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Designs of modem high-energy superconducting colliders anticipate a beam screen (liner) inside the vacuum
chamber·to screen cold chamber walls from synchrotron radiation. Pumping holes in the liner walls are required
to keep high vacuum inside the beam pipe and provide for a long beam lifetime. The holes are the chamber
discontinuities, and electromagnetic fields diffracted by them effect beam stability. This beam-chamber interaction
can be described in terms of the coupling impedances. The impedances should be minimized to have a large enough
stability safety margin and to allow for a future upgrade - for example, higher beam current. A reasonable
choice of the hole shape and size, of the number of holes per unit length, and of their distribution pattern has to
ensure a compromise between beam stability, on the one hand, and vacuum, mechanical strength and production
requirements, on the other hand. The present paper considers the choice of the shape, size and pattern of the
pumping holes for the LHC liner for minimizing the coupling impedances while meeting other requirements.
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1 INTRODUCTION

The Large Hadron Collider (LHC) vacuum chamber design l envisages the insertion of a
special beam screen (liner) inside the cold vacuum chamber. The liner is to screen the
chamber walls from synchrotron radiation and prevent heating and vacuum problems due
to photodesorption of residual gas molecules stuck to the cold wall. In the present design
the liner has a square transverse cross-section with rounded comers, rotated in such a way
that diagonals of the square are in vertical and horizontal directions, providing the greatest
possible space for the beam while still fitting inside the bore pipe. The stainless-steel liner
walls have a thickness of t ~ 1 mm for resisting distorting forces during magnet quenches,
and a thin copper coating of the inner wall surface for slowing down the resistive wall
instability. The inner distance between opposite plane walls of the liner is about 36 mm.

To meet vacuum requirements the total pumping area needs to be about 4% of the liner
wall surface. This means several hundred pumping holes per metre of liner, amounting
to millions of discontinuities - their contribution to the total impedance of the collider
can be significant. Of course, there are other types of small discontinuities on the liner
(shielded bellows, transitions, etc.), and methods have been developed to calculate their
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impedances (see References 2-4), but pumping holes are specific to the liner, and that is
why we concentrate on their impedances in this paper.

The main concern in operating high-energy proton colliders is the coupling impedance
at low frequencies, below the chamber cutoff: a typical bunch length is several times larger
than the chamber radius. However, resonances at higher frequencies can cause multibunch
instabilities due to wake fields excited by a bunch-current perturbation reaching following
bunches. In Section 2 the results of an analytical theory for the impedances of pumping
holes at low frequencies are summarized. These results allow an optimal choice of the shape
and positioning of pumping holes. Section 3 deals with the hole impedances near and above
the chamber cutoff, where coupling impedances strongly depend on the distribution pattern
of the holes along the pipe. Section 4 covers the conclusions to be drawn from this.

2 LOW-FREQUENCYIMPEDANCE

An analytical calculation of the longitudinal and transverse coupling impedance of small
holes in the perfectly conducting walls of the vacuum chamber at low frequencies has been
carried out in Reference 5 for an arbitrarily shaped hole in the chamber with a circular
cross-section, using the Bethe theory of diffraction by small holes and an expansion over
waveguide eigenmodes. Reference 6 gives an alternative derivation, and it also includes the
effects of wall thickness for a circular hole. In these references the impedance is expressed
in terms of hole polarizabilities, which are purely geometrical factors at low frequencies
and can be found by solving a corresponding electro- or magnetostatic problem - as in
Reference 7, for example. The longitudinal impedance of a hole in the chamber with the
circular cross-section of radius b is inductive:

(1)

where Zo == 120 1T Q, and ae and am are, respectively, electric and magnetic polarizabilities
of the hole. The transverse impedance of the hole is

--+ am +ae --+

Z-l(w) == -iZO 2 4 ah cos (CPh - CPb) ,
1T b

(2)

where Qh is the unit vector directed to the hole in the chamber transverse cross-section
containing the hole, and CPh and CPb are azimuthal angles of the hole and beam in this
cross-section. It is worth noting that both the longitudinal and transverse impedances are
proportional to the sum of polarizabilities, (am + a e ) > 0.*

A generalization8 of this approach for an arbitrary chamber cross-secti01?:__ S shows that
for any chamber the only dependence of the hole coupling impedance on the hole shape
is through the same combination of polarizabilities. The longitudinal impedance of the
hole is

(3)

*In fact, there is rather a difference because ae and am have opposite signs.
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(4)

where ev (i) is merely a normalized electric field produced on the hole by the beam with
transverse offset r. In other words, ev (i) is a solution of the standard two-dimensional
electrostatic problem in S: to find the electric field on a conducting boundary produced
by a charge which is placed at point r. In general, it is expressed analytically in terms of
eigenvalues and eigenfunctions of the 2-D problem (see Reference 8), but for simple cross
sections ev can be easily found by means of the Gauss theorem. For example, with a circular
pipe of radius b one gets ev(O) == 1/(2n:b), and Eq. (3) transforms into Eq. (1). Another
important case is· a chamber with a rectangular cross-section of width v and height h. Let
a hole in the side wall (x == ±v12) be displaced from the horizontal plane of the chamber
symmetry, y == 0, by distance y, Iyl :s h12. Then

Z(w) = -iZo ~ (am h~ a e ),b2 ,

where function b is defined by the fast-converging series

~ cos (2m + 1)n:yIh
b == £:0 cosh (m + Ij2)rrvj h .

The transverse coupling impedance of a hole in the wall of a chamber with an arbitrary
cross-section is8

(5)

where x, yare the horizontal and vertical coordinates in the chamber cross-section;
dx == axev(O), dy == ayev(O); CPh == CPs == CPt is the azimuthal angle of the beam position
in the cross-section plane; and ad == ax cos CPd + ay sin CPd is a unit vector in this plane in

direction <{Jd, which is given by conditions cos <{Jd = dx jJd; + d;, sin <{Jd = dy jJd; + d;.
In Eq. (5) angle CPd shows the direction of vector Z..l and, therefore, of the beam-deflecting
force. Moreover, the value of Z..l is maximal when the beam is deflected along this direction
and vanishes when the beam offset is perpendicular to it. In the particular case of a circular
pipe, dx == cos CPhl (n: b2

) and dy == sin CPhl (rrb2 ). As a result, CPd == CPh - i.e., ad coincides
with ah, which is the direction to the hole - and Eq. (5) reproduces (2).

For a hole located at point (x == ±v12, y) in the cross-section of the rectangular chamber,
Eq. (5) takes the form

~ rr 2 (cxm + CXe ) 2 2 ~
Z..l(w) == -iZo h4 (bx + by)ad cos (CPh - CPd) ,

where tan CPd == by I b x , and

(6)

b
X

== f (2m + 1) cos (2m + l)rryj h ;

m=O sinh (2m + l)rrxl h

_f 2m sin2mrryj h
by = m=O cosh 2mrrx j h .

For a small hole of a given shape, the impedance dependence on the hole position in the
chamber cross-section is illustrated in Figure 1, which shows the ratio of the longitudinal
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impedance versus the angle cp of the hole location for three different cross-sections of the
chamber: square with v = h = 36 mm; square 36 x 36 mm2 with rounded comers 
the curvature radius. of 9 mm is 1/4 of the side length (LHC liner design); and circle of
radius of b = 18 mm inscribed in these squares. In the last case, of course, the impedance
is independent of cp - compare with Eq. (1) - and was chosen as the normalization
factor. Taking into account the problem symmetry, only the range 0 ::; cp ::; 45° 
one octant of the cross-section - is shown, with cp = 0 corresponding to the middle
of the square side. The thick point shows the LHC design choice of the hole position.
Moving holes to the comer would further reduce the impedance, but would affect the
mechanical rigidity of the liner. Results for the rounded square are obtained numerically, by
solving the 2-D electrostatic problem with the code POISSON. For the transverse impedance
the dependence on the hole position is very similar to that in Figure 1 (compare with
Reference 8).

Now let us consider the optimum choice of the hole shape. For a circular hole with radius
a in a thin wall, when thickness t « a, polarizabilities are

and Eqs. (1-6) have a very simple form. For the hole in a thick wall, t :::: a, the sum
(am + a e ) = 2a3 /3 should be multiplied by a factor of 0.56 (see Reference 6). There
are also analytical expressions for polarizabilities of elliptic holes in a thin wall,7 and a
recent study9 gives thickness corrections for this case. Surprisingly, the thickness factor for
(am + a e ) exhibits only a weak dependence on ellipse eccentricity c, changing its limiting
value for the thick wall from 0.56 for £ = 0 to 0.59 for £ = 0.99.

For a longitudinal slot of length I and width w, w / l ::; 1 in a thin wall, useful formulae
have been obtained!O - for a rectangular slot

am + a e = w3 (0.1814 - 0.0344 w/ l) ;

and for a rounded end slot

am + a e = w3(0.1334 - 0.0500 w/ l) ;

substituting of which into Eqs. (1-6) gives the impedances of slots. Figure 2 compares
impedances, calculated analytically, for different shapes of pumping holes. Numerical
computations!! which include thick-wall effects give a similar picture.

Taking into account the pumping area of holes, one can conclude that elongated elliptical
slots are the best choice. Round-ended slots are good also, and they are much easier to
produce. However, very long slots are unacceptable in superconducting colliders due to the
low mechanical strength of the liner with long slots, and because of their high-frequency
impedance (see Section 3).

Due to additivity of the impedances at low frequencies, the analytical results cited above
give reliable estimates of the LHC liner total coupling impedances due to pumping holes in
this frequency range (up to 6 GHz) - see Table 1. The parameters used for estimates are:
666 rounded-end slots 1.5 x 6 mm2 per metre, and the thickness correction factor 0.6.
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FIGURE 1: Hole impedance (in units of that for circular pipe) versus hole position in the chamber cross section:
LHC liner (solid line), square chamber (dotted), circular pipe (dashed).
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FIGURE 2: Slot impedance versus slot length 1 for fixed width w in units of the impedance of the circular hole
with diameter w.
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TABLE 1: Impedances Produced by Liner Pumping Slots.

IZjn11 Q

0.017

IZ~I/(MQ/m)

0.40

The real part of the hole impedances is proportional to (a~ + a;) and small compared
to the reactance in this frequency range (see References 5,8).

3 HIGH-FREQUENCY IMPEDANCE

3.1 Near cutoff: trapped modes

It has been recently demonstrated12 that a small discontinuity such as an enlargement or a
hole on a smooth waveguide can result in the appearance of trapped electromagnetic modes
with frequencies slightly below the waveguide cutoff frequencies. These trapped modes
produce narrow resonances of the coupling impedance near the cutoff. This phenomenon
for a waveguide with many small discontinuities, which is a good model for the vacuum
chamber with a liner, is studied in Reference 13. Using the results from References 12, 13,
the resonance impedance of the liner is estimated at near its cutoff frequency.

For the LHC liner there are M = 8 slots in one transverse cross-section, and the average
longitudinal separation between adjacent cross-sections with the slots is g = 1.2 cm. In fact,
the longitudinal distribution of the slots will be violated by small random displacements
to avoid resonances which would otherwise occur at frequencies well above the cutoff 
see Section 3.2. Taking into account that TM modes in the round-ended square liner are
quite similar to those in a cylindrical one, we will take for estimates the circular chamber
of radius b = 18 mm. With respect to the trapped modes, M slots evenly distributed in
one cross-section work as a chamber enlargement with 'effective' area A in its longitudinal
cross-section: 12

M1/I Mw2Z 2
A = - = --2- = 0.152mm ,

4nb 4n b

where we use transverse magnetic susceptibility 1/1 == 2 am = w 2Z/ n for a long narrow
slot in the thick wall, for example, see in Reference 10. The length of the region which
would be occupied by the field of the trapped mode for such a single discontinuity is
Zl = b3/ (ILI A) = 6.63 m, where ILl ~ 2.405 is the first root of the Bessel function 10.
Since this length is much greater than the longitudinal separation between adjacent cross
sections with the pumping slots, discontinuities strongly interact with each other. According
to Reference 13, the number of discontinuities, which work asa single combined one, is
Neff = -yl2Z1/g ~ 33, and the new 'effective' length of interaction L = -ylZlg/2 = 36 cm.
Then the frequency shift down from the cutoff for the trapped mode is ~I/11 = 7 x 10-4

- i.e., ~I ~ 5 MHz for the cutoff frequency 11 ~ 6.4 GHz. This gap between the trapped
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(7)

mode frequency and the cutoff is rather small, but still larger than the resonance width
due to the energy dissipation in the walls: Yl/Wl = 8/(2b) ~ 2.3 x 10-5/JRRR, where
8 is skin depth and R R R is the ratio of the copper conductivities at cryogenic and room
temperatures - usually 30-100. The radiation width Yrad/Wl ex 1/I;xt (see Reference 12),
and is very small, since the external magnetic susceptibility~ 1/Iext, is exponentially small
compared to the internal one, 1/1, due to the thick wall - see, for example, Reference 9.
Thus the resonance width is small compared to the frequency gap, and the trapped mode
exists.

Should discontinuities be far apart, g > 11, the total impedance of the ring will be merely
a sum of contributions Rl = ZOfLjA3 /(Tt:8b5) from all N = 2Tt:R/g discontinuities on
the ring (R is the machine radius): Re Z/n = N Rl/n = 2Tt:bRl/(gfLl). However, since
g « 11, the interaction of discontinuities must be taken into account. One should consider
each group of Neff discontinuities as a single, combined one, with the number of such a
group on the ring being N g = N / Neff = Tt: R/L. The estimate then follows from that above
with replacements N ~ N / Neff and Rl ~ N~ffRl:

Re Z 2 2Tt:b 4ZoA2
-n- = Neff gJ1,l Rl = 8bg2 .

It gives Re Z/ n ~ 165 Q for the narrow-band impedance produced by the trapped modes in
the LHC liner (RRR = 100 is taken). This value for the narrow-band coupling impedance
is too large, even for such a high frequency.

One can improve these estimates, considering that the pumping holes are not quite
identical, but they have some distribution of areas (or lengths, for slots), and this causes
a frequency spread of resonances produced by different discontinuities. One can take into
account the resonance overlapping using a weighted sum in calculating the total impedance
of the ring: 14 Ztot(w) = NZ(w) ~ N f dAw(A)Z(w, A), where w(A) is the area
distribution, f dAw(A) = 1, and Z(w, A) is the impedance of a single discontinuity,
with area A, at frequencies near the resonance. Referring to Reference 13 for details, we
simply cite the result for the case of interacting discontinuities:

Re Z w(A)A2
-- ~ 2 Tt:Zo---

n bg
(8)

with A being the averaged area per discontinuity. For a specific distribution one should take
max w(A) to get a maximal impedance estimate from (8). Say, for Gaussian distribution of
areas with standard deviation aA, it is l/(J2]faA). If we assume aA/A = 0.1 and apply
Eq. (8) for the LHC liner, it gives Re Z / n ~ 7 Q. This estimate is lower than that from
Eq. (7), and it is independent of the wall conductivity.

3.2 Above cutoff

There are two potential sources of impedance resonances due to holes at high fre
quencies related to the length and distribution of the slots. Resonances with the wave
length A = 21, where I is the slot length, can be moved to higher frequencies by
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FIGURE 3: Resonances for the exactly periodic distribution of slots.
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using relatively short slots. Moreover, a distribution of the slot lengths as considered in
Section 3.1 will drastically reduce the strength of these resonances.

Resonances related to the periodicity ofthe hole distribution along the liner were studied15

using an analytical model: small axisymmetric enlargements with the triangular cross
section of depth h and base s on the smooth circular chamber of radius b, separated by
distance g along the beam. We fix the model parameters (b = 18 mm, g = 12 mm,
s = 3 mm, h = 0.1 mm) in such a way that this model structure has the same low
frequency impedance and trapped modes as the LHC liner with slots, and we use the model
to calculate high-frequency impedances (see formulas and references in Reference 15). An
exactly periodic distribution of discontinuities along the liner would give narrow and high
resonances, as shown in Figure 3 (Re Z In in Figure 3 is yet to be multiplied by -JRRR).

Fortunately, the slot periodicity is violated by various irregularities of the ring, such as
interaction and utility regions. If we also assume an independent positioning of pieces of
the liner inside adjacent magnets, it reduces the resonances significantly - down to 2-4 Q.

An additional violation of the slot periodicity inside magnets can further reduce high
frequency resonances, and in the extreme of a 'random' hole distribution for the LHC liner,
these resonances disappear in the background below 0.1 Q. In fact, even small 'random'
longitudinal displacements (say, about 10% of the spacing) of slots from their positions in
an exactly periodic array reduce the resonances by the respective orders of magnitude. The
numerical comparison of periodic and 'random' hole distributions for the SSC liner16 has
shown the advantage of the latter.

4 CONCLUSIONS

There is a good understanding of the low-frequency coupling impedances ofpumping holes
in liners. The analytical methods are confirmed by simulations and measurements, and give
accurate and reliable impedance estimates in this frequency range. They dictate narrow
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pumping slots as the best choice. The impedances of pumping slots for the LHC liner
design based on them are more than 20 times lower than those for the initial design with
circular holes of radius 2 mm (compare with estimates).5

The impedance behavior at high frequencies depends on hole distribution patterns. In an
optimal design one should avoid exact longitudinal-periodic patterns. An additional small
'randomization' of both the longitudinal distribution of slots and their lengths provides an
effective cure against the high-frequency resonances of the coupling impedances.
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