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A special tracking technique for beam-beam simulation in circular e+e- colliders is discussed. This
technique emerged from a concept proposed earlier by J. Irwin.! It is mainly intended for determination
of beam halo and lifetime and allows us to reduce the required CPU time by several orders of magnitude.
Equilibrium distribution within the amplitude space is built step by step beginning from the core region.
During a step, only those particles are tracked which fall into "external" region of the amplitude space.
The border of this region is moved to large amplitudes step by step and special border conditions are
used to "sew" together distributions for "internal" and "external" regions. These border conditions are
taken from the previous step. A special method of building such borders is proposed to avoid a possible
loss of accuracy. The technique was tested and applied to several working colliders and projects.
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1 INTRODUCTION

We study incoherent beam-beam effects. Strong nonlinearity of the interaction leads
to resonances and stochasticity, so that the behavior of the particles in the phase
space becomes very complicated for analytical estimations. This is the reason for
a wide employment of computer simulation for studying the beam-beam effects.

The perturbations of the equilibrium distribution can be conventionally divided
into two parts: the perturbations at small amplitudes (core region) and the ones at
large amplitudes (tails). The former cause an emittance growth, the latter result
in the lifetime decrease. Both ~ffects restrict the beam current and, therefore, the
luminosity, but the connection between them is rather weak. This means that one
can have a strong beam size growth with a very good lifetime and vice versa, a
bad lifetime with almost an unperturbed core region. The lifetime determination is
the most difficult problem here, because a huge CPU time is required to correctly
determine the distribution in the tails. Besides, almost all the CPU time is spent
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for improving core distribution. Such situation motivates the search for possibility
of "CPU redistribution" for large amplitudes. Naturally, the question of accuracy

arises since the tracking algorithm is changed artificially. Maintaining accuracy is
the main problem we shall discuss below.

The base idea of the technique described below has been proposed in 1989 by

J. Irwin.! It was developed later by T. Chen, J. Irwin and R. Siemann.9 In INP

this concept was developed independently by the author. Actually, this paper is a

simple translation of the preprint INP 92-79 (in Russian7). It should be noticed,
that justification and realization of Chen et al.'s and the author's methods are

rather different, although recently carried out comparison indicated good agreement
between both of them and the brute force technique.

Section 2 contains the detailed description of the technique for the two­
dimensional case. The first part of this section can be considered as the rendering
of J. Irwin's paper, l but this is important for the future discussion and cannot be
omitted. In Section 3 the technique is extended to include the scattering on the
residual gas. Section 4 discusses the question of how to extend the technique to
the "strong-strong" case. In Section 5 the tracking for three-dimensional case is
considered. Section 6 presents some results of the technique application.

2 DESCRIPTION OF THE METHOD

There are different ways to simulate the equilibrium distribution of the beam
particles. The first one, the ensemble of N independent particles is considered.
If the simulation time is much greater than the damping time, the initial positions of
these particles do not matter. Otherwise, they will influence the results and one has
to care about correct initialization. Another way is watching for a single particle
only. If the simulation time here is chosen N times greater than in the first case,
both of them become equivalent, but there is no the initialization problem in the last
one. For future discussion it does not matter which way is used, but for definiteness
we consider a single particle for a long time (hundreds of damping times).

Besides coordinates and momenta, we use normalized amplitudes and phases as
well:

s == alAs cos qJs

(1)

(2)

(3)
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Here all the parameters (a, fJ, a) are related to an unperturbed beam. During
simulation, the particle moves along a very complicated trajectory within a
6-dimensional phase space. The equilibrium distribution and the density of the
flows in this space are the most complete information one can extract, but not all of
it is of equal importance. The distribution in the space of amplitudes is much more
important because the amplitudes are "slow" variables. The amplitudes define the
nonlinear tune shifts and, therefore, the falling within a resonance. The distribution
in the space of phases is not so informative since the phases are "quick" variables,
but this distribution is also important for the motion within resonances. As far as
the flows are concerned, the most important one is the flow to the aperture (which
is defined as the limit values of the amplitudes). This flow, not the distribution in
the tails, defines the lifetime, though there is a connection between these two.

For the sake of simplicity, let us consider the two-dimensional case (four-di­
mensional phase space). The three-dimensional case will be discussed separately
in Section 5. We observe the test particle and locate its position in the plane of
amplitudes at certain moments each tum (at the Interaction Point), so its motion
looks like ')umps" from point to point. These jumps are produced by damping,
noise and kicks from the opposite beam. The lattice nonlinearity, if any, also makes
a contribution.

Now we draw a special line, or boundary, to split the amplitude plane into two
parts: internal (I) and external (I I) (see Figure 1). During the first step of the new
algorithm we record all particle's coordinates and momenta each time it leaves the
internal region for the external one (at once after crossing the boundary). These
points (we call them outfiights) form an original halo above the boundary (see
Figure 2). After some time, we get enough statistics of such outflights to proceed
to the next step. Let us imagine that the internal region becomes a "black box"
(or hidden region), so that we cannot watch a particle within it. In this case, the
particle's trajectory looks like a large number of completely independent pieces,
which starts from the points of outflights and ends when the particle falls into the
hidden region. During the second step, we put the test particle to one of the outflight
points immediately when it leaves for the hidden region. Such a procedure is called
restart. The points for the restarts are chosen from the complete outflights statistics
by using a random number generator.

It should be noted that this algorithm violates the course ofevents with time. This
means that the observer is able to distinguish a real trajectory from our simulation.
The reason is as follows: when the particle falls into the hidden region, it spends
some time near the boundary and there is a high probability ofcrossing the boundary
many times in close proximity to this place. In other words, the outflights are usually
made by local groups, before the particle goes away from the boundary. This means
that there is a correlation between the location of outflights and the time, when they
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FIGURE 1: A plane of amplitudes is split into internal (I) and external (I I) regions. A small fraction
of the particle's trajectory is shown by points.
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FIGURE 2: The outflights are shown by points, which form a specific halo above a boundary. In future
these points will be used as the positions for restarts.
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FIGURE 3: The particle's trajectory during the second step, consisting of a large number independent
pieces. I - hidden, I I - internal, I I I - external regions.

take place. But this correlation vanishes since we use a random number generator
to choose the points for restarts. Luckily, such rearrangement of events in time has
no influence on the motion characteristics: we obtain quite correct distribution and
flows in the phase space during the second step. The reason is that the process under
consideration is a Markovian process (without memory). The particle's behavior
does not depend on its history, and since we reproduce the probability of falling
into a certain cell of the phase space when the particle leaves the hidden region, we
must obtain the correct density and flows within this space.

Now it is easy to understand how to proceed to large amplitudes. After completion
of the first step the regions change their meaning: the internal region becomes
hidden, and the next boundary is drawn to split the "old" external region into
internal and external ones (see Figure 3). During the second step the position of the
particle is checked each tum. As soon as it leaves for the hidden (I) region, a restart is
produced. In case it moves from the internal region (I I) to the external one (I I I), all
its coordinates and momenta are registered to accumulate the statistics of outflights
across the second boundary. Later on, we call the boundary between the hidden and
internal regions as R-boundary (boundary for restarts); the boundary between the
internal and external regions we call C-boundary (boundary for crossings). For the
third step, the regions I and I I are joined to form the new hidden region (so the
C-boundary becomes the R-boundary), and the third boundary (it is the C-boundary
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for the third step) is drawn to split region I I I into the internal and external regions
(their numbers are I I I and IV, respectively), and so on. The reduction of CPU
time can be calculated as a ratio between the number of restarts and the number of
corresponding outflights. Usually this value is about 5-10 for each step.

Approximately in this form this technique has been already suggested by
J. Irwin. 1 He used simple circular arcs as boundaries and the radius of the arc
was chosen so that particles spent 90% of the CPU time in the internal region
and 10% in the external one. This solution is very attractive due to its simplicity
and can give good result, but sometimes loss of accuracy is possible in the case
where the lifetime is calculated. Maintaining accuracy is the main problem here.
The difficulties result from our wish to develop a universal method which must
work correctly for systems with very different (practically arbitrary) "phase space
portraits" .

Rigorously speaking, the only source of errors is the incorrect (insufficient)
statistics of outflights from the hidden region. However, the accuracy of the results
depends on many factors: simulation time, damping times, shape and location
of boundaries within the amplitude plane. It is easy to guess that there is direct
connection between the accuracy and the decrease in the CPU time this method
provides. The accuracy can be increased at the expense of efficiency, for example,
by increasing the simulation time for each step and decreasing the distance between
the boundaries. The aim is to achieve an optimal compromise ~ere: to get high
efficiency with good enough guaranteed accuracy.

The amplitude of noise measured in units of normalized amplitude is defined by
the damping time according to the formula:

(4)

Here a is the damping decrement and 8A is the r.m.s. of amplitude change due
to noise after a single tum. Without loss of generality, we can assume a Gaussian
distribution for kicks caused by the noise. The damping time (in units of revolution
time) is defined as 1/a and this is a natural time scale of the system. The damping
times are different for different degrees of freedom, but all of them are of the same
order of magnitude. The largest one is denoted by r and the simulation time for each
step, measured in units of r, is denoted by T (we assume it to be approximately the
same from step to step).

Now let us consider the example shown in Figure 4 to understand the influence
of the shape and location of the boundaries. Here we can see two strong resonances
disturbing substantially the equilibrium distribution. The first one is located at small
amplitudes (it is shown as the disturbance of lines of equal density). The second one
(shown as resonance line and resonance vectors) plays a main role in the process of
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FIGURE 4: An example of location of the boundary which leads to a loss of accuracy. The most
probable way of a particle going to the aperture is shown by dashed line.

losing particles at the aperture. The dashed line shows the Most Probable Way of a
particle going to the Aperture (MPWA): first of all it moves to the second resonance
(due to the noise only), is captured in it, and then moves to the high amplitudes along
the resonance by streaming.2 The first resonance leads to a very strong change in
the density (several orders of magnitude) along the boundary which is chosen as a
circular arc. As a result, since the simulation time is finite, all the outflights across
this boundary are concentrated at the place where the boundary crosses the first
resonance. This means that there are no outflights in the region where the MPWA
is located. So, we lose this path for all following steps and the error in the lifetime
determination can reach several orders of magnitude! By increasing the simulation
time, we can get few outflights in the direction we need, but the insufficient statistics
of such events leads to incorrect probability for this process and the accuracy of
lifetime determination will not be good enough.

What is the optimal shape ofthe boundary? On the face of it, the main condition is
the equal linear density of the outflights along the boundary. Indeed, a large number
of outflights under this condition prevents from the above situations. Nevertheless,
this choice has some essential disadvantages. First of all, it does not perfectly
correspond to our goal of moving to large amplitudes because there is a possibility
of forming spacious areas at small amplitudes with very weak flows out from the
core. As a result, the line of equal linear density of the outflights can have such a
form that these areas will be located in the external region for several steps in spite
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of the high density of equilibrium distribution within them. Such a situation leads
to the essential decrease in the efficiency of the method. After that it is not so easy
to build such a boundary since each particle's jump within the amplitude plane can
be an outflight or not, depending on the location of the boundary which we do not
know a priori.

The other approach turns out to be more successful. Instead of the line of equal
linear density of the outflights, we use the line of equal distribution density (or
level line) as a boundary. To get this distribution, we should divide the plane of
amplitudes into small rectangular cells (it is convenient to use cells of size 8A)'

During the simulation we will account (individually for each step) how many times
a test particle falls within each cell. After completion of the step, we will have an
array of such numbers (Np ), which describe the equilibrium distribution outside
the hidden region. The dispersion of Np along the C-boundary must be sufficiently
small since the boundary was chosen as a level line. The mean value of Np on the
C-boundary is marked by a tilde. It can be affirmed that the main condition, we
must satisfy to get good statistics and solve our problems, is

1""0.1 _

Np ~ N» 1, (5)

where N is the constant (to be defined below), while Np can vary from step to
step. Indeed, on the one hand, this condition guarantees the representation of all
the details of the "phase space portrait" since these details cannot be greater than
8A. In other words, this is a criterion of statistical reliability of the obtained level
lines. On the other hand, for the next step we will get a high value of Np along
all the border of the hidden region (or R-boundary). This means that we reproduce
correctly the probability of any particle's "journey" which begins inside the hidden
region and crosses~he area with the high "density" N p . It is worth of noting two
important details: Np keeps approximately the same value from step to step and the
simulation time T, necessary to satisfy condition Np ~ N, does not depend on the
damping time r for the two-dimensional case.

Let us consider now Figure 5, in which the situation similar to Figure 4 is shown.
Here the dotted lines show the flows of phase convection, which result in almost
all the outflights located at a certain place in spite of the boundary (bold) is a level
line. The MPWA is connected with capture in the second resonance and streaming
along it, as well as in Figure 4. As is seen, the short way from the core to this
resonance is improbable. Nevertheless, even if there is a "channel" crossing the
boundary at the place where no outflights have been obtained, during the next
step we reproduce the probability of getting to this channel correctly since the
value of N p around the hidden region is sufficiently high (at least several times
greater than N).
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FIGURE 5: The boundary (full) coincides with a level line. Nevertheless, almost all the outflights are
concentrated at a certain place due to the convective flows (dotted). The short dashed line shows a
possible (but improbable) channel of going away. Since this channel crosses the area with high value of
Np, we correctly reproduce the probability of getting to it.

It is convenient to measure the distance between the boundaries through the
logarithm of density change. Indeed, any boundary can be defined by a single
value, i.e., the number of the corresponding level. Let us introduce for each step
an individual reference system of levels Qi in which they are read from the border
of hidden region. So, the level Qi = 0 corresponds to the R-boundary for the i -th
step, the level Qi = k corresponds to the density exp(k) times less than the density
at the level Qi = 0, and so on. In these terms, the distance between the neighboring
boundaries j and (j + 1) (i.e. R- and C-boundaries for the (j + l)-th step) is just
a value of Qj at the boundary (j + 1). In future these distances are assumed to be
equal to the same constant q for all the steps. Now we have to understand what the
values q and the simulation time for each step T must be. We should keep in mind
the following:

• The condition Np 2:: N must be satisfied, otherwise we will get a wrong
distribution. This means that with the distance between boundaries q, the value
of T must also increase exponentially.

• The value of Np obtained in time T at the level q depends on the shape of
equilibrium distribution, so we cannot know it a priori.
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• We need a lot of the outflights. If the boundaries are chosen correctly, as it was
described above, the accuracy of the lifetime is determined by the statistics of the
outflights. We can estimate it as JCg / C , where C is the number of outflights
and egis the mean number of outflights within a group (as a rule the outflights
occur by local groups, which we can consider as the particular events).

• Deviations of the boundary from the true level line, if they are not so large (the
true density data disagreement by a factor of 2-3 along the boundary), have
practically no influence on the accuracy since we keep high value of Np along
the boundary. To calculate the lifetime accuracy, we need to take into account
only the statistics of the outflights.

To estimate the optimal distance between the boundaries, the same time T = To
is assumed to be necessary for each step to achieve the number of particles per cell
Np = N at the level Qi = 0 Gust above the border of the hidden region). In this
case, the full simulation time to move to m levels is as follows:

m
t = -Toexp(q).

q
(6)

Here m / q is the number of steps and To exp(q) = T is the simulation time for each
step to achieve N p = N at the level Qi = q. We have to set q = 1 to minimize
the time t. This means that the density falls down by a factor of e between the
boundaries. Pay attention to that in this case we optimize q without taking into
consideration the accuracy of the lifetime, which is defined through the statistics of
the outflights. Fixing the final accuracy of the lifetime, we get the other expression
for q. Indeed, on each step we have a statistical error of the outflights JCg / C « 1.
Since we follow the rules of building boundaries, the accuracy of the lifetime can
be estimated as (m / q)JCg / C. Here we assume <for estimation only) the equal
number of the outflights across each boundary if Np keeps the same value from
step to step. So, the simulation time T is proportional to the square of the number
of steps and for the full time we get

exp(q)
t I".J --3-'

q
(7)

In this case, the minimum is achieved at q = 3.
To estimate the value of To, let us consider an unperturbed beam. The equilibrium

distribution density (including the phase volume) is represented by the equation

(8)
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FIGURE 6: The level lines obtained during three sequential steps (l - solid, 2 - dashed, 3 - dotted)
are shown. Increasing of the line number by two corresponds to the equilibrium density decreasing by
a factor of e. Boundaries (5, 10, 15) are shown in bold.

The maximum density, which is equal to lie, is achieved at the point (Ax, Az) =
(1, 1). The number of particle's falling within a cell of size 8A at the point (1,1) is
Np = 4Tole (we assume here the same damping decrements for both directions).
Defining the value of N = 100, we get To ~ 70.

Practically, the distance between the boundaries is chosen as q = 2.5. Under this
condition, the simulation time must be T r-v 1000 damping times for each step. The
determination of the lifetime of several hours takes usually 6-8 steps and even if
the accuracy of the outflight statistics is 5% for each step, we obtain a final lifetime
accuracy of 50% or better, which seems to be good enough.

An important advantage of the method is the possibility of controlling the
accuracy during the simulation: we can vary the simulation time T from step to step
in such a way that the necessary value of Np and number of outflights are achieved.
Moreover, we can get the knowledge of the accuracy of the method directly from
the results (see Figure 6). Here we can see the level lines obtained from several
sequential steps and three boundaries. The first step actually consists of two parts
which can be called "zero" step and the first step itself. The zero step is necessary
to obtain the initial distribution at small amplitudes and to draw the first boundary.
During the first step we get the outflights across this boundary and improve the
statistics of the distribution, so the first boundary will not exactly correspond to the
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FIGURE 7: Thefinallevellines(seealsoFigure6)fortheworkingpoint: {Qxl = 0.545, {Qzl = 0.575,
Qs = 0.02, ~x = 0.005, ~z = 0.06, axlaz = 1000, all f3z = 0.5. The equilibrium density changes by a
factor of e from line to line. The results of eleven sequential steps are used. The benefit in the CPU time
was'"'-" 108 •

final level line Q 1 = q. The second boundary is built after completion of the first
step and goes along the level line Q1 = 2q. After completion of t~e second step, we
get the new lines (dashed, see Figure 6) which have the statistical reliability much
better than the same lines on the first step. Nevertheless, close to the first boundary
they are in good agreement, which means that both sets are reliable here. When
going away from the first boundary to large amplitudes, the differences between the
two sets of lines grow. This is a consequence of the insufficient statistics at large
amplitudes after completion of the first step. As we can see, the second boundary
has been determined well enough since it is close to the level line Q2 == q obtained
after completion of the second step, as well as the third boundary (Q2 = 2q) which
was built after the second step is close to the level line Q3 == q obtained after
completion of the third step (dotted lines in Figure 6).

The final level lines for this working point are shown in Figure 7. In the core region
the results of the first step are used. Between the first and the second boundaries the
results of the second step are used. Between the second and the third boundaries
we use the results of the third step, and so on. As is seen, the advance to large
amplitudes takes place in the regions, where the equilibrium density of distribution
was defined well enough during the previous step. This condition ensures good
"sewing" of all the steps.
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FIGURE 8: The two-dimensional amplitude distribution for PEP-II B-factory working point. ll

(a): TRS, brute force technique; (b): LIFETRAC, proposed technique.

Obviously, the decisive test of the technique validity is a comparison against the
brute force technique. Recently such a comparison has been carried out for three
beam-beam codes11 :

• TRS10 is a multiparticle strong-strong code, which does brute force tracking.
• LIFETRAC7 is a weak-strong code, which uses the described above tracking

technique.
• LFM9 is a weak-strong code, which uses tracking algorithm similar (but not

identical) to LIFETRAC.

The two-dimensional amplitude distributions for PEP-II B-factory working
point11 are shown in Figure 8. The results from TRS correspond to 5 . 109

particle-turns and took 818 CPU minutes to run on Cray-2S/8128. The results from
LIFETRAC correspond to an effective number of 4 . 1011 particle-turns and took
100 CPU minutes on VAX-6610 computer. The results from LFM are similar to
the ones from LIFETRAC (see Tech. Note11 for more information). The agreement
among the codes is quite good. We hope that the next comparisons will be performed
and will stimulate the progress in the tracking techniques.
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In conclusion we discuss what the maximum amplitudes we can "climb" using
this method are. Up to now we assumed the uniform density within a cell of size 8A .

However, at high amplitudes the level lines join together so close that this conditi~n

is violated. This means that we need the other criteria for the necessary value of Np

and the final lifetime accuracy (maybe, the simulation time shall increase with the
increase in the step number). But we do not go deep into this problem, because it is
not important for practical purposes. Indeed, the typical value of the damping time
for e+e- colliders is about 103 - 104 turns, which corresponds to the amplitude of
noise 8A ::s 1/30. So, even for the unperturbed distribution the distance between
the neighboring levels remains greater than 8A up to the amplitudes A ~ 30, which
is usually greater than the real aperture limit.

3 SCATTERING ON THE RESIDUAL GAS

Scattering has an essential influence on the equilibrium distribution, especially at
large amplitudes. Just scattering defines the lifetime without an opposite beam.
If both the beam-beam interaction and scattering occur, the interference between
these two perturbations can have an effect. For example, if a strong resonance is
located on large amplitudes, the scattering can essentially increase the probability
of particle achieving it, providing particle's falling within the resonance directly
from the core. So, including the scattering into simulation seems to be useful and
important, but this is not possible directly in the new method. To clarify the problem,
let us consider the elastic scattering without beam-beam effects. The scattering angle
is inversely proportional to the impact parameter, so the probability of getting the
amplitude jump ilA is inversely proportional to the magnitude of this jump. Without
scattering, the equilibrium density decreases as exp(- A2/2). Hence, it can be seen
that, beginning from a certain value of the amplitude, the distribution is defined
only by a single scattering from the core region. In our method this core turns out
to be inside the first boundary, and scattering to large amplitudes can be considered
as a particular case of the outflight. Although this process plays a main role for the
distribution at high amplitudes, its probability is very small and we may get no such
specific outflights in time T during the first step. This means that we lose the way
of going to large amplitudes for all the next steps, as in the case shown in Figure 4.

Nevertheless, slight modification of the technique allows us to successfully
include the scattering. The idea is to simulate the scattering from the hidden region
independently of the outflights statistics. We can do it correctly because we know
the distribution inside this region.

Before discussing this technique, we would like to consider in detail the ordinary
scattering outside the hidden region. We take into account only the elastic scattering
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because it has a greater influence on the equilibrium distribution (inelastic scattering
is very important for lifetime definition, but actually it does not disturb the
equilibrium distribution since almost all the particles are lost immediately after
such scattering). The cross-section for y » 1 and () « 1 is classical:

whence

2 r; do
da =4Z -.­

y2 ()4'

re() = 2Z-.
yp

(9)

(10)

Here Z is the nucleus charge, () is the scattering angle, p is the impact parameter,
do is the solid angle. Each act of the scattering causes the change of momenta of
the electron which can be written in normalized variables as follows:

fJx
~Px = - . () coscp,

ax

A fJz () .
ilPZ = -. slncp.

az

(11)

(12)

Here cp is the angle between the horizontal and scattering planes. It follows that
the elastic scattering, as well as the beam-beam effects, mainly disturbs the vertical
distribution (for flat beams) due to the relation fJz/az » fJx/ax. The scattering
at small angles, when repeated many times, results in small normal (Gaussian)
noise which can be combined with quantum fluctuations of synchrotron radiation
into certain common noise defining the beam sizes. A special approach must be
applied to scattering at amplitudes comparable with 8A or greater, on which strong
perturbations of noise distribution arise (we can consider scattering as a specific
noise with very long tails).

Thus, we simulate only the scattering at the angles greater than a certain angle.
As a border value, we take such an angle ()o, that ~Pz = 8A/I0, and estimate the
probability of scattering at the angle () 2: ()o during a single tum. For example,
we use VEPP-4 parameters: y = 104 , r 1"..1 3000 turns, perimeter P=366 m,
(fJx/ax) 1"..1 104 , (fJz/az) 1"..1 105 , Z = 7.5, and a pressure of the residual gas of
10-8 torr. As a result, we get the probability Ws 1"..1 10-2 . This means the following:

• Such scatterings have no contribution to the r.m.s. of noise 8A.

• We guarantee correct reproduction of noise distribution because we take into
account the tails of noise beginning from small amplitudes /)..p « 8A.
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• We need not to consider the multiple scattering on such angles during a single
tum due to very low probability of these events.

• The increase in the CPU time due to simulation of the above scatterings is
insignificant.

The simulation with account of scattering (outside the hidden region) is now as

follows: first of all, the probability of scattering at the angles 0 2: 00 is calculated
using parameters of the ring. During the simulation, a random number generator
is used at each tum to decide whether the scattering occurs. If yes, the particular
angle is defined according to the formula

o< R < 1, (13)

where R is the other random number. The third random number is used then to
define the scattering plane inclination angle qJ and the fourth raJ~dom number to
define the azimuth of the collider on which the scattering takes place. To calculate
the jumps in the normalized momenta, we have to multiply the obtained values of Ox

and Oz with the corresponding relations f3x / ax, f3z/ (Jz taken at the scattering point.
In practice, the mean values of these relations are used, although a real lattice and
distribution of ions along the ring (it can be quite different for different places) can
be readily taken into consideration.

Now we come back to the scattering from the hidden region. When a particle
falls inside, it has exactly three possibilities at each tum, one of them is realized
without fail:

(1) The particle leaves the hidden region without scattering (ordinary outflight).
(2) The particle is scattered at the angle 0 ~ 00. As a result, it can leave the hidden

region (a particular case of the outflight), and can remain inside as well.
(3) The particle is not scattered and remains inside the hidden region.

The latter case is the most probable, and the essence of the above-described
method is the consideration of only such events, where the particle leaves the hidden
region without spending the CPU time for the third case. Now we only should take
into account one more possibility of leaving the hidden region due to scattering. To
reproduce this process correctly, the probability of the first case is necessary.

The algorithm of simulation is now as follows: during the first step (see Figure 1),
in time Tl, we get a number of the outflights C1 which can be divided into two
parts: the outflights with scattering (CIs) and the ones without it (Clr). So, we have
C1 = CIs + C lr and only the last events are saved as positions for future restarts.
Besides, the fraction of time the particle has spent in the ~xternal region VI < 1 is
accounted. On the second step (see Figure 3), the probability of leaving the hidden
region without scattering during a single tum is
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(14)

Here the denominator is the number of turns the particle has spent within the internal
region on the first step. The process of leaving is simulated in the following way:
using a random number generator, we decide, according to the probabilities WI and
Ws , what possibility (lor 2) is realized at the moment. If it is the 1st possibility, a
conventional restart is produced according to the statistics of the outflights without
scattering. Otherwise, the point from which the particle is scattered is chosen
randomly, according to the equilibrium distribution inside the hidden region (this
has been already known), then the particular angle of scattering is defined, and so
on (see the scattering outside the hidden region). After all, we get new amplitudes
of the particle and check whether it leaves the hidden region or not. In the last
case, the whole algorithm is repeated beginning with the choice from the 1st and
2nd possibilities. As a result, the "process of restarting" becomes longer due to
a possibility of producing a few idle scatterings inside the hidden region without
leaving it. But this time has no effect on the simulation time T2 which takes into
account only the motion outside the hidden region.

During the second step, the particle makes R2 restarts and C2 = C2s + C2r
outflights. At the same time it spends the fraction of time V2 < 1 in the external
region (now it is region I I I). The time which is necessary to achieve the same
statistics, when a conventional tracking technique is used, is called equivalent time.
For the 2nd step it is as follows:

(15)

The benefit for the CPU time due to application of the new method can be
calculated as T2eq / T2. On the third step, the probability of the ordinary outflight
(1 st possibility) is

(16)

The restarts are produced like on the second step, but using W2 instead of WI. In
this case, the equivalent time and benefit are:

TI . R2 . R3

T3 . CI . C2

(17)

(18)
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Thus, we have the recurrent formulae to define the lifetime and the probability of
the outflight without scattering Wk, which allows us to simulate the restart correctly.

Here we would like to make a remark concerning the value of Wk. At the first sight
it looks strange because only near the border of the hidden region the particle is able
to leave it without scattering. In spite of this, Wk was defined by the full time which
the particle spends within the hidden region, and the most part of this time is spent in
the core, far from the border. To clarify this situation, it is necessary to remember the
main condition that should be satisfied to obtain the correct distribution outside the
hidden region. Namely, we must reproduce the relations between the probabilities
to find the particle in a certain place of the phase space at once after it has left the
hidden region. We are not interested in how and where from the particle jumps, but
what time correlation between such events is. We need only the relations between
the probabilities and the value of Wk was defined quite correctly for this purpose.

Nevertheless, one more step must be done to successfully include the scattering
into simulation. The reason is a decrease in the efficiency of the method when
moving to large amplitudes. Indeed, the probability Wk falls down exponentially
from step to step while the probability of scattering at the angle () ~ ()o, Ws , keeps
the same value for all the steps. As a result, we obtain W s » Wk for k » 1. On
the other hand, to leave the hidden region from the core, larger scattering angles
are necessary with the distance of the border of the hidden region from the core.
So, a lot of the CPU time will be spent for a huge number of idle scatterings within
the hidden region without leaving it. To solve this problem, we use a division of
the hidden region produced by sequential boundaries. It is quite easy to find the
minimum scattering angles ()km which can force the particle out from the region m
to the region k (i.e. outside the hidden region) on the k.:.th step (k > m). Besides,
we can calculate the relations between the probabilities to find the particle within
these regions since we know the absolute probability for each m-th region:

Pm == Vo . VI ... Vm-I . (1 - Vm), Vo = 1. (19)

This allows us to define the probability Wkm of scattering from the region m at
the angle () ~ ()km during a single turn for the k-th step. The whole probability of
scattering at the angles greater than the limit is a sum of Wkm, and this value must
be used instead of Ws :

(20)

Now we get W s and Wk approximately of the same order of magnitude for all
the steps. Now the algorithm of the restart must be changed a little. If the random
number generator decides to produce the scattering, first of all we have to choose,
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FIGURE 9: Equilibrium distribution for VEPP-4 without beam-beam effects. The density ofthe residual
gas is 10-8 torr.

according to probabilities Wkm, where from (considering the region number m) this
scattering must be done. Then we choose an arbitrary (according to the distribution
that we already know) point within this region and define the particular angle of
scattering as

o < R < 1, (21)

where R is the other random number. The inclination angle of a scattering plane
and the collider azimuth are defined as usual. Finally, we obtain the new particle
amplitudes. After all, we have to check whether the particle leaves the hidden region
or not (the scattering on the angle () 2:: ()km does not guarantee the leaving).

For example, the equilibrium distribution without beam-beam effects is shown
for VEPP-4 in Figure 9. The lifetime was 4 . 1010 turns for a vertical aperture of
30(Tz while the probability of a single scattering from the core to the aperture was
3.5 . 10-11 . The increase in the CPU time because of a more complicated restart
algorithm was about 1%. The benefit in the CPU time due to this method was "'-' 105.

Figure 10 shows the result of interference between the beam-beam interaction and
the scattering (to be compared with Figure 7, where scattering is turned off).
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FIGURE 10: The same working point as in Figure 7 with account of the elastic scattering. The density
of the residual gas is 10-8 torr. The roughness of level lines at large amplitudes caused from statistical
errors, but anyway these are smaller than the distance between neighboring lines.

4 "STRONG-STRONG" CASE

Although a "weak-strong" model seems to be good enough for simulation of the
beam halo and lifetime, sometimes it is important to take into consideration the
perturbations of the "strong" beam; thus we come to a "strong-strong" model. We
will not consider here the coherent beam-beam effects, collective instabilities, etc.
The only thing we would like to take into account is the distortion of equilibrium
distribution of the "strong" beam, that gives the change in the value of a kick which
a test particle experiences due to the beam-beam interaction.

To obtain the equilibrium distribution for both beams, we have to simultaneously
simulate a large number of particles for every beam. As a rule, the number of such
particles is P rv 103 . There are different ways of how to calculate the value of the
kick which the particle suffers from the opposite beam, but anyway we have to
consider the beam as consisting of P "macroparticles", so that the charge of each
macroparticle is equal to 1/P part of the full beam charge. In this case, the value of
the kick is a function of coordinates of all these macroparticles. We will not consider
in detail the question of the form of this function and of how to "smooth" it to avoid
singularities at the locations of the macroparticles. Our goal is the development of
only the technique.
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During the first step, as usually (see Figure 1), we do not interrupt the particle
motion and save all the outflights for all P particles. At the same time, P points
(amplitudes and phases) within the external region are chosen randomly and saved.
These are used as the initial positions for the next step. Besides, the fraction of time
the particles have spent in the external region VI < 1 is accounted. In the general
case, when there is the asymmetry between two beams (for example, they may
have different energies, currents, lengths and so on), the boundaries, statistics of
the outflights, etc. are defined separately for each beam.

Since in the first step the particles are mainly concentrated in the core, we can
neglect the influence of the tails on the kick from the opposite beam. Therefore, after
completion of the first step the distribution in region I (see Figures 1,3) is known
well enough, although the distribution outside the core (which has an effect on the
distribution inside the core) is still unknown. On the second step, the part ofthe beam
charge in the hidden region is 1 - VI, which can be different for each beam. Now
we can define the contribution of the hidden region to the value of the kick which
the particle suffers from the opposite beam. Probably, the best solution in this case
is to build a two-dimensional grid of forces, which allows us to calculate quickly
this part of the kick as a function of the particle's coordinates. Besides, we have to
take into account the particles outside the hidden region and their contribution to
the kick value. With this purpose, we continue watching for P particles during the
second step, the charge of each particle being VI / P part of the full beam charge.
As soon as any particle falls inside the hidden region, the restart is produced, so the
number of particles outside the hidden region is always P. As well as on the first
step, the outflights across the C-boundary and the points within the external region
(initial positions for the next step) are saved, also a fraction of time the particles
have spent within the external region V2 is accounted.

The simulation algorithm for the third and all the next steps is similar to the
second step, except two points:

• For the i-th step we have to rebuild our grid to calculate the hidden region's
part of the kick value. Only a contribution of the (i-l)-th region (it is an internal
region on the (i-l)-th step, which intends to be joined with the hidden region on
the i-th step) can be added to the old grid.

• The charge of each particle outside the hidden region is equal now to a
VI . V2 ... Vi -1/P part of the full beam charge, and their contribution to the
kick must be proportional to this value.

The above-described technique has one more application: this is the scattering on
the neighboring particles of the same bunch (Touschek effect). Since the probability
of such scattering depends on the distribution density at the scattering point, which
is unknown a priori, we should simulate a large number of particles even for
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the "weak-strong" model. In this case, the tracking techniquea looks like in the
"strong-strong" model with scattering (see Section 3).

5 THREE-DIMENSIONAL CASE

Up to now we considered the two-dimensional amplitude space. Evidently, all the
results can be generalized for the three-dimensional case as well. This means that
we have to build a distribution within the three-dimensional amplitude space and
use two-dimensional boundaries (i.e., surfaces instead of lines). The only problem
arises from the fact that probability to fall within a three-dimensional cell of size
8A is much less than in the case of a two-dimensional cell. This leads to that the
simulation time for each step T must be much greater in the three-dimensional
case to satisfy the condition Np 2:: N. Moreover, the simulation time T depends
now on the damping time r. Besides, there are some technical difficulties which
do not allow us to use the three-dimensional version of the method at the present
time. As a compromise, we use a "three-dimensional tracking with two-dimensional
distribution". This approach has a limited range of application, but anyway, even
outside this range, one can get the essential information.

The algorithm we use can be presented as consisting of three independent parts:
the simulation itself (outside the hidden region), building the level lines in the
amplitude space, and the simulation of a particle leaving the hidden region (i.e.
restarts). The first part represents the physical nature of the phenomenon under
investigation and must be three-dimensional because of the important role of the
longitudinal motion. Concerning the second part, we can integrate the distribution
with respect to the third amplitude and build the boundary similar to that in the
two-dimensional case. This means that the boundary is a cylinder within the
three-dimensional amplitude space. Nevertheless, each outflight includes six values:
all the amplitudes and phases (or coordinates and momenta). What is the effect of
such simplification of the boundary? The finite statistics of the outflights can lead
to losing some ways (see Figure 4). For example, reproducing the probability of
being captured in the three-dimensional resonance, whose location with respect to
the third axis is far from the core, can be incorrect. Besides, the lifetime can be
determined by an aperture for the third dimension, but we keep low third amplitude
for all the steps.

Nevertheless, there are areas of parameters where the system becomes really
two-dimensional (or "almost two-dimensional"). Particularly, the distribution is
exactly symmetrical with respect to arbitrary rotations in the plane (Ax, A z) for

a At the present time, the "strong-strong" model, as well as the Touschek effect, is not included in
the code. It will probably be done in the future.
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round beams. In this case, we build the distribution in the plane (Ar , As), where

AT = JA~ + A~. Besides, the system becomes "almost two-dimensional" in the

case, where the dispersion at the IP is so high, that the synchrotron transverse
beam size is much greater than the betatron one (so-called monochromatization3).

In this case, the horizontal displacement of the particle is mainly defined by the
longitudinal motion, and we have to build the distribution in the plane (As, A z).

The probability of the particle going to the aperture through large amplitude Ax
vanishes in this case, although the resonances are really three-dimensional.

The significance of the longitudinal motion remains essential even without
dispersion at the IP due to modulation of the betatron phases. However, the betatron
motion seems to be more important and the distribution must be produced in the
plane (Ax, Az). The case, where the synchrotron and betatron beam sizes at the
IP becomes comparable, is most difficult. Here all three dimensions are of the
same importance and the two-dimensional distribution can result in serious errors
in the lifetime determination. Nevertheless, even under such conditions the new
method can be helpful. The thing is that all the errors caused by two-dimensional
simplification of the distribution give only the increase in the lifetime. Therefore,
we can use the method to quickly search for "bad" regions of the parameters (i.e.
the regions, where the lifetime is short), while in "good" regions we should use a
conventional tracking technique to correctly define the lifetime. The topology of
such "bad" regions in the space of various parameters can be an important source
of information for future investigations.

6 SOME RESULTS OF TECHNIQUE APPLICATION

The study of beam-beam effects with monochromatization for the Novosibirsk
B-Factory Project has given impetus to the development of the proposed technique.
As it was shown (see Gerasimov3), for flat beams the width of the resonance
1 . Qx + m . Qz + n . Qs == k depends on the monochromatization parameter A (it
is defined as the ratio of synchrotron and betatron beam sizes at the IP) as follows:

~Az rv A-i/2. (22)

This formula mathematically represents the fact that significance ofthe horizontal
betatron motion decreases (i.e. the system becomes "almost two-dimensional") in
case of increasing the synchrotron beam size at the IP. However, there were some
doubts concerning the dispersion at the IP, since a series of strong synchro-betatron
resonances arose. The simulation results obtained in 1990-1991 by using a new
technique essentially clarified the situation.
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FIGURE 11: Equilibrium distribution for VEPP-4M working point: {Qx} == 0.53, {Qz} == 0.57,
Qs == 0.02, ~x == 0.005, ~z == 0.06, ax / az == 80, A == 2.

It is likely that VEPP-4M is the first collider with big dispersion at the IP. This
dispersion arises constructively because of a magnet spectrometer for scattered
electrons4 and was considered earlier as a disadvantage. However, we expect now
that the permissible tune shift parameter ~ will be sufficiently high. The simulation
results for VEPP-4 are shown in Figures 11, 12. The only distinction between
these figures is the monochromatization parameter A == o-xs/o-xf3. As we can see,
the widths of resonances with 1 i= 0 really fall down with the increase in A.

A large number of bunches in the B-Factory leads to parasitic crossings (PC's).
As a rule, there are two PC at a distance of about 2 meters from the main IP, all the
next bunches are shielded by a vacuum chamber. In spite of considerable separation
(20-40 beam sizes), the PC can essentially disturb the opposite beam due to high
value of a beta-function (see Figure 13, where there are no PC's, and compare
with Figures 14 and 15, where they are present). The direction of the separation is
also very important. The technique was used to search for the minimum separation
value which is allowed for both horizontal and vertical separations. The specific
instability, which results in losing the particle when it achieves a certain threshold
in the vertical amplitude, was discovered for the vertical separation (see Figure 14).
This threshold can be several times smaller than the separation value! In case of
the horizontal separation, the PC's have much less influence (see Figure 15). The
lifetime versus the separation value is shown in Figure 16 for both cases (the vertical
aperture is 30o-z, the horizontal aperture is 10o-x, all the particles were lost at the
vertical aperture).
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FIGURE 12: The same working point as in Figure 11, but monochromatization parameter A = 5. The
widths of resonances l . Qx + m . Qz + n . Qs = k with l #- 0 are decreasing here due to increasing
of A.
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FIGURE 13: The B-Factory working point without PC's: {Qx} = 0.08, {Qz} = 0.11, Qs = 0.02,
~x = 0.01, ~z = 0.05, a; /az* = 300, A = a;s/axf3* = 10. Here asterisk (*) denotes the values at the
main IP. Resonances l . Qx + m . Qz + n . Qs = k are shown as (l, m, n).
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FIGURE 14: The same working point as in Figure 13 with account of two PC's (vertical separation on
50az). An instability arises, which results in short lifetime.
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FIGURE 15: The same working point, but horizontal separation on 20ax instead of the vertical one.
Pay attention that ax and az becomes almost equal at the PC.
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FIGURE 16: Lifetime versus the separation value (horizontal or vertical) at the PC.

91

20
Ar

As
o 10

FIGURE 17: Equilibrium distribution for cp-Factory with round beams. {Qx,z} = 0.04, Qs = 0.02,
gx,z = 0.2. The strong flow to large amplitudes arises due to longitudinal beam-beam effects.
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FIGURE 18: The same working point as in Figure 17, but momentum compaction factor is negative.

The technique was also used in simulations for the Novosibirsk cp-Factory Project
with round beams. The high intensity and low energy of the beams led to strong
longitudinal beam-beam effects.5 Particularly, strong flows to high amplitudes (both
betatron and synchrotron) could arise due to these effects (see Figure 17). In order
to suppress such flows, an interesting idea of negative momentum compaction6 was
suggested by V.V. Danilov and E.A. Perevedentsev. The simulation results for the
same working point as in Figure 17 and inverse sign of the momentum compaction
factor are shown in Figure 18.

Moreover, some simulations results were obtained for the HERA electron beam
(see Shatilov8). Any suggestions concerning new fields of application of the
technique will be welcome.
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