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A. OPTICAL IMAGE ESTIMATION IN A TURBULENT ATMOSPHERE

A major performance limitation of ground-based telescopes is now imposed by the

effects of turbulence in the atmosphere. Because of random variations in index of

refraction, such instruments are seldom able to achieve useful resolutions better than

one second of arc. In this report we shall first describe the statistical nature of this

problem, and review the limitations encountered with present image-recording tech-

niques such as photographs taken at the focal plane of a telescope. We shall then

describe some of the results of our investigations indicating that a significant improve-

ment in resolution may be possible if one employs appropriate data collection and pro-

cessing techniques.

1. Problem Model

The geometry for the problem is shown in Fig. XX-1. In the absence of a turbulent

atmosphere, we suppose that the complex amplitude of the received field Ea(x, t) can

be written

E (x,t) = di E ( _, t) e

where

Es(_, t) is the complex amplitude of the electric field radiated from a point a on the

object: for simplicity, we treat this field as a scalar function.

This work was supported principally by the National Aeronautics and Space Adminis-
tration (Grant NsG-334; and in part by the Joint Services Electronics Programs (U. S.
Army, U. S. Navy, and U. S. Air Force) under Contract DA 28-043-AMC-02536(E).
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Fig. XX-1. Geometry for the problem.

S is the coordinate vector locating points on the object, measured as a direction

vector, the object being situated at a sufficient distance that the incoming waves are

essentially planar.

x is the spatial coordinate in the plane of the receiving aperture.

X is the wavelength of the light, which, for simplicity, we have assumed to be

almost monochromatic.

We modify this expression to account for turbulence by introducing a random time

and spatially varying complex multiplicative factor. Thus, with turbulence present,

E jzTr a(, x, t)-j (_, x, t)
Ea(X, t) = d E (d(, t) e e

The terms a(_, x, t) and P(_, x, t) are the log amplitude and phase disturbances introduced

by the atmosphere. When this expression is introduced into the wave equation for an

inhomogeneous medium the solutions for both a and P appear as functions of the index

of refraction integrated over the path. Since the integration encloses many statistically

independent pieces of the atmosphere, it is generally agreed that a and P should behave

as jointly Gaussian random processes.1 In general, these processes will depend upon

the path direction a, as well as on x and t. In the interest of simplicity in outlining

the problem, we shall invoke the isoplanatic condition that there is no dependence.

It is more convenient to view the received phenomena in terms of a mutual coherence

function, rather than the actual instantaneous field values. We define this mutual coher-

ence function as

r(x, x', t) = E (x, t) E (x', t),
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where the bar refers to an ensemble average over the source but not over the atmo-

spheric fluctuations. Furthermore, although we have restricted the light to be narrow-

band in order to simplify the expression for the received field, this bandwidth can be

many, many times greater than the bandwidths of the turbulence-induced fluctuations.

Suppose that one actually multiplies together values of the field at points x and x' and

time averages over an interval that is short in comparison with the time scale of atmo-

spheric fluctuations. This interval can still be sufficiently long that with overwhelming

probability the measured mutual coherence function will be the same as the ensemble

average defined above.

The mutual coherence function on the aperture can be expressed in terms of a source

mutual coherence function by

r (x, x', t) = ea(, t)+a(x', t)-j[p(x,t)-- (x',t)]' d~d ' r ( , ', t) e+j 2Ir[ x - '. x']
a s 

in which time stationarity has been assumed for the statistics of the source radiation.

A further reasonable assumption for naturally illuminated objects is spatial incoher-

ence. That is, r (e, ', t) has the forms

s-

such that

• (x-x')

r (x, x', t) = ea (x , t)+a (x', t)-j[p (x, t)-P(x', t)] d ) e+j) e r-

The function (e) describes the distribution of light intensity over the object. This

function, of course, is the one that we seek to determine.

2. Conventional Photography

The field Ef(u, t) at the focal plane of a lens can be approximated by

X'U

1 xEf(u, t) = - dx w(x) E (x, t) e

The focal length of the lens is L, and w(x) is a pupil function having value 1 for x within

the exposed aperture, and 0 outside.

The average intensity of this focal plane is, then,

If(u, t) = Ef(u, t) 2

u (- x')

= dx dx' w(x) w(x') (x, x', t) eJa-
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When one is concerned with angular resolution, it is convenient to work with spatial

Fourier transforms. Thus we define as transforms of the object and image

B(k) = d( ) ( ) e j k

and

u.k

F(k, t) = du I(u, t) e

We then have

ra (x, x', t)= 0(x jx ) ea(x, t)+a(x', t)-j[P(x, t)-P(x', t)]

u" (x-x')

If(u1t) = +j2r XL a (x,t)+a(x',t)-j[p( (x,t)- (x',t)] -x
If(u,t) = L dx dx' w(x) w(x') e e -

and

F(k, t) = H(k) 0(k), (1)

where

H(k) = dx w(x) w(x+kk) eda(x,t)+a(x+xk,t)+j[1(x,t)-1(x_+Xk,t)]

This last function, H(k), is called the instantaneous modulation transfer function (MTF)

of the system.

A conventional photograph records the integral of If(u, t) with respect to t over the

exposure time. When the exposure time is quite long compared with the atmosphere's

correlation time, the photograph that would result if H(k) were replaced by its ensemble

average value, under the assumptions that a and p are Gaussian, stationary, and homo-

geneous, is the average H(k) that may be expressed as

H(k) = H (k) H (k).

The first term, H (k) = f w(x) w(x+kk) dx, is just the familiar MTF associated with a
S12-

lens of finite size. The second term, H (k) = e , is the contribution from

the turbulence. 9 is the wave structure function and is defined as

_9(r) [a(x, t)-a(x+r, t)]Z + [P(x, t)-P(x+r, t)]Z.

Most of 9 is made up from the phase disturbances, and both theoretical and
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experimental investigations1 indicate that 9 (r) varies as r 5 / 3 . We choose to use

Frieds 2 form

9(r) = 6. 88 (F /3

r

The coefficient ro can be considered as a characteristic phase correlation distance on
the aperture. Thus we have

(X k 5/3

-3.44_-

H 1 (k) = e o

It is evident that with a long exposure the atmosphere attenuates very sharply frequen-

cies beyond what we can call an upper cutoff frequency given by ro/k.
It has been observed 4 that the resolution can be improved simply by making a very

long exposure and then filtering with the inverse of the average MTF. Such techniques

are not very efficient because the sample average MTF will differ from the ensemble

average in any finite time interval. With the extremely rapid roll-off of the average

MTF, we expect the inverting operation to tremendously enhance such residual errors

at high spatial frequencies. Indeed, the mean-square error, IE(k) 12, as a function of

spatial frequency is

E(k) 1 F (Xk)+4a(x, t)a(x+Xk, t) 1' (2)

((k)

where N is the number of independent realizations or "looks" at the channel. Thus if

one must keep the error below some given value, the number of independent "looks"

grows exponentially with spatial frequency.

A more popular technique for improving resolution is the use of very fast exposures

which "freeze" the turbulent motions of the atmosphere. Although time smearing is

eliminated, spatial averaging of the disturbances across the aperture still results in

a smearing effect. With a small aperture, however, much of the phase distortion can
be ascribed to a "tilting" of the wave fronts which results in a gross motion of the focal

plane image. For systems that can track this motion, Fried3 has calculated that the

optimum aperture diameter is ~3r o , and that the upper cutoff frequency of the resultant

average MTF is increased by approximately a factor of 3.

3. Proposed Technique

Imagine for the moment that instead of recording the intensity in the focal plane, we

make point measurements of the mutual coherence function over the aperture. Then we
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would have a set of measurements of the form

1 -x ' a(x t ' ti)-j[(x i , ti)-(x' ti)]
F(xi x' i t i  g e

These measurements constitute a sufficient statistic when detector noise can be ignored

and when, also, the field radiated from the object is a Gaussian random process that is

wideband relative to the bandwidth of the atmospheric fluctuations.

Taking the logarithm of these complex numbers would yield

log F(,xi' it i ) = log ( + a(xi t + a(x', ti) - j[p(xi, ti)- (x2, ti)]

To obtain a maximum likelihood estimate of the function c(), we can ask for the

maximum-likelihood estimate of log 9(_k). This estimate follows immediately as

max likeliho log 8(k)) = (log r(xi, xi+kk, ti) - 2 a(x, t),

where brackets denote a sample average of the log of the observed mutual coherence

function. If the only disturbances that the system needs to contend with are the statis-

tical fluctuations in a and p, the mean-square error in estimating the component at

spatial frequency k is

E(k) 2 [a(x, t)+a(x+Xk, t)] 2  2 a(xt) 2  1 (Xx)
N a  (N- Z )

Ek)(k)
When N, the number of independent "looks" is large enough that <-- < 0. 1, this

expression is closely approximated by the simpler form

E(k) 2
- =  [ 9 (kk)+4a(x, t)a(x+kk, t)] (3)
8 (k) N

A comparison of this expression with that for inverse filtering (Eq. 2) is quite

startling. With inverse filtering the error grows exponentially with spatial frequency,

with this technique the error grows only algebraically. Thus such a technique, if

physically feasible, appears to give promise of significant improvement over conven-

tional techniques in resolution capability.

Let us now see just what is involved in measuring the mutual coherence function,

and consider what additional disturbances are inevitably introduced. At long wavelengths

(microwaves), such correlation measurements could be made by using two small detec-

tors in the aperture. At optical frequencies such direct methods are precluded, because
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of the extremely small scale of the field pattern, and we must use an indirect method.

If the pupil function, w(x), consists of two very small holes of area A centered at
points x. and xi + Xk, we find, from Eq. 1, that

F(k, t) = A 8 (k) ea( x , t)-a(x+kk, t)+j[p(x, t)-p(x+kk, t)]

provided that A is smaller than the coherence area for the phase and amplitude distur-

bances. Thus by suitably shading the aperture of the lens, recording the focal plane

intensity with a fast exposure, and finally correlating the result with exp -j2IL , one
obtains the real and imaginary components of F(x, xi+kk, ti).

It is in converting this measurement into phase and log amplitude form (taking the
logarithm) that problems arise which will ultimately impose a limitation on the utility

of the log coherence function averaging technique. In any recording device, for example,

photographic film, the effect of some unavoidable background noise must be considered.

If this noise is small, the observed phase differs only slightly from the true phase of F,
and one would expect that this will become unimportant in the subsequent averaging

operation. When the noise is large, however, dominating the signal, the measured

phase will be completely unrelated to the actual phase. In the succeeding phase mea-

surements, even if the noise is small, it is possible to have gained or lost 27r radians

in the absolute value of the phase. If such gross phase errors occur frequently enough,

the technique will yield a very poor estimate of the phase of the spatial Fourier trans-

form of the object.

This limitation of the technique is, of course, the familiar anomaly problem common

to all nonlinear modulation schemes (for example, the "click" problem of phase and

frequency modulation systems). It becomes important when the signal-to-noise ratio

drops below a critical threshold value, beyond which the system performance deterio-

rates drastically. Since the amount of signal power incident on the recording device is
proportional to the hole area A, we want to make A as large as possible without incur-

ring too much of the undesirable spatial averaging of the phase fluctuations. The opti-

mum hole diameter is probably ~ro, the characteristic phase correlation distance.

Similarly, one wants to integrate this signal power over one correlation time constant

of the disturbances.

We have presented a rather simple processor illustrating what we believe are the

fundamental problems to be encountered in image estimation. If the source is very

bright, we are well above threshold and the simple technique will yield a mean-square

error of Eq. 3. When operating with dimmer objects, good performance may still be

attainable by processing the mutual coherence function with operators that exploit more

of the statistical dependences in the received process. One such dependence is the

correlation of the disturbances at different spatial frequencies within a coherent
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spatial bandwidth (given approximately by X/ro).

4. Further Considerations

Two rather limiting, but expedient, assumptions were made in the preceding dis-

cussion. The most important of these is the isoplanatic assumption, that the phase

and amplitude disturbances induced by the atmosphere are the same for all direction

angles. Often this is not the case, but we can suppose that there is some characteristic

angular spread, 0o, over which the disturbances appear to be essentially the same. We

should then be able to independently apply our processing technique to each of these iso-

planatic patches. In order to separate these patches in the focal plane, however, it is

necessary that < i.

We have previously noted that X/ro is the coherent spatial bandwidth of the channel.

Similarly, 1/a can be interpreted as the spatial frequency dispersion bandwidth. Thus

we borrow a term from the field of scatter communication links and denote the condition

above as the underspread channel and its converse as the overspread channel.

The other major assumption was that the light was very narrow-band. In order to

find the extent of this requirement, we imagine the light to be composed of a spectrum

of very narrow processes and limited to a wavelength range X < X < X
mi max

According to a ray theory analysis of wave propagation through turbulence, the ray

path delay time T(x, t) is a random variable independent of wavelength (provided the

index of refraction is the same for all wavelengths). The wave phase, as a function of

wavelength, is then

2wc
P (x't) = kC T(x,t),

where c is the speed of light. Equation 1 should now be integrated over X. It is pos-

sible that this integration can also lead to image smearing, unless the phase differences

at points x and x' are about the same for all wavelengths. The expected squared value

of this range of differences is

SL max min [T(x, t)-T(x', t)]

where
AX=X -X

max min

X = Nk (geometric mean).
o max min
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-' 2

A reasonable requirement is to demand that AP 2 be less than -7, in order to avoid

color smearing. Thus we want

2L x-x'j 5 / 3

O 5/3
r0

It is interesting to note that such filtering is implicit in a measurement in which an

aperture mask is used with two holes of diameter r'o, centered at x and x'. The only

optical wavelengths that will contribute to spatial frequency component k, in the image,
I x-x' I+ r' x-x'I -r' x-x

fall within ' = o and k' = o where k = ; and hence
max k min k -

Zr' 
o

o Ix-x'I

This implicit bandlimiting will then satisfy our requirements, provided

r' < 1 r _- ,
o o r

and thus the hole diameter need not be too much smaller than the optimum diameter, ro.

J. C. Moldon
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B. QUANTUM COMMUNICATION SYSTEMS

We are concerned with the detection of a discrete set of M signals that are trans-

mitted through a channel disturbed by chaotic thermal noise. Quantum limitations on

the precision of measurements, as well as quantization of the radiation fields, will be

taken into account. To be more specific, we would like to determine, from the statistics

of the noise field, the types of measurements that should be made by the optimum

receiver, and bounds on the resulting probability of detection error.

The model of the communication systems that we shall study is shown in Fig. XX-2.

INPUT MESSAGES CLASSICAL TRANSMITTED RECEIVED QUANTUM ESTIMATE
TRANSMITTER FIELD CHANNEL FIELD MECHANICAL OF THE

mo m ... (CURRENT DENSITY S STATES STATES RECEIVER MESSAGE ASP"M RECEIVER MESSAGE r

IN M-I J J .. M-l) PO Pt P'M-l PO1 0 1

Fig. XX-2. Quantum communication system model.

The M input messages to the transmitter, m 0 , ml, ... mM- 1 , are assumed to be

equiprobable. A message, ms, is represented by the state of the transmitted electro-
t

magnetic wave given by the density operator, ps Therefore, depending on the input

message to the transmitter, the transmitted electromagnetic field is in one of M states
t t t

given by the density operators p0, pl . . . . . PM-1. Because of inverse square law loss,

as well as the disturbance of additive background noise in the channel, the state of elec-

tromagnetic field at the output of the channel (the received field) will be one of the

M states given by the density operators p', Pl .... . PM-1, which are no longer the same

t t tas those specifying the transmitted states p0 ' p1 ... PM-1'

We wish to establish a strategy of making an estimate, m, of the transmitted mes-

sage, m, such that the probability of error, P(m# m), is minimal. In the quantum

communication system, the received field contains all of the relevant data. The receiver

makes a set of measurements of the field and, based on results of the measurements,

estimates which one of the set of density operators best describes the field and therefore

which of the messages is transmitted. As will become apparent in this report, the

quantum formulation will not enable us to determine the operations performed by the

optimum receiver without introducing some constraints on these operations. Hereafter,

instead of the optimum receiver, we shall discuss the problem of finding the receiver

that yields the smallest probability of error among the receivers in a given class.

1. Signal Fields

Physically, the transmitter in Fig. XX-2 can be considered as a classical current

source of the electromagnetic field, for example, a current density on the transmitting
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aperture. When the input message is m s , the current density in the transmitting aper-
ture, Js(r, t), generates the transmitted field in a state given by the density operator ps.5 -

By saying that the current density is classical, we mean that its reaction with the pro-
cess of radiation is either negligible, or at least predictable, in principle. Such a
model for the source is justified, since the power of the source is usually sufficiently
high that it can be described classically. In many practical systems, we can further
simplify the problem by approximating the transmitter by a point source. Then, J (r, t)
can be written as 6(r) Is (t) et.

The vector potential, A(r, t), of the electromagnetic field of finite duration generated
by the transmitter can be expanded in terms of an appropriate set of vector normal mode
functions ({Uk(r)). That is,

A(r, t) = c akk(r) e-ikt + akUk(r) eiWk), (1)

k k

where ak and ak, The annihilation and creation operators of the k t h mode, satisfy the
commutation relations

ak, a = [ak, a] = 0; for all k and j

Sak, a= 5kj (2)

For simplicity, we assume that the geometry of the transmitter aperture is such that
only one spatial mode for each frequency is transmitted.

From relations (2), it is apparent that the dynamical variables of different modes
can be observed independently of one another. It follows that the observation of most
of the dynamical variables of the entire field, for example, the Hamiltonian H, E(r, t),
H(r, t), etc. , can be reduced to the observations of the dynamic variables of the indi-
vidual modes separately. Therefore, we shall begin by limiting ourselves to those
receiving systems that indeed observe the individual modes of the field separately.

The receiving system is assumed to consist of a set of noninteracting cavities,
located at a distance d from the transmitter. Each of these cavities has only one dom-
inant mode, and there is exactly one cavity at each one of the normal mode frequen-

cies c' W2, .. . ' , . . . of the field. These cavities are initially empty and are exposed

to the signal source by opening their apertures when the signal is expected to arrive.

At the end of this time interval, the apertures are closed by shutters.

It can be shown that inside the cavity with dominant frequency wk(k=l , 2, . .), the

electromagnetic field generated by the current source Js(r, t) corresponding to the mes-

sage m s is in a coherent state given by the state vector lak (t)k at time t,
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where ak(t) is given by

a (t) r 4dt' I s t' e k (3)

r

A state of the field is said to be a coherent state when the state vector ({ak, t) is a right

eigenvector of the operator E(r, t) = i (akUk(r) e- . This implies that

k

the k t h normal mode is in the coherent state Iak k , which satisfies the relation

ak ak k = ak ak k; for all k. Hence the coherent state I{ak) of the entire field is just

the direct product Tr fak k.
k

Expression (3) is valid when the receiving aperture of the cavity is polarized paral-

lel to the transmitting aperture and the loss of the cavity is negligible. In this equation,

f is the linear dimension of the receiving aperture, and Vr is the volume of the cavity.

The total electromagnetic field excited by the signal source alone is in the state given
s, t

by the vector I ak (t)k. This state is also given by the density operator ps , which in
k

the P-representation is just

pst C 2 (k-ak(t) pk) k k d2 Pk '  (4)
k

where ak(t) is given by Eq. 3.

2. Noise Fields

Four types of noise are present in a quantum-mechanical communication channel:

the source quantization noise, the partition noise, the quantum noise, and the additive

background. The source quantization noise need not be considered here, since we have

assumed that the signal source is a classical one. The partition noise is associated

with the inverse square law attenuation present in many practical communication sys-

tems. Such loss has, in fact, already been accounted for in the model of the receiving

system consisting of a set of resonant cavities. Therefore, there is no need to consider

this loss separately. The "quantum noise" is usually introduced to take into account

the uncertainties in the quantities measured by the receiving system which, according

to quantum theory, cannot make precise measurements of all of the dynamical variables

of the signal field. This type of noise will emerge naturally from the formulation of

the problem.

By additive noise, we mean the chaotic background radiation which is also present

in the receiving cavities, but is not excited by the signal source. This noise field can

be considered to be generated by a completely incoherent source modeled as a large

number of independent stationary sources. Glauber 2 has shown that at thermal
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equilibrium, the noise field is in a completely incoherent state given by the density oper-

ator, which in the P-representation has the weight function

P ({ak}) = 1 exp (5)
k w(nk> ( >

"nk in this equation is the average number of photons in the kth mode. At tempera-

ture T, it is given by

1
n = 1 (6)

k exp- - 1

The received field, the field excited by the signal source and the noise sources, is just

a superposition of the transmitted field and the noise field. When the input message

is m s, the received field is in the state specified by the density operator

Ps= s ({k) 1k{Pk(k) Tr d2 Pk (7)
k

2

1 l P k(t)
Ps((Pk)) rr - exp -

k T nk> nk

We shall confine the discussion in this report to the simplest signal set, the binary on-

off set. The results obtained can be easily generalized to other sets of signals with

finite and discrete spectra. The equally likely binary signals we consider are defined

by the correspondences

m = m 0 ( I(t) = 0

m = m 1 ( I(t) = I. cos (w.t+4),

where w. is some fixed, but arbitrary, mode frequency.

It can be shown that the individual modes of the signal field inside the cavities in

the absence of the noise are uncorrelated and that the noiseless signal field is in a

state I{a) , where the complex amplitudes ak are

ak ks exp(-iks), (8)

where
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1 (
2T '"_i,

r

Uj0 = 0

aks = 0; for j k and s = 0, 1

d 1
ks = ks- k c 2 jl

at all time t after the closure of the shutter. When the input message is m s , the total

received field is in the state given by the density operator ps , where ps in the P-

representation is

P= Ps(ak)) l(ak}>{ak d2ak

1 1 
akak

L e ]j- 1 I_kl
P (ak) - exp - exp

s T- n.> nj k*j rr n k  n k

Since modes other than the jth contain no signal energy, and different modes are

statistically independent, these modes can be discarded by the optimum receiver. It

follows that the optimum receiver consists of only a resonant cavity with natural fre-

quency, w.. The state of the field inside of this cavity after the shutter is closed is

given either by p0 or p l , depending on whether m 0 or ml is transmitted. The corre-

sponding weight functions in the P-representations of these density operators are

1 expa2P0(a) = exp
Tr n n

(9)
-iO 2

Pl(a) - exp >

We suppose that the receiver measures the variable X of the received field inside

the resonant cavity. On the basis of the outcome of the measurement, the receiver will

make an estimation of the transmitted message, m. This variable associated with the

th mode is represented by the linear operators, which are also denoted by X. The

variable is not necessarily an observable as defined in quantum theory because we

shall also allow variables that are represented by non-Hermitian operators. By the
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measurement of a complex variable corresponding to a non-Hermitian operator, we

mean the "simultaneous measurement" of the two conjugate variables that are its real

and imaginary parts. These measurements are not perfect ones in the conventional

sense of quantum theory but result instead in two random variables, the product of whose

variances satisfies the uncertainty principle.

We shall require that the operator X possess right eigenstates which form a com-

plete set. That is, the equation Xx > = xlx > has a nontrivial solution and f I x > < x dx= I,

where I is the identity operator. Such a class of operators includes all of the quantum-

theoretical observables of a single mode. It also allows some "noisy simultaneous mea-

surements" of conjugate variables which can be performed physically, for example, that

of the amplitude and the phase of the field as done by a maser amplifier (where the oper-

ator X is then the annihilation operator a). The best receiver found from such a class

of receivers may actually be one that measures variables of the field corresponding to

the Hermitian operator as in the example discussed in the last part of this report.

The possible outcomes of the measurement of X are its eigenvalues x. When X is

non-Hermitian, its eigenvalue, x, can also be regarded as two dimensional vector

(Re x, Im x). Later on, whenever we speak of the probability density of x, we mean

either that of x if x is real or the joint probability density function of Re x and Im x if
.th

x is complex. Immediately after the completion of the measurement, the jth mode of

the field will be in the state Ix>, which is the right eigenstate of X associated with the

eigenvalue x. For simplicity, we shall assume that the eigenstates of the operator X

are nondegenerate. If X is a Hermitian operator, the measurement process is just a

quantum observation.

The outcome of the measurement of the received field is the random variable x

defined over the sample space which contains all the eigenvalues of the operator X.

Given that the input message is ms, the conditional probability density function of the

outcomes of the measurement of X (denoted as p(x/m=ms)) is given by <xl fs ix>;

s = 1, 0. In terms of the weight function Ps(a), it is just

p(x/m=m ) = Ps(a) I<al x>2 d a. (10)

It is convenient to expand the operator X which characterizes the receiver and its

right eigenstate Ix > in terms of the coherent states

Ix>= exp -1a 2] f(a*) I a> d2a

(11)

X = - exp[- 2 1a 2 - 12] la>X(a*, 1) <P3 d 2 ad 2
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where

fx(a*) = exp Ia1 <alx>
* 1  2 1  2

X(a ,*P) <aXp> exp IaZ + I 1Z1

The equation X x> = x x> can be rewritten in terms of X(a , P) and fx(a ) as the fol-

lowing integral equation:

fx(a*) = T- X(a*, P) fx(p*) exp[-lJ 2] dZp. (12)

In terms of this expansion for this binary signal, the conditional probability density func-

tions of the observed result x when a measurement of X is made on the received field

are given by the following equations

1 2 2
p(x/ml) = SP P(a) Ifx(a*)Z da

(13)

p(x/mo) = SP 0 (a) Ifx(a*)Z d2 a.

When x is observed, the maximum-likelihood receiver computes the conditional prob-

ability density functions p(x/ml) and p(x/mo),then sets m = m, if p(x/ml) > p(x/m O)

(and sets m = m 0 if otherwise). In terms of the weight functions, this condition is

simply

(Pl(a)-PO(a)) fx(a*) 2 d2 a > 0. (14)

Let R0 denote the region in the sample space of x in which the inequality (21) is not

satisfied, and R 1 the region in which it is satisfied. The probability of detection error

when the optimum receiver is used is

P(E) = j p(x/ml) dx + p(x/m 0 ) dx . (15)
S0 1

Therefore, the problem of finding the optimum receiver is reduced to that of finding the

optimum operator X (or, correspondingly, the optimal function X(a , ) that minimizes

P(E)).

An interesting special case of this problem is the determination of the best receiver
+ + *

among a class of receivers corresponding to the operators, a, a , X 1 0a + X1 0 a, or

functions of one of these operators. This class of receivers has been extensively
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discussed because some physical devices correspond to one of these operators. It is

most easily treated by expressing the weight functions of Eq. 9 as

Pl(ai, aq) < exp a + ai

(16)
1 q1 2z>n

P (, a ) 1 exp [a +a. u.
P q) rrn> < <n> qj

ai , in these equations, denotes the amplitude of the electric field in phase with the trans-

mitted signal tal cos (4-O), as shown in Fig. XX-3. a denotes the quadrature phase
q

a

a qiaIsin(-0) Fig. XX-3. Illustrating a. and a

0- ai=lalcos(4-8)

term I a sin(4- 0) of the electric field. The measurements of a and a correspond to
+ , + * qthat of the operators X 1 0  + X 1 0a and X 1 0 a - X 1 0 a, respectively. The measurement

in which a. and aq are measured simultaneously in such a manner that the product of the

variances of a. and a satisfy the uncertainty principle with equality corresponds to the

operator a (or a ).

It can be shown that when a. and a are thus measured simultaneously, the outcome1 q
of the measurement of a. will be statistically independent of a . Since a contains noI q q
signal energy, it can be discarded by the optimum receiver, according to the irrelevance

theorem. Furthermore, it can be shown that a receiver that measures only the in-phase

term yields a smaller error probability than the receiver that makes the simultaneous

measurements and discards the quadrature phase term. Thus the optimum receiver in

the class considered here should measure the in-phase component of the complex ampli-

tude of the electric field in this mode, that is, the operator [e+O a+a+ e-i]. (It appears

that the receiver is also better compared with the one that makes measurements of the

energy of the received field. But the rigorous proof needs to be completed.) Such a

measurement can be achieved by using a degenerate parametric amplifier.

If we regard the weight function P(a) as a probability density function, then the

receiver that measures the in-phase component of the electric field is the maximum-

likelihood receiver. Unfortunately, since the projection operators I a><at are not

orthogonal to one another for different values of a, it is not always possible to interpret

P(a) as a probability density function. If, however, we are given the knowledge that the

field is in a coherent state of unknown a, the function P(a) may be thought of as playing

a role analogous to the probability density function of the values of a over the complex
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a-plane. Also, in the classical limit, when the function P(a) tends to vary little over a

range of a, it can also be interpreted approximately as a probability density function.

The former is the case when no additive noise is present, while the latter is the case of

the classical limit <n> >> 1. In both cases, this receiver is a maximum-likelihood

receiver.

The probability density functions of the measured value of ai conditioned on the two

messages transmitted are

p(ai/m l )= 'i<- 1- exp <n> 1
T 1 n <n>

(17)
2

1 a. i
p(ai/m 0 ) = exp -

! <n>+ <n> 2

These equations are exactly the same as that in the case in which a classical signal of

amplitude equal to either a or 0 is transmitted in the presence of additive zero-mean
1

Gaussian noise, with variance <n> + 2-. Hence, much of the results on the computation

of error probability obtained classically . can be applied here. In particular, a

simple analysis will show that the probability of error is given by

c1 E

P(E) = Q Q , (18)
1 2 (N +N Z)2<n> + T Nz

where

2
E = hiw is the average received energy.r

N = <n>hw is the energy in the thermal noise.

N = -iw is the quantum noise energy, which is usually called by physicists
z 2 the zero-field fluctuation energy.

1
Q(x) - exp - y dy.

This probability of error equals that obtained by Helstrom2 for a receiver that makes

simultaneous measurements of a. and a . He used the Weigner distribution of ai and a ,q

instead of their joint probability density function to compute the value of the likelihood

ratio. In his more recent paper 3 , he shows that, for weak signals, a threshold detector
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also measures ai with probability of error given by Eq. 18 for coherent binary signals.

The performance of this receiver when used with other types of signals can also be
found easily. For example

i. Binary antipodal signals: P(E) Q(( NT+r 9

(NT+Nz))

00 E
ii. Binary orthogonal signals: P(E) = dx - exp-0 [i 2 (NT+Nz)

iii. M orthogonal signals: P(E) = 1 - dx -- exp - x- E r [1-Q(x) M - 1
o N 1 2(NT+N

The model of the receiving system discussed here will be generalized in two direc-

tions. First, since we are interested in the changes in the statistics of the measured

values and in the accuracy of our estimations with respect to the length of time spent

in observing the received field, the model of the receiver will be modified so that the

effect of the observation time is included. Second, since it has not been proved that the

optimum receiver, indeed, observes the individual modes of the received field sepa-
rately, the model will be generalized so that multi-mode measurements are also allowed.

Several new problems arise in the multi-mode detection of arbitrary coherent signals:

the optimum design of the receiving cavity, the effect of the correlation between modes,

the dependence of the performance of the optimum receiver upon the set of signals and

the properties of an optimum signal set.

Jane W-S. Liu
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C. BLOCK CODES FOR DISCRETE SOURCES AND CERTAIN FIDELITY

CRITERIA

The encoding by means of block codes of discrete memoryless information sources

to satisfy a fidelity criterion has been investigated for the case in which the distortion

between a source letter x and a letter y in the alphabet to be used to represent the

source is either zero or infinite. This report derives an expression for the smallest

number of code words such a block code may have when the fidelity criterion is that the

average distortion between source outputs and reconstructed letters be zero. Knowledge

of this minimum block code rate for such a distortion measure allows us to solve sev-

eral related problems involving block codes. For example, we can specify the range of

rates for which such codes can approach the Rate-Distortion function in performance,

and we can calculate the rate of a discrete source relative to a fidelity criterion that

requires every letter to be encoded with distortion no more than a specified amount,

rather than merely achieving this performance on the average. The criterion on aver-

age distortion with letter distortions either zero or infinite is equivalent to requiring

that for every possible source sequence, there be a code word whose distortion with this

sequence is zero. The distortion between blocks is taken to be the sum of the individual

letter distortions.

Thus for each source letter x, there is a set of "allowable" output letters, and one

of these must be used to adequately represent x. These sets can be represented simply

by an adjacency diagram like that shown

in Fig. XX-4, which is interpreted to

mean that any output letter that is con-

2 2 2 2 nected by a line to an input letter may be

3 3 3 3 used to represent that input letter. In

(a) (b) both of these examples, the input and out-

put are 3-letter alphabets, but in A, only

Fig. XX-4. Adjacency diagram. the corresponding letter may be used to

represent a source output, while in B,

the first source letter may be coded into (represented by) either of the first two putput

letters, etc. For the first case, it is easy to see that we need one code word for each

possible source sequence, and so will need 3n words to insure that blocks of n will be

adequately represented. In the second case, however, the set {1, 2} is a satisfactory set

of code words for n = 1, and 1 1, 22, 33} is such a set for n = 2. We shall see that the

rate of this second code, R =~ log 3, is the smallest that any satisfactory code can

have.

Let us now turn to the formal development of our results, and for a block length of

n, define M as the smallest number of code words that insures that every source
o,n
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sequence can be represented by at least one code word. Then we define the rate, Ro, by

R inf -log M
o n o,nn

Clearly, R >- R(0), the rate-distortion function for the given source and distortion

measure evaluated at D = 0. This rate-distortion function is defined by

R(D) = min I(X;Y),
p(j Ii)

where the minimization is done subject to the constraint that the average distortion be

at most D, that is,

I pip(jli) dij <D,
ij

where d.. is the distortion between source letter i and output letter j, and, in our case,

is either zero or infinity. Shannon I has shown that no coding scheme that gives an aver-

age distortion of D can have a rate below R(D), and conversely, when all distortions

are finite there are schemes that have rates arbitrarily close to R(D). It has further

been found that even when some distortions are infinite, there are coding schemes whose

average distortions and rates approach D and R(D), respectively, but these schemes

may not be block ones.2

Now, if we require all of the source letter probabilities to be nonzero, which merely

states that all letters are really there, then it is easy to see that M is independent
o,n

of these probabilities. This is true, since the probability of each source sequence will

then be nonzero, and so must have a representative code word. Thus the inequality R ° 0

R(0) must hold for all source distributions, and so we can write

R 0> sup R(0)
P

where p is the source probability vector, and the sup is over the open set described by

the conditions p. > 0 for all i, and E pi = 1. Now, since I(x;y) is a continuous function
i

of the probability distributions, so is R(D), and we can therefore include the boundary

of the region and write

R > max R(0),
p

where now the max is over the set pi > 0, and Z pi = 1. Finally, inserting the defining

relation for R(O), we have

R > max min I(x;y), (1)
p p(j Ii)
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where the transition probabilites p(j i) of the test channel are restricted to be nonzero

only for those transitions that result in zero distortion (i. e., values of i and j for which

the distortion between i and j is zero).

We shall now show that the inequality of Eq. 1 is actually an equality, by demon-

strating the existence of satisfactory codes with rates equal to the right-hand side. Since

the extrema of functions over closed sets are always attained for some member of the

set, there must exist p* and p (j i) such that the mutual information that they deter-

mine is the desired max min. Since I(X;Y) is a differentiable function of the probability

distributions, it must be stationary with respect to variations in the p(j i) distribution

at the saddle point. If this were not so, then this point could not be a minimum. Further-

more, since I(X;Y) is convex n in p and convex U in the p(j i) distribution, the order of

the max and min can interchanged without affecting the result.3 Then, by the same rea-

soning as that above, I(X;Y) must also be stationary with respect to variations in the non-

zero pi when pi = pi

Thus including Lagrangian multipliers to satisfy the constraints that probability dis-

tributions sum to one, we can write

a I(X;Y) + Xip (i)+ + i p7 1  0 (2)
8p(j Ii) ij

and

i (X;Y) + Xip(j i) + p = 0 (3)

1] *

for all i and j such that p. and p (j Ii) are nonzero. Since we know

aI p(j Ii)
-Pi log g

ap(j Ii) j

and

aI p(j i)

ap - p(jli) log p(j 1,

] ]

where q. = p pi(j Ii), then Eq. 2 becomes

p(j Ii)

pi log --- + . = 0

or
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p(j Ii)
log = r

q. 1

which is independent of j.
p (j i)

Then by substituting r. for log , Eq. 3 becomes
1 q

p(j Ii) r i - 1 + = 0,

and by taking r i outside the summation,

r. =- 1-

and thus is independent of i also.

tributions, it must be true that

p(j ii) 1h-i

a constant, for all i and j such that pip(j i) > 0.

Therefore for the maximizing and minimizing dis-

It then follows that

1
I(X;Y) = log h

and if we define the sets S.i = j dij = 0}, we can write
1 1

q i= hp(j i) = h

jES.
i

(all i such that pi > 0)

since p(j li) must be zero for j Si.

For those source letters whose probabilities turn out to be zero, an expression sim-

ilar to Eq. 3 must hold, namely

I (X; Y) + ' Lp (j Ii) + [ pi < 0 (4)

for all such that pi = 0.

p(j Ii)
p(j i) log q-Jqj

By taking the derivative, this becomes

- + t 0
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Sp(jli) log p(j---- - = log . (5)
j

Since the p(j i) do not affect I(X;Y) when pi is zero, this inequality must be true for all

choices of the p(j Ii) values, as long as these are zero for j 0 Si . So in particular, it

must hold when

q 
S.

p(j i) = 1

0 otherwise

where (T is a normalizing constant = q.. But with this choice of p(j i), Eq. 5 becomes
j ES. 

1

1 1log - 4 log h

or

T= q h.

j ES.
1

Now consider constructing a code by picking each letter of each code word randomly

and independently, with probability distribution qj. With this method, the probability

that a randomly selected letter will be an acceptable representation of the i source

letter is just Z qj, which has been shown to be greater than or equal to h,
jE Si

independent of i.

Thus the probability that a randomly chosen code word y of block length n will be

acceptable for a given source sequence x is

Pr [y~xlx] >hn

for all x.
nR

If M = e code words are so chosen, then the code rate is R, and the probability

(averaged over all codes) that a given x sequence is not covered is

Pr [no word for x Ix] < (l-hn)M

_Mh n  exp-e nR -log h1

1
Now setting R = log h + 6,where 6 is an arbitrarily small positive number, we can bound
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the probability of all x sequences for which there is no code word by

n5
Pr [x 3 no code word for x]= p(x) Pr [no word for xix] e - e

X

By the usual random coding argument, there must exist a code with performance at

least as good as this average, and we can choose n large enough so that

n8-e
e

< 1,n
Pmin

where p min is the smallest source letter probability. Thus for large enough n, there

is a code for which

nn
Pr [ x! 3 no code word for x] < e - e <(Pmin

min

But this probability must then be zero, since the smallest nonzero value it could take
n

on is Pmin'

Thus we have shown that for code rates arbitrarily close to log1= max min I(X;Y),

there exist codes that will give zero distortion when used with the given source. Since

it has already been shown that such performance was not possible for rates below this

value, we have established the block-coding rate of a discrete source with letter distor-

tions that are either zero or infinite to be

R = max min I(X;Y).
p p (j i)

Furthermore, the conditions on stationarity of I given by Eqs. 2, 3, and 4, are suf-

ficient as well as necessary. Thus we know that if we can find distributions satisfying
p(j ii) -

the condition that for some number h, - h for all i and j such that pip(j Ii) > 0,q-
then the I(X;Y) determined by these distributions is the desired R . We have seen that

this condition is equivalent to having all transitions leading to a given output letter have

the same probability, and that for each source letter with positive probability, the sum

of the probabilities of those output letters that can be reached from this input be the

same.

It is interesting to compare the results above with those of Shannon on the zero

error capacity of a noisy channel.4 His upper bound on this capacity is identical with

our R

As an example of the calculation of R o , consider the distortion shown in Fig. XX-4b.
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It is easy to see that a source whose letter probabilities are all 1/3, and a channel whose

transition probabilities are 1/2 everywhere there is a line in the diagram, and zero else-

where, satisfy the conditions on stationarity given above. Thus R ° is I(X;Y) for this
1

source and channel, which comes out to be -log 3.

The techniques developed here allow us to solve several other problems concerning

block codes for discrete sources. If we want to know the rate needed for zero average

distortion for an arbitrary distortion matrix, it is easy to see that this rate is just R

for a distortion that is zero everywhere the given one is, and infinite elsewhere. A sec-

ond problem is finding the block-code rate necessary for achieving a finite average dis-

tortion when some of the d.. are infinite. In this case, the answer is R for the distortion
13 o

that is infinite everywhere the given one is, and is zero elsewhere. Finally, the fidelity

criterion might be that every letter be encoded with a distortion no greater than D (as

opposed to the more usual constraint on the average over a block, which we have been

considering up to this point). In this case, the "every letter" block-coding rate Rel(D)

is just R o for the distortion that is zero if the original dij is D or less, and infinite

otherwise.

J. T. Pinkston III
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D. INFORMATION TRANSMISSION VIA SPATIAL MODULATION OF WAVEFORMS

In many communication systems the physical antenna system influences the system

reliability only through the received signal-to-noise ratio (SNR)., 2 In contrast, we

focus on the consequences of modulating source outputs onto temporal and spatial vari-

ations of the "complex amplitude" of the signal illumination across the transmitter

antenna aperture.

We shall apply information-theoretic concepts to determine ultimate limits

on the potential for information transmission between optical devices. In this

context we shall evaluate the "channel capacity" and "rate-reliability" function

that is obtained when a transmitting antenna of given physical dimensions is

driven with the best possible spatial and temporal modulation. We expect that

this optimum modulation will depend upon the source information rate, physical

dimensions of the antenna system, available signal power, and the character-

istics of associated noise sources. Channel capacity and the optimum reli-

ability will be computed and used as a standard for comparison with certain

suboptimal modulation techniques.

Although the word "optics" carries the particular connotation of visible light

frequencies, the problem that we pose is essentially independent of the radi-

ation wavelength (for instance, we could talk about illuminating large array

antennas at microwave frequencies). We expect, however, that encoding infor-

mation in the spatial variation of EM fields is theoretically attractive only when

the aperture diameters are several orders of magnitude larger than the car-

rier wavelength. This condition is not usually satisfied at microwave frequen-

cies. Therefore we are, in fact, especially concerned with optical frequencies,

and have in mind the potential application of laser technology to communica-

tion.

We treat that part of the communication link illustrated in Fig. XX-5. The

channel includes a pair of physical apertures I and II, which we designate as

transmitter and receiver. These apertures are coupled via radiation through

free space. We presume that the transmitting aperture can be excited by any

one of an arbitrary set of complex illuminations, say, Si(x, y, z, t). The input

illumination is observed as the amplitude distribution, O.(a, b, c, t), at the receiving
1

aperture. If follows from Maxwell's equations and the free-space assumption

that O i is a linear functional of Si . To complete the description of Fig. XX-5,

we have shown an additive noise, N, that represents the sum of all background

radiation, incident on the receiving aperture, which is uncorrelated with the

source illumination. Maxwell's equations ensure linearity for a wave propagating
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in free space. Nonlinearity may become an issue in certain optical systems, e.g.,

those that include photo-emulsions.

1. Antenna Input-Output Relations

The channel model is based on the representation of EM waves by solu-

tions to Maxwell's equations. Analysis of radiation problems is usually reduced

to the solution of an integral equation with associated boundary conditions imposed

by sources, dielectric boundaries or conducting surfaces. 3 - 6 In general, one

cannot solve such problems unless the geometry is particularly simple or cer-

tain simplifying assumptions are made. We can often go far by using simple

solutions because Maxwell's equations are linear; hence, the principle of super-

position applies.

The first step is to determine the (complex) amplitude distribution of the field O( )

across an image aperture, given the distribution of the field S( ) across an object

(source) plane. For example, we typically specify that S(. ) is nonzero only over some

finite region of the infinite plane. Let this region be the surface Y. Following

Sommerfeld's "Manifestly Consistent" approach, it can be shown that U(P 0 ), which is

the complex amplitude of the field at P 0 when the source aperture Z is illuminated by an

arbitrary excitation U(P 1 ), is given by

j r 0 1

U(Po) = U(P 1 ) e r cos (n, r ) ds, (1)0- 1jkr01 01

where

n is an outward normal from Z

r01 is the vector from P1 to P0

2w

X = wavelength of the monochromatic light.

We can write Eq. 1 in the alternative form of a linear system response.

U(P 0) = h(Po, P1) U(P I ) ds, (2)

where
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h(PO' P 1)

In order to

jpr01

1 e 0 co s (n, r 01).
jX r01

carry this analysis further, we have to make some simplifying

SCREEN S

z P 0 o t 0)

am-

APERTURE T

TN " P 1 (x 1 ,Y 1 ,0)

P2 (x 2 ' Y2'Z 2 ) AN ARBITRA

S

Fig. XX-6.

RY POINT ON I

Aperture geometry for diffraction analysis.

approximations to the impulse response h(P 0 ,P 1 ). These are

to Fresnel. Using the notation of Fig.

z >> (xl yl/2

cos (n, r 0 1) 1.

XX-6, we have

max

Substituting these expressions in Eq. 1, we find for all points P 0 that are "close to the

optical axis" (that is, within approximately 18*)

r01 (z 2 +(x 0 -x 1)2 +(yO-y 1

(x0-x )2

2z
2

)Z 1/ Z

(yO-y)2 z
2z2

U(Po) = ej0 jXz
U1 (X,Y) exp -z

Thus, the received field can be modeled by the output of a linear, spatially invariant
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filter, 7 h(PP 1), where

exp jpz jp 2
hh (Po'P 1 ) j=kz expz I-P 1  (4)

2. Reliability of the Optical Communication Channel

We note that Maxwell's equations imply that the radiation field is a linear functional

of the illumination at the source aperture. This linearity can be exploited to apply the

results of Information Theory to an analysis of ultimate limits on the communication

performance of radiating systems.
8-10

Several authors, following Shannon, have shown that for each pair of channel

impulse response and additive (Gaussian) noise power spectrum there is an optimum

set of average-power limited message waveforms. Their criterion of performance is

the average probability of receiving a message in error. These studies have shown that

this probability may be bounded by expressions of the form

A(R) exp(-NEL(R)) < Pe < exp(-NEU(R))

where R is the information rate per channel use relative to channel capacity, and N is

the number of channel uses per message.

We are especially interested in extensions of this work published recently by

Holsinger 9 and Ebert.10 Their work related to the analysis of signalling through time-

continuous and amplitude-continuous channels with memory, that is, the filter channel.

Holsinger derives a complete set of orthogonal, finite duration waveforms which

serve as a coordinate system in which one can expand the inputs to a filter channel. These

waveforms have the special property that they remain orthogonal at the output of the

channel, although their functional dependence on time has been altered. (A general

expansion theory applied to optical transmission has been presented by Gamo. )

This orthogonal-function expansion suggests that the filter channel be represented

by the parallel combination of independent channels each with a different mean signal

strength. Holsinger and Ebert studied the problem of optimal coding for such parallel

channel combinations and their results include the tightest available exponential bounds

to the rate-reliability curves for the average-power limited transmitter.

Our interest lies in applying these results to optical systems. That they apply fol-

lows from the linearity of the optical impulse response as seen from Eq. 3. Therefore

we can determine a set of two-dimensional waveforms in which to expand the spatial

dependence of radiated signals such that we can isolate spatially orthogonal waves at

the transmitter and receiver. We may then apply Ebert's results to obtain performance

bounds for these parallel channels.

We are less concerned with the formal mathematics (except for making necessary
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modifications) than with the way the computed reliability functions vary with the physi-

cal properties of the channel such as aperture sizes, optical processing, and noise

characteristics.

3. The 1-dimensional Antenna

We can modify Eq. 3 to obtain the signal component of the 1-dimensional antenna

output. (Signals are represented by their complex envelopes. Thus the time variation

of u(x, t) has been suppressed, and we indicate explicitly only the spatial modulation

u(x).)

ejpz D 1j2r(x-y)
2

U(Y) D U1 (X) exp 2 Xz dx.

1

The phase term is independent of y; we assume that it can be compensated for in the

receiver processing. This compensation will not affect the relevant statistics of the

additive receiver noise.

It can be shown that the appropriate expansion functions are {i(y)} and {gj(x)}, where

JP 2

yi() = i(y) e z y

-jr 2P o 2z (y-x) dy
g (x) -=yzJ (y) e 2

- 00

and { i(y)} are solutions to the following integral equation

D 2 sin--D 1 (x-y)

SD2 in(x-y) i(x) dx = Ki i(y) for all y (5)

D2 T(x-y) 1

2D 1 = length of input aperture

2D 2 = length of output aperture

We recognize the(4i to be the prolate-spheroidal wave functions discussed by Pollak

and Slepian, 1 2 , 13 among others, who have listed the following useful properties:

la- i(t) j(t) dt = 0 i # j

=1 i=j
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lb- The #i are bandlimited. Thus {fj(x)} are complete on the interval Ix < D

Jp

f(x) =(y) e z -' y dy0 z 2r
-CO

2- The {i} are complete on yl D2

It follows that

2
-jpx
2z

g(x) = e f(x).

Therefore properties 1 and 2 are also satisfied by the J{i} and {gi}. It follows from

Parseval's theorem and the relations above, that the{gi} is a complete set of functions

that we can scale to have unit energy on the interval Ixl < D1 .
We cannot proceed further without specific information about the eigenvalues {Ki}.

The key parameter that controls these eigenvalues is N, where

N =--D D =- D1D (6)
z 1 2 xz 1 2

Pollak and Slepian show that the eigenvalues approach zero rapidly for i > 2N/r. When

N gets large, say, N > 50, the distribution of eigenvalues tends to the sharp cutoff illus-

trated in Fig. XX-7.

K. (N)

Fig. XX-7. Limiting distribution of
eigenvalues.

N

2N

In qualitative terms -- = N' is the number of significant eigenvalues, and can be

identified as the number of degrees of freedom for the system. When the channel out-

put SNR is low, the available transmitter power should be used to drive the aperture

with only the most significant eigenfunctions. Higher order eigenfunctions become

important only as the SNR increases. In the limit of zero additive noise, each of the
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infinite set of eigenfunctions can be used. In other words, the concept of "degrees of

freedom" is useful only when there is additive noise in the system. (Tuftsl4 has

remarked on this idea and gives a simple example in which more than 2W samples per

second can be exactly recovered at the output of a noise-free lowpass channel of band-

width W.)

Equation 6 gives an explicit relation for N in terms of the properties of the antenna

system. For fixed aperture sizes, N decreases with the distance z. When the receiver

is in the far field of the transmitter there is only one dominant eigenvalue, unless the

receiving aperture is much larger than the transmitting aperture. This follows directly

from the far-field condition

2
z >> T D

1.

When there is only one significant eigenvalue, all available signal power should be

used to excite the corresponding eigenfunction, unless the SNR is "high." Even then,

the increase in channel capacity, with the "weaker" coordinates used, will be small.

In typical microwave applications antennas are sited in the far field and are not

large enough for N' to exceed i. It follows that the potential gain from using spatial

modulation at microwave frequencies is negligible. Of course, there may be some ben-

efit from optimum selection of the single illumination pattern (optimum beam forming)

in terms of maximizing the energy incident on the receiving aperture.

4. Interpretation and Future Work

The representation of the radiating part of the optical communication link by the par-

allel combination of independent channels leads directly to a solution for the set of opti-

mum input signals. The transmitted waveforms are constructed as linear combinations

of temporally modulated spatial eigenfunctions. The temporal modulation, in turn, can

be represented as a linear combination of eigenfunctions, as described by Landau,

Pollak, and Slepian. The optimum distribution of average power amongst these coor-

dinates is obtained from a "water-pouring" argument based on the relative amplitudes

of the corresponding eigenvalues.

The analysis outlines here treats the case of optimum signaling and coherent pro-

cessing of EM fields across the receiver aperture. In view of practical difficulties of

implementing optical coherent detectors, we wish to estimate the performance degrada-

tion that one accepts as the price of using suboptimum processing. In particular, we

have in mind using square-law (energy) detection, which is implemented at optical fre-

quencies via photographic emulsion. We have recently begun this aspect of our study,

and will consider various suboptimal techniques at the transmitter and receiver.

Other work is in progress to establish the interplay between spatial modulation and
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the maximum temporal signaling rate. This work focuses on estimating the rate at

which one can establish in succession arbitrary radiation patterns, subject to main-

taining a high ratio of radiated energy to energy stored in the EM fields around the

source aperture.

We may consider two directions in which to extend these studies. The first relates

to taking into account the quantum noise introduced by certain detectors. We believe

this noise may be the principal additive disturbance, at low-rate signaling. The second

is to introduce atmospheric turbulence into our channel model. At present, we expect

that this would be a major extension, beyond the scope of the present problem.

R. L. Greenspan
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