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1 INTRODUCTION

In this paper we discuss the linear transverse beam dynamics perturbed
by magnet nonlinearities and noise. This is a progress report, there is still
much work to do. In Section 2, we formulate the equations of motion in a
form for the analysis using averaging techniques. This yields the so-called
averaged problem, which is deterministic and autonomous. The unaveraged
problem, which is equivalent to the original problem, can be viewed as a
perturbation of the averaged problem. Our approach has a perhaps novel
feature in that it includes both the resonant and nonresonant cases in the same
formalism. In Section 3, we discuss the averaged problem and introduce the
idea ofa coarse-grain equilibrium. We show that in the one degree-of-freedom
(DOF) case the phase space density limits to a coarse-grain equilibrium in
large time. Section 4 is a series of remarks on what can be proved about
the exact deterministic(no noise) problem with knowledge of the averaged
problem using the averaging theorem. Section 5 gives an overview of ideas
from stochastic processes which will be useful in what follows. We very
briefly discuss stochastic and Markov processes, the Ito stochastic differential
equation and Markov diffusion processes, and the idea of weak convergence
of a family of stochastic processes to an Ito diffusion. These ideas are used in
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Section 6 to discuss a theory of stochastic adiabatic invariance and a 4/3 law
for phase randomization. Finally, in Section 7 we apply the ideas of Section 6
to cases of tune, dipole and quadrupole noise with an octupole nonlinearity.
This is brief because of space limitations.

2 TRANSVERSE EQUATIONS OF MOTION IN
AVERAGING FORM

We begin with the one DOF case and then briefly indicate how to incorporate
the second degree of freedom. The transverse equation of motion is written

X" + k(s; v)x = sg (x, s; y) . (2.1)

Here v denotes the tune and we write k(s; v), even though this is not strictly
correct, in order to make explicit that given a k(s) the tune v, which is a
functional of k(s), is uniquely defined. The y in the gmeans that g can be
a random function. We will use (r, A, P) to denote the probability space,
where r is the sample space, y E r is a sample point, A is a class of subsets of
r called events (also called a (j -algebra or a (j - field) and P is the probability
measure on A. In the usual convention Q and W are used instead of rand y ,

however here we wish to use w to denote frequencies. The function k(s; v)

is periodic with frequency WI = 2rr j C where C is the circumference of the
machine.

Equation (2.1) can be written in system form as

X' = K(s; v)X + sG(X, s; y) (2.2)

where X = (;,), K = (_~ 6), G = (~). For s = 0, (2.2) has fundamental
solution matrices w(s) defined by '11' = K(s; v)w ,det '11 =1= O. We have
found it convenient to use '11 = <1>, where

<I>(s; v) := Jf3(s) ( (1).
-(1, S +z
-----,;(S)

wherea(s) := -1f3' (s), 1fr(s):== J; f3~t)dt 1frp (s) + 2rrvsjC, and
where the last equality defines the periodic f~nction 1frP (s) with v defined
by 2rrv :== 1fr(C). We also define W2 :== 2rrvjC == VWI. The fundamental
solution matrix has the Floquet decomposition
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(2.4)

where <I>p(s) is the periodic matrix, with frequency WI, obtained from (2.3)
by replacing l/J(s) by l/Jp(s).

We now transform (2.2) into a standard form for the method of averaging.
Define the transformation from X to u by

X = <I>(s; vo)u, (2.5)

where v and Vo are related by W2 = VWl = W20 + sa = VOWI + sa . Note
that it is Vo in (2.5) and not v. This trick allows us to treat near resonance and
nonresonance simultaneously. If v is near a resonant tune Vo then a measures
the distance to resonance; if v is nonresonant we take Vo = v (and thus
a = 0). The transformed Equation (2.2) becomes

u' = £ [aJu + <1>-1 (s; vo)G(<I>(s; vo)u, s; y)] . (2.6)

In the u coordinates, the emittance becomes

y(s)x 2 + 2a(s)x x' + {J(S)X,2 = 4(ur + u~) . (2.7)

Perturbations due to magnet nonlinearities, gm, dipole noise, 11d, and
quadrupole noise, 11q, enter (2.1) as follows:

x" + (k (s; v) + s 11q(s; y»x = s (gm (x, s) + 11d (s; y» .

The function gm could also represent the beam-beam force. To incorporate
tune noise explicitly, we note that the solution of X' = K(s; v)X can be
written X(s) = <I>p(s)eJw2s <I>;1(0)X(0). If S11T(S) is the tune noise then
W2 S is replaced by W2S + sf; 11T(t)dt which leads to X' = K(s; v)x +
S11T (s)J (s) x, where

(

a(s)
J(s) =

-y(s)

{J(s) )

-a(s)
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Combining all the perturbations gives

G(x, s; y) = (gm(~l' S)) + (1Jd(?; y))

- ( (0) ) + 1Jr(s; y)J(s)X . (2.8)
1Jq s; Y Xl

In many examples gm(Xl, s) = e(s)D'(Xl), where e(s) has period C, and
(2.6) can be written

(2.9)

where Xl = Xl (u, s)= <Pll (s; VO)Ul + <P12(SiVO)U2, and the subscripts Ul

and U2 denote partial derivatives. Note the Hamiltonian structure of (2.9). We
write our basic Equation (2.9), as

u' = s(aJu + feu, s) + F(u, s; y)) . (2.10)

Recall that the first term on the right hand side is present if we are analyzing
a near resonance case, the deterministic second term corresponds to the
second term in (2.9) and the third term collects together the three random
terms in (2.9). We assume that the noise terms, 1], all have zero mean, thus
EF = 0 where E denotes expected value. Note that feu, s) is quasiperiodic
with two frequencies WI and W2. If we included a quasiperiodic power
supply ripple into the gm term then f would be quasiperiodic with several
frequencies. In either case we can write the Fourier expansion of f as
feu, s) = L fn(u)ei(w.n)s == j(u) + feu, s) where n is a p-dimensional

nEZP
integer vector, W == (WI, ... , wp ) is the vector of the p frequencies,
j(u) == L fn(u) is the average of feu, s) over s for fixed u, where

nEM

M = {n E ZP IW • n = O} and !, which is defined by the second equality,
is called the zero mean part of f. j is said to be resonant if j (u) =1= fa (u ) .
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We now define the averaged problem, in scaled time, to be

V' = aJv + lev) =: !A(V),

139

(2.11)

and its general solution will be denoted vCr) = ({J(r, vo), ({J(O, vo) = vo·
Thus the unaveraged problem (2.10) can be viewed as a perturbation of the
averaged problem (2.11) with zero mean perturbations f and F. At this point
we can characterize averaging techniques, both deterministic and stochastic,
as techniques for proving properties of the solutions of (2.10) (and thus (2.2»
in terms of properties of solutions of (2.11).

The generalization to two degrees of freedom is as follows. The equations
are x" +kh (s; Vh)X = sgh (x, y, s; y), and y"+kv(s; vv)y = sgv (x, y, s; y),

which in system form becomes X' = K(s; v)X + sG(X, s; y) where X =
(x, x', y, y')T, G = (0, gh, 0, gv)T ,K is block diagonal, and v = (Vh, vv)

is the vector of horizontal and vertical tunes. The 4 x 4 fundamental solution
matrix, <I>(s; v), is block diagonal with the 2 x 2 blocks on the diagonal of
the form of (2.3) for the horizontal and vertical motions. Letting v = Vo +sa
where a and Vo are vectors, an equation analogous to (2.6) is obtained.

A development similar to this section can be found in Ref. 1, although the
treatment of resonance has been improved here.

3 THE AVERAGED PROBLEM

The averaged problem is given in (2.11). In the case where G is a Hamiltonian
perturbation the averaged problem is Hamiltonian, i.e. !A (v) is a Hamiltonian
vector field.

In the one DOF Hamiltonian case, the phase plane portrait for (2.11)
is easy to construct and generically the equilibria are either saddle points
or centers. Around each center there is a coarse-grain equilibrium if the
period of oscillation varies with amplitude. To see this introduce action-angle
variables (J,8) around the center, then j = 0 and iJ = w(J).· The
ensemble density p evolves via pel, 8, s) = po(l, 8 - w(l)s) where
po(l, 8) = poo(l)+ L POn (l)eine is the initial density. A simple stationary

n#O
phase argument (using integration by parts) gives

f p(J, (), s)dJd() = f Poo(J)dJd() + 0 (~)
A A
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as s ~ 00 under suitable regularity conditions, if uJ' (J) is bounded away
from zero. Here A can be a union of polar coordinate area elements, thus
Po 0 (J) can be viewed as a coarse-grain equilibrium (note that the equilibrium
density is uniform in the canonical angle). The coarse-grain equilibrium is
discussed in Ref. 2 but we only recently devised this simple proof.

In the two DOF Hamiltonian case, f in (2.10) depends on three
frequencies WI, Wh and W v . The averaged problem may be integrable, as
in the nonresonant case or in the case where WI is rationally related to one
of Wh or wv , or nonintegrable. In the integrabl~ case the averaged dynamics
is easy to understand, whereas the nonintegrable case presumably requires
some effort. We have taken a preliminary look at the question of coarse-grain
equilibrium, but even in the integrable case, the situation is not yet clear.

4 DETERMINISTIC PERTURBATIONS: BRIEF REMARKS

In this section we consider the case where F=0 in (2.10), and discuss the
question, "what can be proven about the solutions ofEq. (2.1) or equivalently
the solutions of (2.10),

u' = 8[fA(U) + !(u, s)], u(O) = uo, (4.1)

in terms of the solutions of the averaged problem (2.11)." The main tool for
answering this is the avergaging theorem1 which states that

x (s) = <I>(s; vo)u(s)

= <I>(s; vo) {cp(es, uo) + eP(cp(es, uo), s) +O(e2s)} (4.2)

uniformly for 0 ::s s ::s T / 8, where the solution of (2.11) exists on [0, T]

and P(v, s) = J~ !(v, t)dt. Note that P(v, 0) = 0 and P is periodic is
s. In words, the averaging theorem states that solutions of (4.1) stay close
to solutions of (2.11) for times of order 1/8. However, this in itself is not
particularly interesting from a beam dynamics point of view for two reasons:
(1) It is not orbits that we want to approximate but rather the. surfaces on
which they evolve. Note however that u(s) stays within 0(8) of an invariant
of the averaged problem at 0(1/8) times. (2) For realistic beam dynamics
perturbations 0(1/£) may not be large enough. The main iqterest is in the
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applications of (4.2) and in extensions to finding approximate invariants at
longer times.

To illustrate the applications, we introduce the Poincare map in the case
where G(X, s) in (2.2) has period C in s. The flow of (2.2) with X(0) == ~

then defines an N-tum Poincare map PN defined from (4.2) by

PN(~) : == X(NC,~) == <I>(NC; vo)u(NC)

= c'P(NC; vo) {uo + £(NCfA (uo) + P(uo, NC)) + 0(£2)}, (4.3) ·

where Uo == <l>pl (O)~ and we have used <p(8S, uo) == Uo + 8sfA (uo) + 0(82)

for s == O(1). If v == Ve is an equilibrium solution of (2.11) then it often
follows by the implicit function theorem that PN has a nearby fixed point
and thus (2.2) has a periodic solution. If Ve is a center then it may be possible
to prove the existence of invariant tori, and thus quasiperiodic solutions of
(2.2), using KAM type results.

As an elementary example consider the octupole nonlinearity with
D(Xl) == ~8xi and e(s) == L eneinCtJIs ,en == e-n real and eo == 1 (see

n
(2.9)). Assume that e(s) is localized near s == 0, so that e(s)<I>(s; v) :::::

<I> p (O)eJ
(JJ2

S
• If we consider the 1:4 resonance then va == M + ! yields

e(s)D(Xl (s)) == !8,86R4(3 + e4M+l cos 48), where Ul == R cos 8 and
U2 == Rsin8. This determines fA in (2.11) (See (2.9), (2.10) and the
discussion preceding (2.11). For a > 0 we find 4 saddle points and 4 centers
in addition to the center corresponding to v == O. This gives the standard
phase plane portrait (see e.g. Ref. 3, p. 221). Since <I>(s; vo) and f(u, s) are
4C periodic, we have

Let ~e == <I> p (O)ve, then g(~e, 0) == 0 and the implicit function theorem
guarantees the existence of a function f (8) with f (0) == ~e such that
g(f(c),8) == 0 if f~ (ve ) is invertible and 8 is sufficiently small. In this
case P4 (f (c)) == f(c) and (2.2) has a periodic solution of period 4C. To see
that P4 (~) is a twist map near the fixed point, we let ~ == f (c) + ~ and define
P(~) :== P4(~) - f(8) then P(~) == ~ + 84<1> p (0) fA (ve + <l>pl (O)~) +0(82)

which is a perturbed twist map with an 0(8) twist. Since the twist enters at
0(8), the Moser twist theorem4 does not apply, however an extension (see
p. 41 of Ref. 4) does apply. While we have not seen a proof of the extension
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in the literature, it does seem likely to be a straight forward extension of the
proof in Siegel and Moser.5 Given the existence of invariant curves in the
Poincare map, we then have the existence of invariant tori for (2.2) with their

associated quasiperiodic orbits.
However, even when this can be justified for a problem of interest, one

could argue that it may not be so useful because the £ in the proof of the
Moser twist theorem may need to be too small. The next step might be
to try for a Nekhorshev type theorem which gives results at exponentially
long times in £, for presumably larger £ than in the twist theorem, but still
£ is probably too small to be useful. Another approach is to extend the
averaging result of (4.2) to longer times. However only in special cases is it
possible to follow orbits to longer than O(1/ £) times. It is however possible
to track invariants of the averaged problem to 0(1/£2) 'times and with much
less restrictions on £ than in either the twist theorem or Nekhoroshev type
results (the Nekhoroshev theorem can be viewed as the ultimate averaging
theorem6). For example, if lev) is an invariant of (2.11), it can be shown,
under certain conditions, that there exists an £0 such that u (s) defined by (4.1)
satisfies l(u(s» = l(u(O» +0(£) forO ~ s ~ T/£2 and forO :s £:s £0.
This result is a special case of the theory of stochastic adiabatic invariance
to be discussed in Section 6. In a specific problem £0 can be estimated and if
say £0 ~ 10-3 then for perturbations of the order of 10-3 in (2.2) the orbits
would stay near the invariant of the averaged problem for" 106 turns. This is
rough and needs to be investigated further if it seems likely to be useful.

If (2.11) has a coarse-grain equilibrium as discussed in Section 3, then it
is natural to ask if there is a related property for (2.2). A discussion of this
from the averaging point of view as well as some numerical results can be
found for a one DOF example in Ref. 2. As a' final remark, we note ,that
in the case where (2.11) has a separatrix then under perturbation we expect
separatrix splitting and the emergence of a stochastic layer. However this
layer is probably exponentially small? in £ and thus is probably insignificant
for beam dynamics applications.

The above example was one DOF, the analysis in two DOF is more difficult
and this is under study.

5 STOCHASTIC PROCESSES

A stochastic process, X(t, y), on a probability space (r, A, P) is a function
such that for each t, X (t, .) is a random vector. It follows that the finite
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dimensional distributions of the process P(X (t1) < Xl, ... , X (tn ) < Xn )

are defined and constitute the probability law of the process. For ease in
exposition we assume X to be a scalar in this section. The two natural spaces
for r are C[O, T] and D[O, T]; the spaces of continuous and piecewise
continuous functions. This leads to the technical problem of measures on
function spaces· and the idea of the convergence of such measures. A good
but difficult reference for the ideas of this section is Ref. 8.

Markov processes are an important class of stochastic processes because
they are a rich class of relatively well understood processes. The future
depends on the past only through the present is a Mantra which roughly
defines a Markov process. More precisely, if t1 < t2 < ... < tn then

P(X(tn ) < Xn IX(ti) = Xi, i = 1, ... ,n - 1) = P(X(tn )

vps < Xn IX(tn-1) = Xn-1)

is satisfied by the conditional probabilities. It follows that the probability law
is completely determined by the joint distribution P(X (t1) < Xl, X (t2) <

X2) or if densities exist by the initial density Po (X ,t) and the transition
probability density p(x, tly, r). Under certain regularity conditions the tran­
sition probability density evolves by the differential Chapman-Kolmogorov
equation9

apeX, tly, r) a 1 a2
--a-t-- = - ax A(x, t)p(x, tly, r) + 2-ax-2B(x, t)p(x, tly, r)

00

+ f dz [W(xlz, t)p(z, tlY, r) - W(zlx, t)p(x, tlY, r)]. (5.1)

-00

This defines a Markov jump process in D[O, T] if W #- 0. If W = B = 0,
then (5.1) is the Liouville equation. If W = 0 it defines a diffusion process
in e[O, T], and (5.1) is called the Fokker-Planckequation. Under additional
regularity conditions, these Markov diffusion processes are solutions of the
Ito stochastic differential equation10,11

1

dX = A(X, t)dt + B(X, t)2dW(t), (5.2)

where W (t) is standard Brownian motion. Equation (5.2) is shorthand for the
integral equation X(t) = X (to) + it: A(X(s), s)ds + it: B(X(s), s)~dW(s)
where the second integral is to· be interpreted as an Ito integral.
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Stochastic processes that arise in applications are typically not Markov
processes but do often depend on a small parameter, say £. If the process is

denoted by X (t; s), then it is natural to ask if the s-family of processes can be

approximated by a Markov process for small £. A common way to proceed is
in terms ofthe notion ofweak convergence ofa family of stochastic processes.

The family X(t; s) is said to converge weakly to a stochastic process Xo(t)

as s ~ 0, if (1) the finite dimensional distributions of X (t; £) converge to

the finite dimensional distributions of Xo(t) at all continuity points of the

distributions for Xo(t), (2) all continuous functionals of X(t, s) converge

in distribution to the corresponding functional of Xo(t). Two examples of

such functionals are f: X (t, s)dt and sUPa:st:sb X (t, £) . Of course, the hope
is that Xo (t) is a relatively simple process. In fact, we will be interested in
weak convergence results when Xo(t) is a Markov diffusion defined by its
associated Ito stochastic differential equation or Fokker-Planck equation. In
this case, weak convergence is the function space analogue of the central limit
theorem for sequences ofrandom variables satisfying a mixing condition (see
Ref. 12 p. 375ff).

6 STOCHASTIC PERTURBATION THEORY

Equation (2.10) can be written

u' = £(!A(U) + I(u, s) + F(u, s; y)), (6.1)

where the averaged problem v' = !A(V) has been discussed in Section 3, I
is quasiperiodic in s of zero mean, and F is a random field (with y E f)

with E F(u, s) = 0 and satisfies a so-called mixing condition. The precise
conditions on ! A, I and F will not be stated, they can be found in the
references. The mixing condition on F is a condition on the rate at which
F(u, s; y) and F(u, s + t; y) become independent as t increases. For
example, if F(u, s; y) = rJ(s; y)F(u, s) where F is deterministic and rJ is
weakly stationary then the mixing condition will require that the covariance
K(t) = E(rJ(s)rJ(s + t)) be such that K(t) approach zero sufficiently fast as
t ~ 00.

The first result!3 is that

u(s, s) ~ ep(ss, uo) + ,J£Yo(ss; y) (6.2)
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for 0 :::; £s :::; T, where ({J is defined after (2.11) and Yo is the solution
of the Ito stochastic differential equation dYo = f~ «({J(r, uo»Yodr +

a «({J(r, uo»!dW(r); Yo(O) = O. Here a(v) = lim i f~ f~ E(F(v, s; y)
f--+oo

F T (v, r; y»dsdr. Thus Yo is a Gauss-Markov process, completely deter-
mined by ({J(r, uo). The symbol ~ in (6.2) and in the following means
approximately in the sense of weak convergence; more precisely, let
Ye(r; y) := (u(r/£, £) - ({J(r, uo»/,J"8 then Ye(r; y) converges weakly
to Yo(r; y) for 0 :::; r :::; T. In words, (6.2) says that for £ sufficiently small
the motion defined by (6.1) follows the motion of the averaged (deterministic)
flow with a Gauss-Markov correction on 0(1/£) time intervals.

The theory of stochastic adiabatic invariants14 (SAl) ~xtends this to
0(1/£2) time intervals but focuses on the evolution of invariants of the
averaged problem rather than solutions of (6.1). Suppose y = [(v) is an
invariant for the averaged problem, that is ]'(V)fA(V) = O. Let y(s, £) =
] (u (s, £» then

y/ = £[]'(u)f(u, s) + ]'(u)F(u, s; y)]. (6.3)

In Ref. 14, it is shown, under conditions of regularity, mixing and ergodicity,
that y(r / £2, £) converges weakly to a Markov-diffusion process for 0 :::; r :::;

T. That is

y(s, £) = ](u(s, B»~ ~ J(£2s) (6.4)

for 0 :::; £2S :::; T, where J (r) satisfies the Ito stochastic differential equation
- 1 -

d J = ii (J)d r + I; (J) "2 d W (r) and ii and I; are defined below. Thus at
times of O(1/ £2) the SAl theory implies that y (s, £) behaves like a Markov
diffusion process for sufficiently small £.

First the drift and diffusion are obtained as functions of u: The drift term
is {t(u) = lim i f~ f; {ild(U, s, r)+ilr(u, s, r)}drds where ild(U, s, r} =

f--+oo

[aau (]'(u)f(u, s»]f(u, r) andilr(u, s, r) = E{[aau (]'(u)F(u, s»]F(u, r»}.

The diffusion term is ~(u) = ]'(u)a(u)]'(u)T where a is defined after
(6.2). The ii and i: are obtained as ergodic averages of ii and i: as
follows. Let h = h(u) then its ergodic average is defined by ii(] (u» =
lim i Jo

f
h«({J(r, u»dr. Condition (A6) of Ref. 14 requires the ergodic

f--+oo

averages of {t and ~ to exist uniformly in u. This typically holds for 1
DOF systems but not in higher dimensions and (A6) is replaced by (A6')
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which relaxes the uniformity condition but adds a condition on the stochastic
perturbation which is difficult to verify in practice.

A companion result to the SAl theory, a 4/3 law for phase randomization,
is presentedin Ref. 15. Suppose there is a third process, in addition to u and
y, defined by

()' = £[v(y) + h(u, s) + H(u, s; y)]

with E H = O. Then under certain conditions (AI - A6 of Ref. 15)

(6.5)

£4/3 S

(}(s, £) ~ (}o + £sv(Yo) + Vi (Yo) i;1/2 (yo) f W('r)dr, (6.6)

o

for 0 ::s £4/3 s ::s T. Thus at times of 0(8-4/ 3), y behaves like Brownian
motion and () behaves as in the averaged problem with a Gauss-Markov
correction. If () is an angle and if v' (yo) i: (yo) V'T (Yo) is positive definite
then () mod 2n becomes uniform at times s = 0(1/84/ 3) and there is phase
randomization at these times. We have proven phase randomization under
weaker conditions (AI - A4, A7 of Ref. 15) and this may help to simplify
condition (A6/) of Ref. 14.

The applications in the next section should help clarify these ideas.

7 DIPOLE, QUADRUPOLE AND TUNE NOISE

We discuss the one naF case with an octupole nonlinearity and make brief
remarks on the two naF case. We are reasonably sure the deterministic part
of it, which results from ild, is zero and will assume this in the following.

In the one naF nonresonant case the averaged vector field, fA, can be
derived from the Hamiltonian -3/28f36(vr + v~)2. The phase plane portrait
is a one parameter family of circles and thus I (v) = ! (vi + v~) is an
invariant. Since the period is not constant, there is a coarse-grain equilibrium
for the averaged problem. For tune noise, we find that it(u) = :t(u) = 0
and the ergodic averaging condition of the SAl theory is trivially satisfied.
The 4/3 law does not give phase randomization at 0(£-4/3) times because
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I; = 0, although (6.6) does hold. The SAl theory implies that I (u(s))

remains essentially constant at O(1/82) times and thus from (2.7) so does
the emittance. We are studying the extension of this to longer times in the
case where gm represents the beam-beam force. 16 To illustrate the dipole
and quadrupole noise cases, we take rJ(s) = ~(s; y)e(s), where ~(s; y)

is weakly stationary, and e(s) = L eneiWlS is localized at s = 0 so that
n

e(s)f3(s) ~ e(s)f3(O).Let E(~(s)~(r)) = K(s - r) and en = e-n be real.
After a lengthy calculation we find

00

and I;q(u) = ~tJoI2(u)f Kq(s)e(s) cos2wL,sds,

o

where e(s) = Le~eiwlns. Because 1:(u) depends on u only through I the
n

ergodic averaging condition is again trivially satisfied and I; (I (u )) = 1: (u ).

Furthermore [leI) = 1I;'(I). Thus the 4/3 law gives phase randomization
at 0(8-4/ 3) times and from the SAl theory I(u(s)) behaves like a Markov
diffusion at 0(1/82 ) times. The Fokker-Planck equation

in each case, can be solved analytically as discussed in Ref. 16.
In the 1:4 resonance case we choose the parameters such that the averaged

vector field is given by the Hamiltonian I(v) = 1(vr + v~) - !(vi + vi)
and we also choose the Hamiltonian as our invariant. For tune noise
rJT(S) = rJ(s)e(s), with rJ weakly stationary, we find 1:(u) = uiu~(u~ -

ui)K where K = lim i J~ J~ K(s - r)e(s)e(r)dsdr. Thus I;(I(v)) =
l~oo

T~V) J:(V) 1: (q;(s, v))ds off the separatrix and zero on the sep~atrix, where
T (v) is the period associated with the· phase point v. There is a similar
calculation for [l (I). Offthe separatrix, the 4/3 law gives phase randomization
and the SAl theory implies that the invariant for the unperturbed problem
evolves like a diffusion at 0(1/82) times. The associated Fokker-Planck
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equation ~~ 00] ji(J)p + ! 00;2 "t(J)p is easily solved numerically (see
Ref. 17). The basic problem left to resolve is the dynamics near the separatrix
where neither the 4/3 law nor the SAl theory apply.

There is much work to do on the 2-DOF case. Here we just mention
some small results in the octupole nonresonant case. In this case the
averaged problem essentially uncouples the transverse vertical and horizontal
dynamics and the motion is quasiperiodic (on two-tori) with coupling only in

the frequencies. We choose I = (Ih, Iv) where Ih(U) = !(ur+u~), Iv(u) =
! (u~ + u~) as the two invariants. The tune noise case is trivial, as in the one

DOF case, since [L(u) = I:(u) = 0; thus there is no phase randomization
at 0(£-4/3) times and I (u(s» is essentially constant at 0(8-2) times. We are
studying the extension of this to longer times in the beam-beam case.16 In
the dipole stationary noise case, analogous to the one DOF case, we have
found that I: (u ) = "t (I (u» so that ergodic averaging is trivial and the
4/3 law and SAl theory apply. However, here we have assumed that the
horizontal and vertical components of the noise are uncorrelated, which is
presumably unphysical. For more general noise, we expect that I: (u) will not
be a function of I and this will lead to a problem with the verification of the
ergodic averaging condition in the SAl theory because of resonant tori in the
unperturbed problem. This in addition to the resonant cases in the octupole
dynamics represent future work.
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