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Focusing of relativistic electron (positron) bunches is considered in three different descriptions of cold overdense
plasma-rigid electron bunch system. In all three models Coulomb component of field exists but for large values
of the bunch Lorentz-factor it is negligible in comparison with the wake field component. Total charge and
current densities in general are not compensated. For narrow bunches they are nearly proportional to each other.
The resulting focusing force is a complex combination of magnetic and electric forces, whose relative strength
depends on bunch parameters. The obtained results in case of narrow bunches are practically independent from
the considered models. The general formulae for focusing force are obtained, which can be used for estimates in
the planned experiments. Particular cases of narrow, shortand long bunches are discussed and focusing gradients
are calculated for the experiments performed at ANL, Tokyo University-KEK and UCLA.

KEY WORDS: Next linear colliders, plasma lens, cold neutral overdense plasma, linear approximation, focusing
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1 INTRODUCTION

In the last decade some of the most important discoveries and systematic studies in
elementary particle physics have been made at electron-positron colliders. Future (or next)
linear' colliders will have the c.m. energy 0, 5-1, 0 TeV. At such energies the cross
section for producing JL-pairs is 87 fb and luminocity L = 1033cm-2s-1 would give 7,
5 JL-pairs per day. So, for producing pointlike particles at such energies the luminocity in the
1033 -;.-1034cm-2s-1 range is needed. This demanding requirement dominates high energy
linear collider design. In particular, the beam vertical size must be of order 1-10 nm.1,2
Beam height in Final Focus Test Beam (FFTB) project at SLAC energy 50 GeV is 60 nm
and this goal is achieved using the system of ordinary quadrupoles and sextupoles.3 The

*The work was performed for Lawrence Berkeley Laboratory.
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(1)

alternative proposals are based on the use of strong transverse fields in plasma, generated
by ultrarelativistic electron (positron) bunches.4- 14

In present work the focusing force is obtained in three different models of overdense cold
plasma-rigid relativistic electron (positron) bunch system:

a) model with the generalized vorticity equal to zero; 13, 14

b) model with strong external longitudinal magnetic field, applied along the direction of
beam velocity; 12

c) more general model, considered in20 and later on in12.

In cases (a) and (b) the cylindrical electron bunch with a Gaussian distribution of charge
in longitudinal direction and parabolic distribution in transverse direction is considered.
In the case (c) the flat bunch with the uniform distribution of charge is discussed. In
linear approximation the general formulae for focusing force are obtained and the results of
different models compared to each other, especially in the most interesting case of narrow
beams. Obtained results may be used for the optimization of the conditions of the future
experiments.3,11

It is possible to use linear approximation in considered overdense plasma regime. The
experiments carried out up to now16- 19 also are devoted to this regime. Theoretical treatment
of underdense regime needs completely different approach, due to nonlinear character of
the phenomena.

All the calculations are based on the rigid electron bunch model. In reality emerging
transverse and longitudinal forces changes the bunch charge distribution and adopted model
is valid for the finite time intervals, when these changes are negligible. The complete
description needs selfconsistent treatment of the plasma-nonrigid electron bunch system,
which is performed analytically for one dimensional case.21 As a result the length of the
plasma column 1 must be limited by 1 < vor-1 == 32~/~ (L )(2no)1/3 in order to escapewp nb

the development of the instabilities in the beam-plasma system (vo - velocity of the beam;
wp - plasma frequency, no, nb densities of the plasma and bunch electrons respectively, y
Lorentz factor of the bunch). The length 1of the plasma column in experiments did not exist
a few meters and this condition practically fulfilled for large values of Lorentz factor y .

Stability of driving bunch also considered in 23 by 2D simulation. Although the beam
is subject of self-focusing (for narrow bunches), filamentation and two-stream instability
(for wide bunches) authors of 22-23 find that bunch can be stabilized by introducing on
axial Bo field. This was also one of the reasons for considering the model (b) in present
investigation.

2 MODEL WITH A POTENTIAL FLOW OF THE PLASMA

We consider the cylindrical electron (positron) bunch with the Gaussian distribution of
charge density in horizontal direction and parabolic distribution in vertical direction

,..., { nbO (1- r~) exp(-z2 j 2a2
), r:::; a;

nb(Z, r) == a

o , r > a.
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where a is the radius of the bunch, 2(21/ 2)0' = d - the horizontal dimension of the bunch,
nbO - electron density at the middle of the bunch (z = 0, r = 0) and we consider the steady
state z= z - vot of the electron bunch-plasma system. The electron bunch is moving in
cold plasma (with the fixed velocity vo(O, 0, vo», ions are immobile and plasma is neutral
in equilibrium. Using the system of the Maxwell equations for electromagnetic fields,
generated by bunch and plasma electrons and plasma ions, and hydrodynamic equations
for cold neutral plasma electrons, assuming that generalized vorticity for plasma electrons
is zero.13,14

(2)

where p is the momentum of the plasma electrons and A - vector potential of the elec
tromagnetic field, we derive the following nonlinear equation for dimensionless momenta
p= pime of the plasma electrons:

(
.... .... 2 1 a2

).... p [ 2 2 nb 1 a ........
VV - v + - - P + fJ k (1 - -) + - - V p+

e2 at2 (1 + p2)1/2 P no e at

(3)

wherekp = wplvo = 2nl'Ap, wp = (4ne2nolm)I/2 -istheplasmafrequencY,fJ = vole.
In linear approximation, which we shall explore later on, the condition (2) is fulfilled due
to Faraday's law:

ap a e aB e a a [ ( e)Jat = -eE, at rotp = -erotE = ~at = ~ at rot A, at rot p - ~A = 0 (2')

For z --+ 00, P and A are equal to zero, so (2) is fulfilled for arbitrary instant of time.
We shall consider the excitation of the axial symmetric E -wave with the field components

E z, E r , Be and components of velocity of the plasma electrons vz , Vr differ from zero.
In cylindrical coordinates the linearized system of equations for the momenta of the

plasma electrons is

(4)

where y = (1 - fJ2)-1/2 and nb « no.

Performing Fourier transformation on z, assuming that Pz,r and apz,rlaz tend to zero
when z--+ +00, and excluding the Fourier transformant Pr ('A, r) from the obtained system
of equations, we came to the equation for pz ('A, r) = -~ef3 'AEz(r, 'A), which coincides with

me
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the subsequent Eq. (9) from the work.22 Using the equation of motion and Faraday's law

mevo apr
E - ----

r - e az'
Be = mc

2
(ap~ _ apz )

e az ar (5)

we come to the following expression for the radial force acting on the bunch electrons

ir
2 apz

- e(Er - fJBB) = -me fJ- =ar
00

21/2 -1/2 k2 2 nbO f exp(-(Aa)2 /2 + iAz)
Jr m pvoa- 2 2 Xno A - kp

-00

(6)

where /1, K2 are the modified Bessel functions, K = kp (fJ2 + A2/(ykp )2)1/2, ImA > O.
The obtained expression for ir differs from the subsequent expression from the work,4
due to some additional approximations explored in 4 (vo is set equal to e at the beginning,
Gaussian distribution on Zapproximated by parabolic one). One should note that the radial
force tends to zero when a --+ 00. Later on we consider the most interesting case of narrow
cylindrical bunch when kpa « 1.

In this case it is possible to divide the integral contained the product /1 (Kr)K2(Kr) in
two integrals in limits IAI ::s A1 and IAI ::: AI, and using in the first integral the expansion
of /1 (Kr)K2(Ka) for small values of the argument and noticing that the second integral is
exponentially small, we come to the following expression for radial force ir(z, r), acting
on electrons of the narrow bunch

ir(Z, r)
n bO {( Jr ) 1/2 a r 22mvowp- - 2" exp(-(kpa) j2)x
nO 2 a

[

(k a)2 r2 ]x 1 - 8(1 - -P-(l - -)) x
4 2a2

_ Izi .kpa ]+ cos(kp Izl)Im erf(21/ 2a - l 21/ 2 ) +

(7)
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where

5

I (kpaX1) ( (kpa)2 r
2

)I -x l-erf -- 1- --(1- -) e(z)
21/ 2 4 2a2 '

(8)

e(z) = {
I,

0,

z< 0,

z> 0,

(10)

and 8 is the real part of the probability integral

(
kp aX1 . Izi )

8 = Reerf 2i72 - l21/ 2a ' (9)

wherex1 = All kp andx1 « YIkpa. Using the known expression for the probability integral
of the complex variable15 , one can obtain from (6) compact expression for the radial force of
the long and short bunches. In the case of the longbunchkpa »1, a« volwp «dI81/2

when z» 21/ 20', Z > °we have exponentialy small defocusing force

n bO kp r ( r
2

) -2 2fr :::: mWp vo--2 1 - -2 exp(-z 120' ).
no 2y 2a

In the far rare part of the bunch we have an oscillating force due to the wake-field generated
by the bunch

(11)

In the middle of the long bunch Izi « 21/ 20' the force has three components - defocusing,
focusing and oscillating:

00 1 2
X '""' - exp(-(k 0'121

/
2

- n12) - n2/4)-L...J n p
n=l

(12)

In the short bunch case kpa « 1, a « d18 1/2 « volwp, when Z » 21/20', the force tends
to zero and when Z < 0, Izi » 21

/ 20' the main contribution to force gives the wake-field
component:

1/2 nbO ar
fr ~ -2(2n) mvowp-2: sin(kpIZI).

no a
(13)
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For kpO' « 1, Iii ~ 21/ 20' we have

A.T AMATUNI et al.

nbO [1 ( r
2

) 2.5 a ]fr == mvowp-(kpr)(kpO') 1/2 2 1 - -2 - --Y-/2 --2
nO (2Jr) y 2a Jr kpa

(14)

The value of the forces given by the expressions (13) and (14) is mainly determined by the

factor n~~2 (nbo/ no) 1/2 which could be large.
Now we shall give some numerical estimates of the gradient of the focusing force using

the data from experiments at ANL,8 KEK-Tokyo University,10, 16 UCLA17 and also from
the proposal for FFTB experiment at SLAC11 for overdense case.

For the long bunches kpO' » 1, when Iii « 21/ 20' (the middle of the bunch) focusing
force is given by (12), and in this case for the parameters ofANL and UCLA experiments the
magnitude of focusing gradient G == Ifr/erl is equal to several hundred G/cm (10 kG/m).
Focusing length f for thin lens (f » 1, 1- is the length of lens) is (see e.g. 7) f ~ b ==

2
Yen;;~ andforUCLAexperimenty == 7.5, 1~ 7.5cmandG ~ 100G/cm, f ~ 18 em which
practically coincides with obtained experimental value.17 For the FFTB experiment we get
G ~ 0 due to the factors 1/y2 and exp(-(kpO')2 /2) entered in the expression (12). The
short bunches kpO' « 1 were used in the KEK-Tokyo University experiment and the field
gradient G from (13) is equal G ~ 2.4 kG/cm for conditions of this experiment. In the case
of FFTB experiment it is possible to increase essentially the field gradient G by decreasing
the bunch length. For example, if the parameters of the FFTB experiment in the overdense
case may be chosen as no == 2.1017cm-3 , nbO == 5.3·1016cm-3 , a == a == 4.7 ·10-4 cm
field gradient from (13) and (14) is G r-v 4 GG/cm (the length of the bunch is smaller than
the length of wave Ap == 2Jr/ kp ~ 7.8 . 10-3 cm).

3 MODEL WITH STRONG EXTERNAL LONGITUDINAL MAGNETIC
FIELD

Now let us consider the model with the strong external magnetic field B(O, 0, Bo) applied
along the bunch motion. The strength of this constant magnetic field should satisfy the
condition that Larmor radius of the plasma electrons must be smaller than plasma wave
length and/or bunch transverse dimensions. In this case the plasma electrons have only the
longitudinal component of the velocity which is different from zero.

One should note also that in the experiments carried out at ANL18 and KEK16,19 for
wake field generation, plasma chambers have a constant solenoidal magnetic field in order
to confine the plasma column.

Starting, as in the previous section, with the Maxwell and hydrodynaD;1ics equations,
introducing scalar <p and vector A(O, 0, Az) potentials, obeying the Lorentz condition, we
came to the following linearized equations for the potential <p(z, r)12

a2 <p 1 a<p 1 a2<p k~ m nbO 2 2 -2 2- + -- + --_- + -<p == --k Vo exp(-z /20' )f(r), (15)
ar2 r ar y2 az2 y2 e no p

where f (r) == 1 - r 2/ a2 and nbo/no « 1 (linear approximation). The boundary conditions
for potential <p are <p ---+ 0, a<p/az ---+ °when z ---+ +00.
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Using the Fourier transformation on Zfor potential qJ, the solution of the equation (15)
can be written as the following:

{

k

23/2 -1/2 p 1- mn nbO 2 2 2 n a 2 2 1/2
qJ(r, z) = -kpvoay / 2 2 [-N2 (-(kp - A) ) x

e no kp - A 2 y
o

(
r 2 2 1/2) 1 r

2
2

y2
]xl0 -(kp-A) +-(1- 2 )+ 2 2 2 exp(-(Aa)2/2)coS(AZ)dA-

y 2 a a (kp - A )

/

00 1 [ (a 2 2 1/2) ( r 2 2 1/2) 1 ( r2
)- K2 -(A - k ) /0 -(A - k ) + - 1 - - -

A2 - k2 Y p Y p 2 a 2
k p

p

2
y

2 ] I- 2 2 2 exp(- (Aa)2 /2) cos(Az)dA ,
a (A - kp )

(16)

where 10, N2 are the Bessel functions of the first and second kind, and /0, K2 are modified
Bessel functions, 1m A > O. When a -+ 00 the (16) coincides with the potential of one
dimensional problem.

The field components are:

aqJ
Er = --,ar Be = {JEr

and radial force ir , acting on bunch electrons is

eEr e aqJ
ir = -eEr +e{JBe = -- = -- =

y2 y2 ar

_ 23/ 2 -1/2nbok2 2 {~/oo exp(-(Aa)2j2+iAZ)d _
- mn pvoa 2 2 2 A

no 2a A - kp
-00

(17)
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The comparison of the expression (17) with the consequent expression (6) for ir in the
model described in previous point shows evident differences.

In particular, the product /1 K 2 in (17) has a different argument and integral is taken in
different limits of integration; expression (17) has also an additional term with the product
JI N2. The value of the focusing force (17) depends on Lorentz factor.

Integrals with the products of the Bessel function, which enter in (17), are impossible in
general to calculate analytically. But it is possible to carry out the approximate calculations
for the case of small and large values of the arguments of the Bessel function.

Let us start with the case when kpr/y ::s kpa/y « 1. In this case in the first
integral it is possible to expand the product N2JI on this small parameter in all range
of integration (0, kp ); in the second integral we expand the product K2/1 in interval
(kp, kpXI), where Xl is in the region 1 < Xl « y /(kpa) and carry out the inte
gration. It is possible to show that the main contribution in the second integral comes
from the vicinity of lower limit kp and remaining part of the second integral is neg
1igible. Obtained by this way resulting expression for radial force coincides with the
expression (7).

This coincidence is connected with the similarity of the relations between the charge and
current densities in both models jz == voq, which in considered case (model b) is exact. In
the case considered in previous section 2 (model a) from continuity equation

a 1 a
a-(jz - vOq) == ---a (rjr) ,

Z r r
(18)

where jr == ne Vr and from the condition of narrow bunches kpa I'"'V Vr/ Vo « 1, we have
jz ~ VOq· So in both cases the same relation between the z-component of current density
and charge density take place.

Let us consider now the cases of long and short "narrow" bunches.
In the case of the long bunch kpa » 1, a « voY /wp « dy /23/ 2 and when we

have exponentially small defocusing force (see (10)). In the far rare part of the bunch
we have oscillating force due to the wake field generated by the bunch (see (11)). In the
middle of the long bunch the force has three components - defocusing, oscillating and
focusing, which coincides with expression (12) of model (a).

In the case of the short bunch, when kpa « 1, but kpaxi » 1 we have a « dy /23
/
2 «

vOy /wp, 23/ 2 vO/wpd « Xl « voY /wpa and the results of the previous consideration when
kpa» 1 are valid if we change the factor exp(-(kpa)2/2) on 1.

Inthecaseoftheshortwidebunchwhen,kpa« l,kpaxI« Ithendy/23/
2 «a ««

voy/wp,1 < Xl «voy/wpaandtheforceinthemiddleofthebunchlzl «21/ 2aisdefined
on formulae (14) of the model a). When Izi » 21/ 2a exponential decreasing of parts of
force take place and on the rare part of the bunch only the force due to the wake field remains
finite (see (13)).

When the condition kpa/y » 1 is fulfilled then the integral in (17) containing product
N2JI of two Bessel functions is small due to the rapid oscillation of Bessel functions, and
integral containing the product K 2/1 is also small due to the exponential decrease of Bessel
function. Resulting expression for radial force is
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1/2 nbO a r 2 { ( IZI(2rr) mw VO-- exp(-(k a) /2) 1 - erf---
p no a2 p 21/20'

9

(19)

. _ 2 -2 2 ~ exp(-n2 /2) nkpa)I
x sln(kplzl) - -exp(-z /20' ) L...J 2 -2 2 n sh~ ,

rr n=l n + 2z /0' 2

which tends to zero when a --+ 00.

4 MORE GENERAL MODEL

Following the ideas of the work20 with some modification perfonned in 12 the problem of
the focusing of the flat beam with the unifonn fixed distribution of the charge is considered.
As in the preceding section, electron bunch is moving with the velocity vo(O, 0, vo) in a
cold neutral plasma with immobile ions. The horizontal dimension of the bunch 2a is much
longer than vertical dimension 2b and longitudinal dimension is 2d. Plasma electrons have
the velocity ve(O, vey , vez), electric field is E(O, Ey , Ez) and magnetic field is B(B, 0, 0).
A steady state case when all physical quantities are functions of y and z == z - vot,
is considered. Using relativistic equation of motion for plasma electrons and Maxwell
equation, introducing the dimensionless variables

t'==Wpt, y' == kpy, I
== kpz, p' == mcp,Z

I v
n'

n ·1 j (20)v==- J == --,
c no ceno

E == mcwPE/ , mcwp I 2 4rre2no Wp
B== --B, W == --- kp ==-

e e p m c

we obtain the system of the nonlinear equations, presented in 12.

Introducing a new variables by a modified Breizman-Tajima-Fisher-Chebotaev transfor
mation:

V'V - __z_
z - p. - v' '

fJ Z

V'
YVy == --,

fJ - v~
N == n' (fJ - v~),

Vo
fJ == -

c
(21)

we linearize obtained nonlinear system of equation more consistently, than it was done
in 12,20.

By decomposition:

N == 1 + EN1 + E2N2 + ,
Vy == EVy1 + E2 Vy2 + ,

Vz == EVz1 + E2 Vz2 + ,

Ez == EEz1 + E2Ez2 + ,
Ey == EEy1 + E2 Ey2 + ,

B == E B1 + E
2 B2 + ...

(22)
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(we omit the superscripts "prime" in what follows; E = nb/no, where nb is the bunch
charge density; we include in what follows the quantity E in N1, Vy 1, etc) we came at the
first (linear) approximation to the following system of equations

1 aNI _ aVyl .
. az - ay

aVyl 1
2. az = fJ2 Ey l;

aB I nb aEzl
4. - == fJVzl + fJ- + fJ-- ;ay no az

a aEzl
6. ~(fJBl + Ey l) == -;az ay

(23)

The continuity equation (23.1) follows from Maxwell equations, but for the convenience
we use it explicitly.

Introducing the "potentials" <I> 1 and \II1 by expressions:

a<l>l
E 1 - ---

z - az' (24)

and omitting the subscript "I" from equations (23.1, 3-6) we have

or

a2 <1> a2 <1> n y2___ + y2 y2<1> == ~ _ -\II.
az2 ay2 no fJ2

From equations (1-3, 7) in (23) we have

(25)

(26)

(27)
a2 \11 1 nb
-+-\11=-
az2 fJ2 no

Solving equation (27) and putting the solution in (26), we shall have inhomogeneous
equation for <1>, which we shall solve using Fourier transfonnation on y and the technique
described previously in 12. Here we emphasize only that we use the solutions of equations
(24, 25), which are continuous on the boundaries of the bunch at z= ±d and tend to zero
when Z -+ +00 . The wake-field behind the bunch has a fonn of the trace, concentrated in
the region Iy I < b, IzI < d and charge density has a discontinuity at y = ±b. The magnetic
field, associated with the wake is zero, as a consequence of the absence of the energy flow
along the wake. Some of the obtained results are the following.

The Coulomb (nonperiodic) component exists. Ahead of the bunch and behind it at large
distances from the bunch Coulomb component is proportional to



PLASMA LENSES

exp(-ykplzl- kplyl) Izl» d, Iyl» b,

11

i.e. the screening of the Coulomb field exists, but it differs in zand y directions by factor
y. The range of the screening is not a Debye length (we consider the cold plasma in
hydrodynamic description), but a Langmuir wave length in y-direction and Ap/(21Ty)
in z-direction.

Inside the beam, the obtained expression for Coulomb component of the potential <I>
is more complicated, and it is inverse proportional to y 2 . Considering the large values of
Lorentz-factor, it is possible to neglect the Coulomb component <l>c, leaving wake-field
component <l>w, and obtain the compact expression for focusing force inside the bunch

a<I> a<l>w
f = -E - {JBl = - ~ -, <I> = <l>c + <l>w. (28)

Y Y ay ay
(We use equation (23.6) and the definition of the potential <1».

For narrow bunches kpb < 1 we use the decomposition of the functions entering in
expression for <l>w and get (in Gauss units):

(29)

-d::s z ::s d, -b::s y ::s b,

and for the field gradient:

If I (4) _G = _Y = 21Tnbe 1 - -(kpb) (1 - cos(kp(z - d))).
elyl 31T

(30)

Notice that at the initial part of the bunch (z ~ d) the focusing force (29) is small, so the
Coulomb component, which is defocusing, is essential.

The obtained value by the order of magnitude is equal to that, which is possible to
obtain, using simple estimate, based on the picture of completely neutralized charge and
non-neutralized current7 for the flat bunch

Vo
({J = - ~ 1);

c

For focusing strength for overdense plasma lens, considered in present paper, we have

K = eG 2 = 2Jrnb~2 [1 - 34 (kpb)] , which somewhat differs from expressions (2.2), (2.3)
ymc ymc Jr

used in 11 for FFTB parameter studies.
For example, for plasma lens experiment at SLAC FFTB 11 Y = 105 and it is possible

to neglect nonperiodic component of the field. For the overdense plasma lens assuming the
uniform distribution of the bunch charge, when kp > 1.8 . 102 -7- 103 cm-1, no > nb,
nb = 1016 -7- 1018 cm-3 , b = 10-4 -7- 10-5 cm and if kpb « 1, it is possible to use (30)
with the maximum value
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We have for the total charge and current densities inside the narrow bunch:

q (
nb ne

) ( no)eno 1 - - - - = -e nb - -\IJ = -enbcos(k (d - z)),
no no f32 p

- f3 (:~ + ;2 <I>) = -enbc [1 + 2(;b) (1- cos(kp(d - i)))] ,

f3 ~ 1, -d:s z :s d, Iy I :s b.

(31)

So the current and charge in general are not compensated and the resulting focusing force
is the complex combination of magnetic and electric forces. For short bunches (or in the
initial part of long bunches), when kp (d - z) « 1, jz ~ -enbC ~ qc i.e. we have the same
relation between charge and current densities as in the previous two models.

Expressions for the focusing force (28) depend essentially on the shape and charge
distribution in the bunch. Notice also that linear focusing force (on y) is possible to obtain
only in case of narrow beam kpb « 1; in cases of medium and wide beams the obtained
expressions for the force are nonlinear on y.

5 CONCLUSIONS

1. In linear approximation the general formulae are obtained for the focusing force for
three different discriptions of the overdense cold plasma-rigid electron bunch system
(see Introduction). The results obtained in models (a) and (b) for the narrow bunch
coincide.

2. In all three models the Coulomb component of the field exists. In case (c) it was shown
that Coulomb field is screened on the distances equal to Langmuir length in transverse
direction and the same quantity divided by y -factor in longitudinal direction. In all three
models for moderate values of the Lorentz-factor the Coulomb component is essential
and its effect is always defocusing. Defocusing Coulomb component is essential also
in that regions of the bunch, where focusing wake field component is small, e.g. near
the bunch front. For the large values of Lorentz-factor in all three models it is possible
to neglect Coulomb component, leaving only wake field component in the parts of the
bunch, where wake component is essential for focusing.

3. In all three models the charge and current densities are in general not compensated.
For narrow (and short) bunches charge and current densities approximately related by
simple expression jz ~ vOq. Focusing force is a complex combination of electric and
magnetic forces, which relative strength depends on the shape and parameters of the
bunch.

4. The distinct feature of the model (b) is a dependence of the results and applicability
conditions on Lorentz-factor of the beam. Maybe it will be possible to use this feature
for measuring the Lorentz-factor of the beam.
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5. The focusing force is linear on transverse variable for narrow bunch case in all models.
In case of uniform charge distribution it is periodic on longitudinal variable, with the
period equal to Langmuir length. In cases (a) and (b), when Gaussian distribution
of bunch charge is adopted the z-dependence of the focusing force is complicated.
The last property may be nonessential for focusing of the driven bunch in wake-field
of considered driving bunch, when the length of driven bunch is much smaller than
Langmuir length of the plasma.
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