is dominated by two harmonics,
the conditions (12) imply that resonance amplitudes vanish. Hence, this
procedure results in a diminishing of the resonance widths at the point of
crossing. One could then imagine that the resonances remain large between
the crossings, and so there will be chaotic trajectories near the separatrix, but
that the global transport is eliminated because the chaotic trajectories may no
longer move along a resonance past the crossing point. A sketch of the action
plane in this case is shown in Figure 2. In fact, we expect the reduction of
the resonance width at two points along a resonance to result in a reduction
between, just a dragging a rope by its ends causes the middle to follow also.

Actually, many resonances cross at a given intersection. That is, many
resonance will pass through the comers of the central "resonance triangle" in
Figures 1-2. The analysis of the resonance structure, the relations between
the A and B coefficients and the resonance amplitudes, and the dynamics in
this complicated region is an area where much future research is needed.

Our procedure for chaos reduction will need to be augmented to provide for
a stable range of energies, because the above procedure may lead to lattices
for which slightly off-energy particles see large islands and chaotic regions.
To prevent this, one could add to the list of the residuals, the quantities,
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FIGURE 2 Resonances in action space when the condition (12) holds.
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(14a)

(14b)

where the offsets 8n are chosen in the range of desired stable energies.
Alternatively, if only a small stable energy interval is needed, one could,
in the spirit of conventional lattice design, require the vanishing of the
A -chromaticity,

and the B -chromaticity,

dA·_ }

XAjn = d8 '

dB·_ }

XBjn = d8 .

(15a)

(15b)



164 J.R. CARY

(These chromaticities are not the usual chromaticities, but they can be related

to them.)
Alternatively, one might ask whether this method can be used to eliminate

troublesome resonances in existing designs. In this case the quadrupoles
would be chosen to keep the same values of central tune, and the sextupoles
would be chosen to make the central chromaticity vanish. This would still
leave considerable freedom, in that the locations of sextupoles within a cell
would be free, and the relative strengths, if there is more than one, could also
.be varied. In addition, one could, as was done in Ref. 13, add multipoles.
This would provide two new parameters (strength and location) for each.

In the work of Ref. 13 it was found that one additional residual had to
be added to the list, that of the location of the fixed points. Without such a
restriction, the variation ofparameters can result in the movement of the fixed
point into the origin, where nonlinearity is small. (The nonlinear tune shift
increases.) This can actually result in a decrease in dynamic aperture, as the
more distant fixed points, which are now determining the dynamic aperture,
have not been optimized.

In the implementation of this method it will be necessary to be able to find
high-order fixed points of four dimensional mappings. This can be difficult,
but the difficulty is reduced substantially when one is analyzing maps having
inversion symmetry,24 so that one knows that the odd-order fixed points
must lie on a plane. The method could also fail if the sets of fixed points and
parameters become too large. However, as mentioned before, experience in
the systems of one and a half degrees of freedom has shown that the chaos is
often cured by considering only a few low-order fixed points.

Regardless, should this method work, the computational requirements for
accelerator design will be great!y reduced. Rather than analyzing lattice after
lattice, each time with extensive tracking, it will be possible to solve for good
l~ttices simply by following the stability properties of a few low-order fixed
points. Of course, the final lattice will then need to be checked by extensive
tracking analysis.

7 CONCLUSION AND FUTURE DIRECTIONS

At this stage it is difficult to draw conclusions. A method for finding four
dimensional symplectic maps with reduced chaos has been proposed, but
given the heuristic nature of this method, one will know whether it works only
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once it has been implemented. We are now in the process of implementing
this method, and we hope to be able to report on the results next year.

If the method proves to be successful, it promises to be beneficial to
accelerator physics in several ways. Having better control over dynamic
aperture would allow one to increase the dynamic aperture when thisis needed
to capture (at injection) more particles or to provide a greater volume of stable
orbits so that scattering is less likely to cause particle loss. Alternatively one
could decrease dynamic aperture by increasing the residuals in order to trim
a beam or extract particles.

Regardless, in the process of implementation we should learn more about
transport in Hamiltonian systems of two and a half degrees of freedom. If we
are able to diminish transport by imposing the requirements (12) for a few
low-order fixed points, then it will lend credence to the picture that transport
is caused by motion along resonances, and that the transport to the dynamic
aperture is the result of movement along the resonance web.
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