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In this report the problems of orbital and spin nonlinear calculations are discussed. The introduction of the special
p- and V-functions allows us to formalize the determination of the orbital and spin Lie operators and to apply the
systems of the analytical calculations to find them. An increase in the accuracy of numerical calculations can be
achieved through the usage of these functions instead of the standard math-library functions cos, sin and etc.
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1 INTRODUCTION

The problem of the nonlinear orbital and spin dynamics can be considered as one of the
most urgent ones. The reasons are as follows. Firstly, the magnetic structure of the modem
accelerators has become more rigid and therefore, nonlinear effects have turned to be more
significant. Secondly, unfortunately there is as yet no universal method for these tasks.

Different approaches are used in accelerator physics. The choice between them depends
on the problem or on the author's preferences. We have used Lie technique but the subject
matter of this report can be applied to any other approach.

In our case it is necessary to find the map from initial orbital and spin vectors to its final
values. The orbital and spin Lie operators determine this map.l,2

Special rules exist for, Lie operators calculations. But in practice, rules are usually
very complicated, which makes the calculations too cumbersome. The usage of computing
systems in analytical calculations should be considered as a good solution.

The rules of Lie operators determination include repeated integrations of different poly
nomials of the trigonometrical functions. As a result of these integrations the constructions,
which are a division of small differences by other small differences, appear. For this reason
the accuracy of the numerical calculations decreases. Both of these problems can be solved
by the introduction of the special P- and V-functions. The rules for the operations with
these functions allow us to formalize the calculations and to apply systems of analytical
calculations for of Lie operators determination. An increase in the accuracy of numerical
calculations is achieved through the usage of explicit expansion P- and V-functions in the
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series. These series converge very quickly in the cases of accelerator problems since the
function's arguments are less than unit usually.

The plan of the paper is as follows. In parts 2 and 3 special P- and V-functions are
discussed. They are offered in order to obtain explicit expressions for the orbital and spin
Lie operators for all types ofcollider elements. The application of the analytical calculations
system (REDUCE) to compute these expressions is considered in the following part. Orbital
and spin matrices and Lie operator formulae for different elements of the collider were
calculated by code HAMIL.RED and few of them are presented in the last part. The results
for orbital motion in the case of the homogeneous field can be compared with.3 These
examples show advantages ofusage ofP- and V-functions for simple as well as complicated
expressions.

Lie operators, which were obtained by computer code HAMIL.RED, were programed in
FORTRAN code SPINLIE for calculations of polarization in colliders.2,4,5

2 P-FUNCTIONS

For practical calculation of the Lie operators it is useful to introduce special P-functions.
Expressions for them include, as a rule, complicated combinations of trigonometrical
functions, since the usage of P-functions (and V-functions; see the next part) allows us
to formalize calculations and to use them for computer analytical system.

Let us introduce the function Pi (Q, s) as a "single" series

It is easy to verify that the relations between the functions Pi (Q, s) and usual trigonometrical
ones are determined by the following expressions:

Po(Q, s) = cos Qs,

P
_ sin Qs (Sin QS)

l(Q,S) - -- -s -- ,
Q Qs

1 - cos Qs 2 (1 - cos QS)
P2(Q, s) = Q2 = S (Qs)2 '

s - sin Qs (1 _sin Qs )
S - Q - s3 Qs

P3(Q, ) - Q2 - (Qs)2

and etc. The usage of P-functions allows us to eliminate small denominators (Q and it
powers) in the right parts of these expressions.
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P-functions have the following properties:
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o if i # 0,

1 ifi = 0

The following recurrent expressions are valid:

and inversely,a

Integration and differentiation have the following properties:

dPi(Q, s) _ p. (Q )
---- - l-l ,S,

ds

S j k

f . ,,(-1) . k
o. xJPi(Q,x)dx = j! to (j _k)!sJ- Pi+k+l(Q,S)

and in particular

Sf Pi(Q, x)dx = Pi+l(Q, s).

o

The "multiply" property (for any integer m) is

Thus, a very useful "doubling" rule is:

There are the following "product" rules (they can be proved with the help of usual
mathematical induction method):

a These expressions are very useful for saving computer time, because they allow us to calculate all Pi -functions
if series Pi, with highest odd and even numbers are known.
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i-12k (Q )2i-2k

- (; (~k)! Q~ P2i+2j-2k(Q2, s)-

j-I S2k (QI )2j -2k
- (; (2k)! Q2 P2i+2j-2k(Ql, s);

i-I 2k+I (Q )2i-2k

- {; (2~ + 1)1 Q~ P2i+2j-2k(Q2, s)-

j-I 2k (Q )2j -2k .

- (; (~k)! Q~ P2i+2j+1-2k(Ql, s);

i-I S2k+I (Q2)2i-2k-t; (2k + I)! ili P2i+2j+1-2k(Q2, s)-

j-I 2k+I (Q )2j -2k-t; (2~ + I)! Q~ P2i+2j+1-2k(Ql, s).

These "product" rules are very useful and were effectively used in the computer code
HAMIL.RED for Lie operators calculations.
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3 V-FUNCTIONS

Let us introduce the functions Vi (Q 1, Q2, s) as "double" series

265

00 1 j
'" "22'k 22kVi(QI, Q2, s) = Sl~ (2 "+ ")' ~(-QIs )J- (-Q2s ) "
j=o ] l. k=O

The relations between V-functions and usual trigonometrical functions are determined by
the following expressions:

and etc. The constructions in the right parts of these expressions appear as a rule during the
determination of Lie operators for magnets with skew quadrupole components. The usage
ofD-functions allow us to simplify the computer analytical calculations and final formulae,
and to eliminate the small denominators Qi - Q~.

These functions have the following properties:

{
0 if i ::j:. 0;

Vi(Ql, Q2, 0) = 1
if i = 0,

Vi(Ql, Q2, s) = Vi(Q2, Ql, s);

Vi(Q, 0, s) = Pi(Q, s).

The following recurrent expressions are valid:

V (Q Q ) Pi(Q2,~) -Di(Ql, Q2, s)
i+2 1, 2, s = 2 =

Q1

'Pi(Ql, s) - V i (Ql, Q2, s)

Q~
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and inversely,b
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V i(Ql, Q2, s) = Pi(Q2, s) - QiV i+2(Ql, Q2, s) =

= Pi(Ql, s) - Q~Vi+2(Ql, Q2, s).

Integration and differentiation have the following properties:

and, in particular

sf 'Vj(Ql, Q2, x)dx = 'Vi+l(Ql, Q2, s).

o

The following expressions contain P-functions only:

Pi(Ql, s) - Pi(Q2, s)

Qi - Q~

and, in particular

1
'Vj(Q, Q, s) = 2 [sPi-l (Q, s) + (2 - i)Pi(Q, s)] for i 2: 1,

I 2
Vo(Q, Q, s) = Po(Q, s) - 2Q SPl(Q, s).

The following useful relations were used also into the REDUCE code:

bThese expressions are very useful for computer time saving, because they allow to calculate all Vi -functions if
series Vi with the highest odd and even indices are known. Naturally, the P-functions must be calculated as well.
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(
QI + Q2) (QI - Q2 )VO(QI, Q2, S) = Po 2 ,S PO· 2 ,S-

_ Qi + Q~p (QI + Q2 S) P (QI - Q2 S)
4 I 2 ' I 2 ' ,

+P (
QI + Q2 ) -n (QI - Q2 )]

I 2' s,.-o 2 ,s ,

1
VI (QI + Q2, QI - Q2, S) = 2 [PO(QI, S)PI (Q2, s) + PO(Q2, S)PI (QI, s)] ,

1
V2(QI + Q2, QI - Q2, s) = 2PI(QI, S)PI(Q2, s).

4 REDUCE CODE FOR OPERATOR DETERMINATION
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Computer code HAMIL.RED was created for the calculation of analytical expressions of
the orbital and spin Lie operators. We restrict calculations to the sextupole order only for
orbital and spin motions, but the code for calculations of next order Lie operators without
serious problems can be modified.

The expansion of the vector potential in power series in coordinates and expressions of
orbital linear transformation matrices was used as input data for this code. The scenario
of the code HAMIL.RED is as follows. Firstly, the code reads expressions of the vector
potential and calculates terms of magnetic field and Hamiltonian, separated by the order of
the variables in six-dimensional phase space. The following code reads orbital matrices and
calculates spin linear matrices. Coefficients of orbital and spin Lie operators are calculated
at the next stage. Finally the code checks the expressions obtained.

The expansion ·of the vector potential Awas written in the natural frame.6 The terms of
the 3-rd power of the orbital vector Z = (x, Px, z, Pz, 0', PO') components were used in
the expressions for the components of A. Therefore, the sextupole terms will be taken into
account for the Hamiltonian, including all edge-effects (the corresponding derivatives with
respect to longitudinal coordinates are preserved).

Only one limitation was used: the orbit was assumed to be without torsion (the orbit is
piecewise planar!).

The following notations are used for the dimensionless magnetic field jj == e jj / Eo (Eo
is the fixed particle energy) on the reference orbit (x = Z ='0):
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K = Bz - the curvature in x-direction,

g = a:xz - the magnetic field gradient,

q = ! (aBx _ aBz ) _ the skew-gradient
2 ax az '

mx = a2 Bz/ax 2 - the sextupole moment of the magnetic field,

mz = a2Bz/axaz - the skew-sextupole moment.
Primes are used for the definition of the s-derivatives.

These are the following expressions for the components of the vector potential
A(h=l+Kx):

1 (, 1,,) 2 1 (, 1,,) 3- - q - -B x z + - q + -B z
4 2 s 12 2 s '

1 (, 1,,) 2 1 (, 1,,) 3- - q + -B xz + - q - -B x
4 2 s 12 2 s '

1 2 1 2
h·As = -Bzx+Bx z-

2
(g+KBz)x +2gZ +qxz-

1 3 1 3 1 ( 1 If) 2- -(m + 2Kg)x + -m z - - m - Kq + -B x z+6 x 6 z 2 z 2 x

1 ( 1 If) 2+ 2 mx + Kg + 2Bz xz.

These equations allow to find the components of the magnetic field and the total
Hamiltonian:

in the form of series over Zi. The following abbreviations have been used: e, m and Ii are
the charge of the particle, its rest mass and spin vector respectively, c is velocity of light, P
is canonical momentum and Q is a spin precession frequency.?

Let us write the results for the total Hamiltonian as a sum of the corresponding
polynomials Hi and Q= w(O) + w(1) + w(2):
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wherec

1 (2 2 1 2(2 2) (2) 2Ho = 2 Px + Pz + Bs (PxZ - Xpz) + 4 Bs x + Z - 2KxPa + K + g x -

_gZ2) - qxz + (ij(O)ii

- h(O)Z'Z' (0)= ij l J + W a na ,
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1 (2 2) 1, 2 1 1 3 ~ (1) ~- 2 Px + Pz Pa + 4BzpxZ - 2BsPxZPa - "6mzZ + W n

_ (1) (1)
= hijkZiZjZk + W ai naZi,

and (a = 1.159 .... 10-3 is the dimensionless anomalous magnetic momentum of the
electron)

;:\(0) __ ( ayo 1) ~ ( 1)~
LV -Bz aYo+-+-2 ez-Bs l+a+-2 er ,

2 2~ 2~

w(l) = {(~B; - q) (l + ayo)x + Bsa(l- YO)Px + [~B;a(yo -1)-

- g(l + ayo)]z }ex+

+ {- [~B;a(l - YO) + (KBz + g)(l + a yo )] x+

+ (~B; + q) (1 + ayo)z + Bsa(yo - l)pz + BzPa } ez+

+ {-B~(1 + a)z + Bza(yo - l)pz + Bs(1 + a)Pa} er ,

C All Latin indices i, j, ... are equal to 1,2, ... , 6 and correspond to components of the orbital vector Z; all Greek
indices a,{J, ... correspond to x,z, r and the standard rule is used for the summation over the mute indices.
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W(2) = {~(mz - Kq)(l + aYo)x2
- (mx + Kg)(l + ayo)xz - (~B; -q) Xpu+

The next HAMIL.RED stage is the calculation of the Lie operators. As it is known,
the operators of the linear transfonnations are simply the matrices A for orbital and S
for spin motion. For each type of collider elements the .first of them is included into
the code "by hand". The matrices S are calculated within the code according to the
fonnula2 (wo == kv(O) I):

After that the code calculates all coefficients Fijk, W~~) and W~~} for orbital and spin

Lie operators for all element types:4



and, as is known,
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()

:F;jk(()) = f d()'h}~nAli (()')Amj (()')Ank (()'),

o

()

W(~) «()) = f d()'S-l «()')w(l}A·· «()')al af3 f3J Jl ,

o

()

W(~~ «()) = f d()' (S-l «()')w(2) A .«()')A .«()')+alJ af3 f3k1 kl 1J

o

1 W(1) «()')s-1 «()') (l) A ('()')+ :2eaf3y f3i yA W Ak kj +
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The last steps ofthe HAMIL.RED are tests of the results for Lie operators. The "doubling"
rule is used for these calculations. The rule is based on the comparison of two different
methods for the operator calculations of the element with double length: a) the substitution
of value 2L into the results instead of value Land b) "unification" of two elements with
length L for each of them (indices (u) and (v)) corresponding to one element (index (w)).
The Lie operator transformation formulae are used for this "unification":4

s(W) = S(v)s(u)
af3 ay yf3'

+ S(u)-l V(l) A (u) 1: :F(u)
af3 13k k1 1m mij·
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All s-derivatives of the magnetic field or its gradient are considered in the case of EDGE
element only. They are treated as delta-functions of s(B' == B8(s - Sin) for entrance or
B' == -B8(s - Sout) for exit). For this reason the integrals from the first s-derivatives are
taken as equal to the field steps (!:1Bx , !:1Bz and etc.) or its gradient steps (!:1g, !:1q and etc.).
The second s-derivatives are replaced by the first, using integration by parts:

S+E S+E

f B"ZiZjds' = B'ZiZj I~~; - f B'(ZiZj)'ds'.

S-E S-E

5 MATRICES, LIE OPERATORS

The orbital and spin Lie operators for two types of collider elements - magnets with
homogeneous vertical field and magnets with quadrupole and skew quadrupole components
are presented in this part. We have chosen these types as examples, but all types which are
used in modem colliders were calculated. The first one allows us to compare results for
orbital Lie operators (using P- and V-functions) and results of previous authors (3 for
example). The second example demonstrates complicated final expressions which must be
programmed for real numerical calculations, and shows the advantages of using P- and
V-functions.

All orbital and spin Lie operators which are not included in this list equal zero. For all
P(Q, s)- and V(Ql, Q2, s)-functions the second argument equals L and is omitted for
simplicity.

Let us ascribe different indices to the spin second order Lie operators in the following
cases:

a - the sextupole order term w(2) taken into account in the expansion of the spin
precession frequency n;

b - the term taken into account caused by the orbital motion nonlinearity (the "product"
w(1) . njk);

c - the product [w(1) , w(1)] taken into account.

In practice the sum of all these terms is calculated. Sometimes, the separation is useful
for investigations of different terms influence on nonlinear spin dynamics.

5.1 Bending magnet with homogeneous field

(A) Parameters length L, magnetic field K = :0 Bz.

(B) The orbital matrix:
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PoCK) P1(K) 0 0 0 KP2(K)

-K2P1(K) PoCK) 0 0 0 KP1(K)

0 0 1 L 0 0
A=

0 0 0 1 0 0

-KP1(K) -KP2(K) 0 0 0 -K2P3(K)

0 0 0 0 0 1

(C) The vector of the distorted orbit, which is connected with synchrotron radiation losses
(C1 = ~roy3, where ro is the classical electron radius. Since C1 = 0.14077848.10-11 .

ErMeV]):

(D) The spin matrix

(

Po(ay K) 0 -ayKP1 (ay K) )

S= 0 1 0 .

ay KP1 (ay K) 0 Po(ay K)

(E) The orbital Lie operators:

3 3
FIll = 4K [-PI (3K) + PI (K)] ,

1
Fl12 = 4K [Po(3K) - Po(K)] ,

3 2
Fl16 = 4K [Pr(3K) - P1(K)] ,

1
F122 = 4K [3P1(3K) + PI (K)] ,

1
F126 = 4 [PoCK) - Po(3K)] ,

F133 = KP1 (K),
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3
;:166 = 4K [PI(K) - PI(3K)] ,

3
;:222 = 4K [3P2(3K) + P2(K)] ,

1
;:226 = - 4[3PI (3K) + PI (K)] ,

3
;:666 = 4[PI (3K) - PI (K)] ,

(F) The spin Lie operators:

w~~) = - (ay + 1)K2PI (K),

W~~) = - (ay + 1)K2P2(K),

w~~) = K [(ay + l)PI (K) - ayL ] ,

W;~ = ay KPI (ay K);

W;~:) = a; K 3 [(ay - 1)P2«ay - l)K) - (ay + 1)P2«ay + l)K)] ,

w;;t) = ay K [PI «ay - l)K) + PI «ay + l)K)] ,

W;;:) = a; K 2 [(ay + 1)P2«ay + l)K) - (ay - 1)P2«ay - l)K)] ,
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W(2.a) = ay - 1KL
z44 2 '

W;~6a) = - K [(a y + 1)K2P3(2K) + PI (K)] ,

w~i:) = ay K 2 [PI «ay - l)K) - PI «ay + l)K)] ,
2

w~;:) = ay K 2 [(ay - 1)P2«ay - l)K) + (ay + 1)P2«ay + l)K)] ,
2

W;~:) = ay K [PI ((ay + l)K) - PI ((ay - l)K)] ,
2

(2.b) 5WzIl = 2(ay + l)K P3(2K),

(2.b) 3Wz12 = - 2(ay + l)K P2(2K),

w~i:) = - 4(ay + 1)K4P3(2K),

w;~;) = ay2+ 1 [PI (2K) - 2PI (K) + L] ,

(2.b) 2WZ26 = 2(ay + l)K P2(2K),

(2b) . 3W Z44 = (ay + l)K P3(K),

(2 c) ay + 1 [
W x24 = -4-K (ay + l)Pl((ay - l)K) + (ay - l)PI((ay + l)K)-

-2aYPI (ay K)] ,

275
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w;;t) = ~K2 {(a y - 1)(ay + 1)2 [P2«ay + 1)K) - P2«ay -1)K)] +

+2a2y 2 [P2(ay K) - LPI (ay K)J} ,

(2 c) ay + 1 2 [Wrl4 = -4-K (ay + l)PI ((ay - l)K) - (ay - l)PI ((ay + l)K)-

-2PI(K)] ,

w;;t) = ~K {(ay + 1) [(ay - 1)PI «ay + 1)K) - (ay + 1)PI «ay - 1)K) +

+2PI (K)] - 2ay [LPo(ay K) - PI (ay K)] - 2a3y 3P3(ay K)} .

5.2 Combined-functions magnet with skew-quadrupole

(A) Parameters: length L. and the standard values K, g and q. Then one can introduce:

(B) The orbital matrix A (the arguments of all V-functions are QI, Q2, L and for all
P-functions are Q2, L):

All = 1 - Qi(Qi + g)V4 - (K 2 + g)P2,

Al2 = L - Qi(Qi + g)Vs - (K2 + g)P3,

Al3 = q(QiV 4 + P2),

Al4 = q(Qivs + P3),
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A16 = K [(Qi + g)V4 + P2] ,

A21 = - (K2 + g)L + Qi(Qi + g)Vs + [q2 + (K2 + g)2] P3,

A22 = All,

A23 = q(L - Qivs - K 2P3),

A24 = A13,

A26 = KAI2,

A31 = A13,

A32 = A14,

A33 = 1 + Qi(Q~ + g)V4 + gP2,

A34 = L + Qi(Q~ + g)VS + gP3,

A36 = -qKV4,

A41 = A23,

A42 = A13,

A43 = gL - Qi(Qi + g)VS + (q2 + g2)P3,

A44 = A33,

A46 = KAI4,

ASI= - A26,

AS2 = - A16,

AS3 = - A46,

AS4 = - A36,

Ass = 1,

AS6= -K
2

[(Qi+g)Vs+P3],

A66 = 1,

Aij = 0 for other i, j.
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(C) The vector of the distorted orbit is simply the seventh column of the total 607 orbital
matrix A:

An = - cIK3[wi + g)Vs + P3] ,

A27 = - C1 K2A16,

A37 = c1Q K3Vs,

A47 = - C1 K2 A36,

As? = cIK
4 [wi + g)V6 + P4],

A67 = - C1 K2L ,

(D) The spin matrix is the same as for bending magnet.

(E,F)The expressions for orbital and spin Lie operators in this case are very complicated
and not shown here.
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