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Analytic solutions for particle motion in a double rf system having a harmonic ratio of two are obtained.
The effects of time dependent rf phase and voltage modulation on synchrotron motion are studied. Parametric
resonances arising from a weak perturbation are analyzed in terms of the action-angle variables of the unperturbed
Hamiltonian. Sum rules for the strength functions are derived. We find that the tree ofbifurcation branches for these
parametric resonances follows the characteristic tune of the unperturbed Hamiltonian. The basins of attraction for
the dissipative double rf system are also studied in numerical simulations.
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1 INTRODUCTION

Space charge has been an important limitation to beam intensity in many low energy proton
synchrotrons. Space charge results in coherent and incoherent betatron tune shifts, which
may lower the thresholds for transverse and longitudinal collective instabilities. A fast beam
loss may occur during accumulation and storage when the injected beam current exceeds a
threshold value. In many studies it was observed that the stability limit depended upon the
rf voltage, momentum spread, vertical beam size, and nonlinear magnetic fields.!

To increase the threshold beam intensity, a double rf system has been used to increase
the synchrotron frequency spread, which can enhance Landau damping against beam
instabilities. An attempt to increase Landau damping was made as early as 1971 by installing
a cavity operating at the third harmonic of the accelerating frequency in the Cambridge
Electron Accelerator (CEA) at Cambridge.2 This technique was successfully applied in the
Intersecting Storage Rings (ISR) at the Center for European Nuclear Research (CERN) to
cure coupled bunch mode instabilities, where an additional cavity was operated at the sixth
harmonic of the primary rf frequency. 3
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Adding a higher harmonic rf voltage to the main rf voltage can flatten the potential well.
Since the equilibrium beam profile follows the shape of potential well, a double rf system
can provide a larger bunching!actor,4 defined as the fraction of the circumference occupied
by a beam, than that of a single rf system. Therefore, for a given dc beam current in a
synchrotron, the peak current and consequently the incoherent space charge tune shift are
reduced. In particular, a double rf system with harmonics 5 and 10 was successfully used in
the Proton Synchrotron Booster (PSB) at CERN to increase the beam intensity by 25-30%
when the coherent longitudinal sextupole and decapole mode instabilities were suppressed
by beam feedback systems.5

At Indiana University Cyclotron Facility (IUCF), a recent beam dynamics experiment
showed that with optimized electron cooling the beam intensity in the cooler ring was
quadrupled when two rf cavities were used.6 This experiment has a far reaching conse
quences for low energy synchrotrons with electron cooling or stochastic cooling, where a
high beam brightness may result in a severe space charge problem. Because a double rf
system can improve beam intensity in synchrotrons, it is an important topic in accelerator
physics.

With a double rf system, the synchrotron tune" spread of a beam is increased for small
amplitude oscillations. On the other hand, the synchrotron tune spread vanishes for particles
having a phase amplitude 4J of about 2 rad. The sextupole and decapole modes instabilities
were observed and corrected by feedback systems in PSB.5 This problem may arise from
time-dependent rf phase and voltage modulation produced by rf noise, power supply ripple,
synchro-betatron coupling, and wake fields. Since time-dependent perturbations can induce
unstable longitudinal motion, careful studies are needed.

Previously, there have been some theoretical studies on double rf systems based on
small amplitude approximations, which can not be extended to a large amplitude motion.7,g

Clearly, we have to study large amplitude oscillations in order to understand the stability
of particle motion. Recently, we have proposed a semi-analytic method to solve a double
rf system beyond small amplitude approximations.9 This paper makes further progress
in understanding the beam dynamics for a double rf system' analytically. When a double
rf system is subject to an external perturb'ation, analytic solutions for the unperturbed
Hamiltonian can provide a reliable basis for studying the effects of the perturbation on
particle motion. Furthermore, sum rules for excitation spectrum due to the perturbation will
be derived.

We organize this paper as follows. In Section 2, we present analytic solutions to the
synchrotron motion in two rf systems. In Section 3, parametric resonances, driven by a
rf phase modulation, are analyzed by expanding the perturbing potential in action-angle
variables. With electron or stochastic cooling for phase space damping, these parametric
resonances become attractors. Numerical simulations are used to study the basins of
attraction. The parametric resonances due to a voltage modulation are discussed in Section 4.
The conclusion is given in Section 5.

2 SYNCHROTRON MOTION

Without loss of generality, we consider the synchrotron equations of motion for particles
below transition energy in a double rf system,
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8 - vs{(sin¢J.- sin¢JIO) - r[sin(¢J2o + h(¢J - ¢JIO» - sin¢J2o]

A
+ v(¢J )sc} - 2n 8,
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(2.1)

(2.2)

where the dots are derivatives with respect to the orbiting angle () , ¢J is the phase coordinate
relative to the primary rf cavity, 8 = - hllrJl ~p is the normalized momentum coordinate,

Vs P

~P = P-PO is the fractional momentum deviation from the synchronous particle, 1] is
P Po

the phase slip factor, Vs is the synchrotron tune at zero amplitude for the primary rf system

alone given by Vs = ;~;l:', (hI, h2) and (VI, V2) are respectively harmonic numbers

and voltages of the primary and the secondary rf cavities with h = ~~ and r = ~, and ¢JIO
and ¢J20 are the corresponding rf phase angles of the synchronous particle. The effective
acceleration rate for the beam is ~E = eVI (sin ¢JIO - r sin h¢J20) per revolution. The term
eVI v (¢J)sc denotes the energy shift due to space charge force per revolution, and 2~ 8 is
the linearized phase space damping force due to electron or stochastic cooling with A as
the damping coefficient. Because this study is devoted to single particle dynamics, we will
ignore the space charge force.

Neglecting for the moment the damping effects, the Hamiltonian is given by

(2.3)

where the potential V (¢J) is

V (¢J) = vs {(cos ¢JIO - cos <p) + (¢JIO - (1) sin ¢JIO

r
- h[COS¢J20 - COS(¢J20 + h(¢J - ¢JIO» - h(¢J - ¢JIO) sin¢J2o]}. (2.4)

Here, the conditions r = *and h sin ¢J20 = sin ¢JIO are needed to obtain a flattened potential

well. For r > *, there are two inner buckets on the ¢J axis.
For the reason that the rf bucket is largest at the lowest harmonic ratio, this paper studies

the double rf system with h = 2. To simplify our discussion, we study a stationary bucket
with ¢JIO = ¢J20 = 0°. However, the method presented in this paper can be easily extended
to the general case.

2.1 The action and the synchrotron tune

When the synchrotron is operating at ¢JIO = ¢J20 = 0, the net acceleration is zero and the
Hamiltonian becomes

Vs 2 [ r ]H = 2 8 + Vs (1 - cos¢J) - 2(1 - cos2¢J) . (2.5)
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Since the Hamiltonian is autonomous, the "energy" H = E of the Hamiltonian is a
constant of motion with value E/vs E [0,2]. The action is given by

¢

J(E) == ~ f 8d</>,

-¢

(2.6)

where ¢ is the maximum phase angle for a given Hamiltonian torus. The energy E is related

to ~ by E == 2Vs (l - 2r cos2 ~) sin2 ~, and the phase space area is 2rr J. The bucket area
Ab is given by

Ab = 2rrJ = 8 [Jl +2r + ~ln(JI +2r +5)J, (2.7)

which is a monotonic function of the ratio r. The corresponding bucket area for the single
rf system is Ab(r ~ 0) = 16.

The synchrotron tune, defined as the number of synchrotron oscillations per revolution,
is given by Qs = (g~)-1. Thus, we obtain

rr ..j(l-2r)+2t5+0+2r)tri
when r :s 0.5, or r > 0.5, and ¢ > cPb

Qs 2(1+t5)K(kl)
(2.8)

Vs rr,J2itu when r > 0.5, ¢ < cPb,
-/(1+tJ)(1+tl)K(k2)

,

h - ¢ - cPu - cPz • h At - 2 . /. 2 cPb . 2 cPu At -;..were to - tan 2' tu - tan 2' tz - tan 2' WIt 'PZ - arcsIn VsIn 2 - SIn 2' 'Pu - 'P'

cPb = 2 arccos( ~), K (k) is the complete elliptical integral of the first kind. The moduli
v2r

to-/1+(1+2r)tg d k - -/tJ-tl Wh 0 5
of the elliptical integral are kl = -/ ' an 2 - -t-' en r > .,

0-2r)+2tg+O+2r)tri u

there are two stable fixed points located at ±cPt where cos cPt = -1r' Here cPb corresponds to
the maximum phase angle of the inner separatrix, cPz and cPu are the intercepts of the torus
inside the inner separatrix. The detailed derivation of Eq. (2.8) is given in Appendix A.

Figure 1 shows the synchrotron tune as a function of the amplitude of the synchrotron
oscillation for various voltage ratios. At r = 0, the system reduces to a single primary rf
cavity, where the synchrotron tune is Qs /vs = 1 at zero amplitude. As r increases, the first
derivative of the synchrotron tune becomes large near the origin. Since a large tune spread
of the beam is an essential ingredient for Landau damping of coherent beam instabilities,
an optimal rf voltage ratio is r = 0.5, where the synchrotron tune spread of the beam is
maximized for a given bunch area. At r = 0.5, the synchrotron tune becomes

Qs nto n(E/2vs )1/4
= =-----

Vs )2(1~ tJ)K(k) .JiK(k)
(2.9)
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FIGURE 1: The synchrotron tune as a function of the peak phase ¢=~ for different voltage ratio r.

with the modulus

k= 1( t
2

)_ 1+_°_ -
2 1 + t6 - ~ (1+ fE).

2 V1;;

In this case, the maximum of the synchrotron tune is Qs = 0.7786vs, located at ~ = 1170

(or E = 1.057vs ). Near this region, aqs is very small or zero. When the voltage ratio is
a¢

r > 0.5, a dip in Qs(J) appears at the inner separatrix of inner buckets, and two small
potential wells are formed inside the inner separatrix.

2.2 Action-angle variables

Although analytic solutions for action-angle variables, presented in this section, are valid
only for the case with r = 0.5, the method can be extended to obtain similar solutions for
other voltage ratios. Using the generating function

we obtain the angle variable as

¢

F2(¢, J) =f 8(¢')d¢',

~

(2.10)

(2.11)
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where the action variable is given in Eq. (2.6). Substituting 8 into the integrand, the angle
variable becomes (see Appendix B)

Qs /1 +tJ :rru
1fr = - u = --,

Vs -J2to 2K(k)

where the argument u is related to the phase angle 4J by

4J ~
tan - = tan -cnu,

2 2

here cnu is a Jacobian elliptical function1o with the modulus k

2n 00 qn+1/2
cnu = --- "" 2 +1 cos(2n + 1)1fr,

kK(k)~ 1+ q n

(2.12)

(2.13)

where q = e-rrK'/K, and K' = K(k') with k' = -VI - k2.

The conjugate phase space variable 8 can then be obtained from Hamilton's equation of
motion, i.e.,

~ (~) (~) snu dnu8 = -2-v2sin "2 tan "2 A 2'

1 + [tan~cnuJ
(2.14)

where· snu and dnu are Jacobian elliptical functions with modulus k. Thus the transfor
mation of the phase space coordinates (4J, 8) to the action-angle variatiles (J, 1fr) can be
accomplished by using Eqs. (2.13) and (2.14) or equivalently the following equations,

(2.15)

(2.16)

where ~ = 2~s.

2.3 Small amplitude approximation

For a tightly bunched beam, the beam occupies a small phase space area. Formula for small
amplitude approximation are summarized as follows:7,g
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Qs T{. ~
~ --sm-

VS ,J2K 2'

A 2T{ 00 qn+1/2
¢ ~ ¢- L 2 +1 cos(2n + 1)'lfr,

kK n=O 1 + q n

A2 T{2 00 (2n + l)qn+l/2 "
8 = -11,J2" 2 +1 sm(2n + 1)0/,

2kK2 f:o 1+ q n
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(2.17)

wherek ~ )z, K = K(k) ~ 1.8541 andq ~ e-Jr
•

Let the TInS phase space area of the bunch be A and the rrns conjugate phase space
coordinates be (Yo and (Y¢. We obtain

a~ = (2~Kyf3, a8 = (~:rf3 .
The rrns tune spread of the beam is then given by

(2.18)

(2.19)

(3.1)

T{ ( 3A )1/3
ilQ = ,J2K 16,J2K VS

'

The approximate formula can be used to describe small amplitude oscillations. However
it is more a concern when the beam fills the rf bucket, particles may become unstable at
large synchrotron amplitudes. For the double rf system, subject to an external phase or
voltage modulation, the motion may even become chaotic. Naturally one wants to know
how particles behave when they have amplitude such that ~: is maximum and near the rf
bucket boundary.

3 PHASE MODULATION

To study the stability ofa Hamiltonian system, we apply a small time dependent perturbation.
In this section, we study the effects of rf phase modulation, which may arise from rf noises,
synchro-betatron coupling from the transverse dipole field modulation, and wake fields
resulted from longitudinal impedances. With a sinusoidal phas'e modulation to the double
rf system, Hamilton's equations of motion are given by

¢ = vs8 + aVm cos vm(),

8 = -vs(sin¢ - r sin2¢),

where Vm and a are the modulation tune and amplitude respectively. The corresponding
Hamiltonian is given by,



228 J.Y. LID et ai.

When the perturbation is small with a « 1, the time dependent Hamiltonian can be
expanded in action-angle variables of the unperturbed Hamiltonian.9

3.1 Analysis ofparametric resonances

To express the perturbation in terms of action-angle variables, we expand 8 in Fourier series,
i.e.,

00

8 = L gn(J)ein1/J,
n=-oo

where the strength function gn (J) is given by the inverse Fourier transform,

Jr

gn(J) = _1 f 8e-inljldl/J.
2]'(

-Jr

(3.3)

(3.4)

Since 8 is a real and odd function of l/J, the phase modulation only gives rise to odd
harmonic resonances from the first order perturbation with g-n = g~. The analytic
expression for gn will be given in next section. Here we examine the effects of the
perturbation on particle motion.

In terms of action-angle variables (J, l/J), the Hamiltonian ofEq. (3.2) becomes

H = E(J) + aVmL \gn(J)\ [cos(nl/J - vm(} + Xn) + cos(nl/J + vm(} + Xn)] , (3.5)
n2:0

where E (J) is the energy of the unperturbed Hamiltonian, aVm Ign Iis the resonance strength
of the nth order.parametric resonance, and Xn is the phase of gn. When the modulation tune
is near one of the parametric resonances, i.e., Vm ~ n lfr, the resonance term contributes
coherently to perturb particle motion. In order to see the perturbed Hamiltonian flow, we
transform the Hamiltonian to the resonance rotating frame by using the generating function

where the new action angle variables become

(3.6)

1= J,
Vm Xn

and y = l/J - -() + -.
n n

(3.7)

The new Hamiltonian in the resonance rotating frame is given by H = (H) + ~H, where
the time averaged Hamiltonian is

Vm
(H) = E(/) - -I + avmlgn(/)\ cosny,

n
(3.8)
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and the time dependent Hamiltonian is

+Xe - ~ Xn ] + cos [ l y + (~ + 1) vm () + Xe - ~ Xn ] } .
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(3.9)

(3.10)

Since the time dependent component contributes incoherently to particle motion, it can be
averaged to zero. Therefore, we neglect it here for the moment.

Since the time averaged Hamiltonian (H) is independent of (), it is a constant of motion.
The structure of resonance islands can be described by the stable and unstable fixed points

(SFP and UFP) given by the solutions of Hamilton's equations of motion, i = a~~) = 0

and y = - a~7) = o. One obtains

nYFp = 1n, (1 = 0, 1,2, ...),

Vm I
Qs(IFP) - - ± avmlgn(IFP)1 = 0,

n

where (YFP, IFP) are phase space coordinates of fixed points and g~ is the derivative of the
strength function. Since there are n SFPs and n UFPs, the number of resonance islands
is equal to the order of resonance. The parametric resonances, given by Eq. (3.10), are
therefore designated as the n:1 primary parametric resonances. For a « 1, the resonance
condition becomes Vm ~ nQs.

The size of the resonance island is approximately given by

(3.11)

(3.12)

where Ir is the resonance action, i.e., Ir = ISFP. Thus, when aa~s == 0, the island size
becomes large, and particle loss may occur.

3.2 Resonance strength function

Using Eq. (2.13) and the coordinate transformation dl/J = ~8d¢, the strength function
g21+1 becomes (see Appendix C)

. 4Qs (_)1ql+1/2 [ nUQ ]

g21+1 = I~ 1 + q21+1 cos (2l + 1) 2K(k) ,

where 1 = 0, 1,2, ... , and UQ = F(w, k) is the incomplete elliptical integral of the first

kind with the upperbound of the integral given by w = arccos ( i tan ~) and the modulus

given by k = !!(1 + sin2 ~). Figure 2 shows the exact solution of Ignl with harmonics
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FIGURE 2: The resonance strength parameter Ignl for n=I,3,5 as a function of the peak phase 4>=~. The solid
lines are obtained from the analytic formula and the dashed lines are from the small amplitude approximation.

n = 1,3,5 (solid line). We found that gl is maximum at ¢ = 151° with gl = 0.9275. All
gn factors vanish at ¢ = 180°, i.e., on the separatrix of the Hamiltonian torus.

For small amplitude oscillations, one finds an approximate solution given by

A2 n 2 ql+1/2
g21+1 ~ i¢ M 21+1 (2l + 1),

2v2kK2 1 + q
(3.13)

which is a good approximation to the analytic solution near the origin with ¢ ::s 50° (see
the dash-dotted" lines in Figure 2). Since ¢ "V Jl/3, we have g21+1 "V (2l + I)J2/3 for alll.

3.3 The action and the sum rule theorem

Using Parseval's theorem and the coordinate transformation dl/J = ,is 8d¢, we obtain the
following sum rule

f
'j( 00

Vs 2 Vs 2
J = - 8 dl/J = - L Ign I •

2n Qs Qs n=-oo
-'j(

(3.14)

This sum rule is valid for similar dynamical systems, where the kinetic energy of a
Hamiltonian is proportional to the square of the momentum variable. Using Eq. (3.12), we
obtain

32Qs 00 q21+1 2 [ nuoJ
J = --L '21+1 2 cos (2i +1)- .

Vs l=O (1 + q ) 2K
(3.15)
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(3.16)

FIGURE 3: The action as a function of the peak phase f/J=4>. The solid line is obtained from the numerical
integration, the dashed line is obtained from the small amplitude approximation, and dotted lines are from the sum
rule with gl term and with gl ,g3 terms.

The action, obtained from the numerical integration ofEq. (2.6) (solid line), is compared
with that obtained from the small amplitude approximation of Eq. (2.17), shown as dashed
line, in Fig. 3. The dotted lines are obtained from the sum rule of Eq. (3.15) with gl term
only and with the gl and g3 terms respectively. We find that the sum rule converges rapidly
to the exact action. The action obtained by summing over l = 0,1,2 terms in Eq. (3.15) is
effectively indistinguishable from the .exact result up to ¢ = 1790

•

As the sum rule converges more rapidly, a dynamical system is less likely to be disturbed
by a phase modulation at high frequencies. Measurements of low order synchrotron modes
can be used to set a limit on the instabilities of high order synchrotron modes, or vice versa.

3.4 Resonance island and bifurcation

To verify the parametric resonance analysis of last section, we carried out numerical
simulations based on the difference equations,

¢n+l = ¢n + 2rrDn + 2rrvm a cos 2rrnvm ,

Dn+l = Dn - 2rrvs (sin¢n+l - r sin2¢n+l) - AwDn.

For studying resonances, we do not include the damping effect, and we use the parameters
a = 2.5 0 and Vs = 8 x 10-4 . The Poincare surfaces of section are obtained by plotting
one point every Nm = v~ revolutions. Such stroboscopic maps will eliminate most of the
less interesting time dependent term ~H ofEq. (3.9) and leave the true stochasticity in the
Poincare map for data analysis.
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FIGURE 4: (a) Poincare surfaces of section with vs =8xIO-4 , ~~ =0.5, a=2.5°, and r=0.5. (b) The magnified

center region showing 5:1, 3:1,4:2 and 5:3 resonances and stochasticity due to the overlapping of 3:1 and 4:2
resonances.

Figure 4 displays the Poincare surfaces of section at phase modulation tune vm = O.5vs .

A single resonance island in small amplitude region arises from the 1:1 parametric
resonance. There is another small 1:1 island near the top of the rf bucket inside the
stochastic sea. Although the modulation tune is smaller than the synchrotron tune, higher
order resonances co-exist near the origin and the boundary of the rf bucket.

The locations of these resonances can· be obtained from the intercepts of a horizontal
line Vm = O.5vs in Figure 1 with resonance lines xQs, where x are integers or fractional
numbers. The intercepts are located in phase space regions near the origin and the bucket
boundary. The stochasticity arises from the overlap of these resonances. In particular, the
chaotic region near the origin exhibits a rich spectrum of resonance islands. Magnifying the
chaotic region near the origin, shown in Figure 4b, one observes that n = 3,5 resonances
lie closest to the origin while other fractional resonances with x == 1, ~, and i are evident.
These fractional resonances can result from higher order perturbations created by combining
neighboring harmonics. The stochasticity has resulted from many overlapping resonances
according to the Chirikov criterion. When the modulation amplitude is reduced to a < 10

,

those higher order resonances become too weak to be seen, however n = 3,5 resonances
remain to be important.

Another example shown in Figure 5a for Vm = 2.3vs exhibits a dominant 3: 1 resonance.
Near the bucket boundary, the ~ Qs resonance due to the second order perturbation by
combining 5:1 and 3:1 resonances is just barely recognizable. When the modulation tune
is increased, the inner islands are observed to move outward and the outer islands move
inward. At Vm = 2.32vs , the inner 3:1 UFPs coincide with the outer 3:1 SFPs shown in
Figure 5b. At this point, the inner 3:1 islands remain intact. When the modulation tune is
increased to Vm = 2.35vs , the third harmonic resonance islands disappear completely and
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FIGURE 5: Near the 3rd harmonic resonance with vs=8x 10-4 , a=2.5°, and r=0.5. In (a), two 3:1 resonances
merge toward each other at ~~ =2.3. In (b), the UFPs of the inner island bifurcate with the SFP of the outer island
at ~~ =2.32. In (c), the 3:1 resonance disappears at vm~2.35vs, and the outer secondary 8:2 resonance begins its
journey inward.

the size of the secondary 8:2 resonance island is increased. This phenomenon is called a
bifurcation, and the point where the UFPs and SFPs of the resonance island pairs merge
together, is called a bifurcation point.

The bifurcation is systematically studied by mapping the SFP and the UFP of the
bifurcation pair. Figure 6 shows the tree of bifurcation branches for resonances up to n = 5
by measuring the energy of the SFPs. The bifurcation tree would be extended to higher
harmonics if the modulation tune is increased further. But as the resonance harmonic, n,
increases, the strength function gn becomes smaller as shown in Figure 2, and thus the
island structure may become invisible. In Figure 6, 1:1, 3:1, and 5:1 resonances are the
primary parametric resonances, and 4:2 and 8:2 resonances are the secondary resonances.
The solid lines are Vm = xQs with x = 1, 1,3, .... The bifurcation of SFPs and UFPs
occurs near the top of the Vm = xQs curve where the maximum energy is E = 1.057vs, and
the unperturbed tune at this point is Qs = 0.7786vs.Starting from a small modulation tune
and increasing it upward, resonance islands originated from the origin and the separatrix
move toward the phase space point corresponding to E = 1.057vs • When the modulation
tune exceeds the maximum of a resonance branch x Qs, the resonance structure vanishes.
Thus the response of an external phase modulation reveals the basic frequency spectrum of
the unperturbed Hamiltonian system.

Although the 4:2 resonance apparently has 4 islands, shown in Figure 4b, it differs from
4: 1 resonance by the fact that a single Poincare surface of section, by plotting the particle
trajectory once every v~ revolutipns, traces only two islands, while the Poincare surfaces
of section for the 4: 1 resonance will trace all four islands.

Since the characteristic tune of a double rf ,system with r > 0.5 has two peaks
(see Figure 1), it would be interesting to examine the resonance overlapping criterion
by performing numerical simulations. Figure 7 shows the Poincare surfaces of section
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FIGURE 6: The rfphase modulation tune vs. the energies of SFPs for 1:1,4:2,3:1,8:2, and 5:1 resonances are
shown as circles, which are obtained from numerical simulations with Vs =8 x 10-4 , a=2.5° and r=0.5. The tree
of bifurcation branches is compared with fractional multiples of the unperturbed synchrotron tune, shown as solid
lines.
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FIGURE 7: The Poincare surfaces of section obtained from the numerical simulations with vs =8x 10-4 , a=2.5°
and r=0.6. In (a), ~7 =0.3, and in (b), ~7 =0.6055.
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obtained from numerical tracking at r = 0.6 with a modulation amplitude a = 2.50 and
Vs = 8 X 10-4 . The example with Vm = 0.3vs is shown in Figure 7a, where the complicated
Poincare surfaces ofsection can be understood easily by draw a horizontal line of Vm = 0.3Vs

in Figure 1. This horizontal modulation line cuts through the synchrotron tune for r = 0.6
at 4 phase space locations. The inner buckets near the origin appear as two small islands
surrounded by stochastic sea, which corresponds to the separatrix of inner buckets. At the
center of each inner bucket, there is a 1:1 resonance visible in Figure 7a. This stochastic
sea of the inner separatrix arises from the Vm = 0.3vs line cutting through the inner peak
and its rational multiples of the synchrotron tune shown in Figure 1.

The island with the SFP located on the 8 axis corresponds to the 1:1 parametric resonance
that the line Vm = 0.3vs intersects the outer peak of the synchrotron tune. As the modulation
tune increases, the width of the stochastic layer at the center region becomes wider, the inner
1:1 island moves outward, and the chaotic layer near the top of the rf bucket is also getting
wider. When the resonance tune exceeds Vm = 0.6055vs as shown in Figure 7b, the outer
1:1 resonance island of the outer peak is visibly embedded in the stochastic sea of the bucket
separatrix.

3.5 Mechanismfor higher order resonances

We have found that the secondary parametric resonances, generated by neighboring
harmonics, contribute significantly to the stochasticity in the Poincare surfaces of section
(see Figure 4b and Reference 9). Here, we discuss the mechanism for the secondary
parametric resonances based on the canonical perturbation method.

We consider the case thatn2Qs(J) ~ Vm ~ nl Qs(J), where the Hamiltonian ofEq. (3.5)
is dominated by nl:l and n2:1 resonances and can be approximated by

H ~ E(J) + aVm [Ignl (J)I cos(nll/f - vm() + Xnl)

+lgn2(J)I cos(n2l/f - vm () + Xn2)] ,

where nl and n2 are neighboring harmonics. Using the generating function

the new action-angle variables (lfr, J) are related to (l/f, J) by

(3.17)

(3.18)

(3.19)
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The new Hamiltonian becomes
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if == E(J)+[(nlQs-vm)Fnt +avmlgnt(J)I]coS(nl..fr-vm8+Xnt)

+ [(n2Qs - vm)Fn2 +avmlgn2(J)I]coS(n2..fr - vm8 + Xn2)]

1 aQs - - 2+ - ---[n1Fnt COS(nl1/f - vm8 + Xnt) + n2Fn2 COS(n21/f - vm8 + Xn2)]
2 aJ

[
algntl -. algn2 1 - ]

+ aVm ---- cos(nl1/f - vm8 + Xnt) + ---- cos(n21/f - vm8 + Xn2)
aJ aJ

(3.20)

- . avmlgnt (J)I d
where we used 1/f ~ 1/f. By settIng Fnt Q _van Fn2nt s m
Hamiltonian due to the second order perturbation becomes,

(3.21)

Near the resonance condition at Vm ~ ~(nl + n2)Qs(J), the Hamiltonian can be
approximated by

(3.22)

where

_ 1 aQs aVm algntl aVm a Ign2 1
g(nt+n2) == ----nln2FntFn2 + ------n2Fn2 + -----nlFnt

2 aJ 2 aJ 2 aJ

is the resonance strength for the secondary (n 1 +n2) : 2 resonance. These higher order
resonances are responsible for the stochasticity shown in Figure 4b.

3.6 Attractor and beam splitting

The synchrotron motion for a single rf system has been well studied. 11 When the rf system is
subject to a phase modulation, or the field ofa dipole in a high dispersion region is modulated,
the beam was observed to split into beamlets, which were identified unambiguously as
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attractors associated with parametric resonances due to an external phase modulation, or
the synchro-betatron coupling due to a dipole field modulation. Here we investigate the
attractors arising from the phase 'modulation of a double rf system.

To examine the incoherent particle damping path, we numerically study basins of
attraction using Eq. (3.16) with parameters Vs = 8 X 10-4 and a = 2.5°. The damping
parameter is given by A = }~ with the~ revolution frequency fo = 1.03168 MHz and

the damping rate measured to be about ex = (3 ± l)s-I for large amplitude synchrofron
oscillations at the IUCF cooler ring. 11

Numerical simulations of multi-particle are performed near the 1:1 resonance. The phase
space is rotated a 90° so that the SFP of the 1: 1 resonance lies on the 4J axis. With phase space
damping, these SFPs become attractors. The basins of attraction depend on the damping
rate, modulation frequency and amplitude, and initial particle coordinates. Figure 8a shows
the final beam distribution for Vm = 0.6vs and ex = 4 s-I, where 200 x 200 particles are
initially distributed uniformly in a grid of 4J E [-Jr, Jr] and 0 E [-2,2]. Each particle is
tracked for 416, 600 revolutions, and its initial coordinates are numbered according to the
attractor location. In this case, most of these particles damp to the inner 1:1 attractor and
the center attractor. A small portion of particles damp to the outer 1:1 attractor. We- also
note that the outer 1:1 attractor is off 4J axis. This is because the damping force br~aks

the symmetry of the Hamiltonian system. By identifying each particle with its attractor,
initial phase space coordinates which converge to the inner 1: 1 attractor are shown as black
dots in Figure 8b. The basins of attraction form non-intersecting interweaving rings. The
complementary phase space converges mainly toward the center region. A small blank
region on the right side of initial phase space damp to the outer 1: 1 attractor.

4 VOLTAGE MODULATION

The voltage modulation is also important since it is related to rf noises, power supply ripple,
and wake fields, etc. A careful theoretical study is beneficial to understand coherent beam
instabilities. Hamilton's equations of motion with a sinusoidal voltage modulation are given
by

¢ = vso,

8 = -Vs (1 + E sin vm 8) (sin 4J - r sin 24J)
(4.1)

where E = ~~. Here Vm and Vm are the voltage modulation amplitude and tune. The
Hamiltonian becomes

H ~Vs82 + vs (1 + E sin vmO) [(1- cosc/J) - ~(1- coS2c/J)]

1
(1 + E cos vm 8)E - -Evs 82 cos vm 8,

2

where E is the energy of the unperturbed Hamiltonian.

(4.2)
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FIGURE 8: In (a), the phase space distribution of 200x200 particles after tracking 416600 revolutions is shown
with a=4 s-1, vs=8x 10-4 , ~~ =0.6, r=0.5, and a=2.5°. In (b), the dots, showing initial phase space points,
converge toward the inner 1:1 attractor, while the complementary region in the phase space converges mainly
toward the center region, and a small patch on the right side, left blank:, converges to outer 1:1 island.

4.1 Resonance strength function

In the analysis of parametric resonances due to the time dependent phase modulation, we
expand the momentum variable 8 into a Fourier series and .find that only odd harmonics
are nonzero. For the voltage modulation, the perturbation potential in Eq. (4.2) can also be
expanded in the action-angle variables of the unperturbed Hamiltonian with

00

82 = L Gn (J)e in1/J,
n=-oo

where Gn (J) is given by

Jr

GnU) = 2~ ! /Pe-in
1/fd1/!,

-Jr

with G-n = G~. Using Eqs. (3.3) and (3.4), we obtain

00

Gn(J) = L gl(J)gn-l(J),
1=-00

(4.3)

(4.4)

(4.5)

Since gn, given in Eq. (3.12), contains only odd harmonics, the factor Gn is not zero only
for even harmonics.
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Since the zeroth harmonic of the voltage modulation is the average of the potential energy
and the sum of the square of the phase modulation strengths is related to the kinetic energy,
the sum rule for a conservation of total energy is given by

n=-oo

~ 2 Qs
Go = L.J Ignl = -J,

Vs
(4.6)

where the latter equality is obtained from the sum rule in Section 3.3. The sum rule for the
strength function Gn of the voltage modulation is given by

(4.7)

which can be expressed as a sum of elliptical integrals of the first kind, the third kind, and
their derivatives.

Using Eq. (4.5), we obtain

G2(I) = gi +L g-n+2gn·
n#l

(4.8)

Thus the 2: 1 resonance strength function for voltage modulation is roughly proportional to
the square ofthe 1:1phase modulation strength, i.e. G2 ~ gi, which is a good approximation

up to ¢ = 1200
• The analytic solution for Gn , obtained in Appendix C, is

4KQ; qn/2 [~sinn;;o nJr ("nJrUO)] nJr
Gn =---- "12 " +-cos -- cos-,

Jrv 2 1 - qn . (j) K 2K 2s sm 2

(4.9)

where Kand UQ = F(arccos ( Jk;-~ ) ,k) are respectively the complete and the

incomplete elliptical function of the first kind with modulus k = J! (l + sin2 *), and

q = e-rr K' / K. Note that the Go can be obtained from the sum rule of Eq. (4.6). Figure 9
shows IGn I as a function of ¢.

4.2 Analysis ofparametric resonances

The Hamiltonian, expressed in terms of (J, 0/), becomes

1
H = E(J) + EE(J) cos vm(} - 2EVs L IGn(J)I[cos(n1/J - vm(} + Xn)

n~O

+ cos(nlfr + vm() + Xn)]. (4.10)
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FIGURE 9: The resonance strength parameter Gn for voltage modulation obtained from analytic formula is
shown as a function of the maximum phase oscillation amplitude.

where Xn is the phase of Gn(J). If the modulation tune Vm is close to one of the parametric
resonances, e.g., Vm ~ n~, then the resonance term contributes coherently to perturb
particle motion. We transform the Hamiltonian to a resonance rotating frame by using the
generating function,

Vm Xn
W2(Vr, /) = (Vr - -() + - )/.

n n

The new action angle variables are given by

(4.11)

J = /,

and the new Hamiltonian becomes

and
Vm Xn

y = Vr - -() + -,
n n

(4.12)

Vm 1
H = E - -/ - -EvslGnl cosny + ~H(/, y, (),

n 2

where the time dependent part is given by

- ~EVs L IGll [cos [lY + (~-1) vm (} + Xl - ~xn]
2 l?:2,l=j;n n n

+cos [t y + (~+ 1) vm(} + Xl - ~xn]].

(4.13)

(4.14)
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Since the time dependent part ~H, proportional to E, contributes incoherently to particle
motion, it constitutes a small perturbation to the Hamiltonian flow. The time averaged n:l
resonance Hamiltonian is

Vm 1
H = E(I) - -I - -EvslGnl cosny.

n 2

The fixed points of the time averaged Hamiltonian are given by

nYFp = lJT, (l = 0, 1,2,3...),

(4.15)

(4.16)

(4.17)

where (YFP, Ipp) are phase space coordinates of fixed points, G~ is the derivative of strength
function. For a small perturbation with E « 1, the resonance condition of Eq. (4.16) is
approximately given by Vm ~ n Qs, where n is an even number.

4.3 Resonance islands and bifurcation

To confirm the existence ofresonance islands discussed in Section4.2, we perform numerical
simulations for the following difference equations

¢n+l' = ¢n + 2JTvson,

On+l = On - 2JTvs(1 + E sin 2JTnvm)[sin ¢n+l - r sin2¢n+ll - AOn,

with parameters E = 0.05, Vs = 8 x 10-4 , and the phase damping parameter A = O.
The modulation tune Vm is varied. Figure lOa shows Poincare surfaces of section with
Vm = 0.75vs, which is close to Qs. We note that there are two pairs of islands due to
the second order 2:2 resonance with SFPs located on 0 and ¢ axes respectively. The 2:2
resonance differs from the 2:1 (n = 2) resonance because it bifurcates at Vm = Qs.

Near the boundary of the rf bucket, the chaotic layer arises from many overlapping
resonances, where many parametric resonances collapse in a small region of the phase
space with sizable strength functions. However, there is no stochasticity observed near the
center region, where many higher order resonances overlap. The magnified center ,region,
shown in Figure lOb, exhibits only n = 2, 4 and 6 resonances. This can be understood from
the second order perturbation theory discussed in Section 3.5. Since Gn(l) of Eq. (4.5)
depends on a higher power of action than that of gn (I) (see also Figure 9), second order
perturbation for voltage modulation is less. important than for phase modulation when the
oscillation amplitudes are small.

To study the bifurcation of the 2: 1 resonance, numerical simulations are performed by
varying the modulation tune near n = 2 resonance. Figure lla shows Poincare surfaces of
section for Vm = 1.3vs with E = 0.05, where the inner and the outer 2:1 islands appear
as pairs. Here, the outer 2: 1 islands are still embedded in the chaotic region. When the
modulation tune is increased, inner islands move outward and outer islands move inward,
and stochastic layer width increases. Some visible tertiary islands surrounding the outer 2: 1
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FIGURE 10: Poincare surfaces of section obtained from numerical simulations for voltage modulation with
vs=8x 10-4 , ~~ =0.75, £=0.05, and r=0.5. In (a), the -inner 2:1 primary resonance and two 2:2 secondary
bifurcation pairs can be observed, and in (b), the center region is magnified to exhibit the primary 4: 1 and 6: 1
resonances.
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FIGURE 11: Poincare surfaces of section obtained from numerical simulations for voltage modulation with
vs=8x 10-4 , £=0.05, and r=0.5 are shown in (a) ~~ =1.3, (b) ~ =1.4 and (c) ~~ =1.55 respectively. In (c), the
bifurcation between the inner 2: 1 SFPs and the outer 2: 1 UFPs pairs has just occurred.

islands are visible in Figure lIb, where Vm = 1.4vs . To analyze these tertiary islands, one
has to expand the Hamiltonian of Eq. (4.15) in terms of "proper action" around the 2: 1 SFP
and include the dominant time dependent components from Eq. (4.14).

When the modulation tune reaches Vm = 1.55vs , as shown in Figure lIe, SFPs of inner
islands and UFPs of outer islands have merged, and the inner islands have just disappeared.
In this example, the second harmonic resonance disappears completely at Vm = 1.56vs .

Similarly, 4:1 and 6:1 resonance bifurcations occur at Vm ~ 3vs and Vm ~ 4.5vs .
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FIGURE 12: The voltage modulation tunes vs. energies of SFPs for 2:2,2:1,6:2,4:1, 10:2,6:1 resonances are
shown as circles, which are obtained from numerical simulations with E=O.05,vs =8xlO-4 , and r=O.5. The tree
of bifurcation branches is compared with fractional multiples of the unperturbed synchrotron tune, shown as solid
lines.

The bifurcation of parametric resonances are carefully studied by mapping the SFPs of
inner and outer islands. By measuring the energy of SFPs, we obtain a tree of bifurcation
branches for parametric resonances. Figure 12 plots the modulation tune vs. the energy of
SFPs (circles) up to the 6th harmonic. Here the 2:1, 4:1, and 6:1 resonances are primary
resonances, while the 2:2, 6:2 and 10:2 resonances arise from the second order perturbation
by combining neighboring harmonics. We find that the tree of bifurcation branches follows
the tune of the unperturbed Hamiltonian, shown as solid lines in Figure 12. Increasing the
modulation tune from a lower value to a high value, SFPs and UFPs from different island
pairs approach each other, and bifurcate at about E jvs = 1.057 or ~ = 1170

•

Since the tune of a double rf system with r > 0.5 has double peaks, the bifurcation of
this system will be complicated. The basic physics involved is similar to what has been
discussed earlier in this section.

4.4 Attractor and beam splitting

For a single rf cavity, the effect of rf voltage modulation on synchrotron motion was expe
rimentally studied,12 where experimental data revealed resonance structure and bifurcation
of attractors. With electron cooling, beam particles were observed to damp incoherently
toward SFPs of resonance islands in the resonance rotating frame. These beamlets were
observed to rotate around the origin.
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FIGURE 13: In (a), the final phase space distribution of 200x200 particles after tracking 192200 revolutions is
shown with a=4 s-l, vs=8x 10-4 , ~~ =1.3, r=0.5, and E=0.05. In (b), the dots, showing the initial phase space
points, converge toward the inner 2: 1 attractors, while the complementary phase space points converge mainly
toward the center region, and those small patches, left blank, converge to the outer 2: 1 and higher order resonances.

For a double rf system with voltage modulation, we study the basin of attraction
numerically by using the difference equations (4.17) with parameters Vs = 8 x 10-4 and
E = 0.05. The resonance 2:1 at Vm = 1.3vs is examined with SFPs located on ¢ axis. The
case a = 14 s-1 is identical to Figure 11a with a 90° phase space rotation. The damping
force is included in our numerical simulations, and beam particles are observed to damp
incoherently toward SFPs. The attractor that a particle will damp to depends on the damping
rate, the modulation amplitude and tune, and the initial phase space coordinates. Since there
are several SFPs in the bucket, particles in a beam bunch may converge to different attractors
and result in beam splitting.

The basins of attraction can be obtained from the damping path in multiparticle tracking.
Figure 13a shows the final distribution of such numerical simulations, where 200 x 200
particles are initially distributed uniformly in a grid of ¢ E [-Jr, Jr] and 8 E [-2,2] with
parameters Vs = 8 X 10-4 , vm = 9~1 and a = 4 s-1. Particles are tracked for 192200
revolutions. In this case, most of these particles damp to the center region and the inner
2:1 attractors. Two small patches on 8 axis correspond to the outer 2:1 attractors. These
inner and outer 2: 1 attractors form bifurcation pairs. A small portion of particles near the
separatrix damp to an attractor of higher harmo:r:ic resonances. The basins of attraction
for initial phase space coordinates are shown in Figure 31b, where dots are initial phase
space coordinates which converg~ toward the inner 2: 1 attractors, while the major portion of
the complementary phase space coordinates damp toward the center attractor. Some small
patches, left blank, converge toward various other attractors shown in Figure 13a.

5 CONCLUSION

In conclusion, we have systematically studied synchrotron motion for a double rf system
with harmonic ratio h = 2. The synchrotron tune has been obtained analytically for different
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voltage ratios. At the voltage ratio r = V2/ VI = 0.5, the synchrotron tune becomes zero
at both the origin and the separatrix. For r > 0.5, the synchrotron tune becomes double
peaked, which reflects two inner buckets inside the rf bucket. Since r = 0.5 is preferable in
most practical applications, we have obtained analytic formula in this case for the coordinate
transformation from phase space coordinates (¢, 8) to the action-angle variables (J, 1/1).

Using these analytic solutions, parametric resonance strength functions for rf phase or
voltage modulation have been obtained. Sum rules for resonance strength functions have
been derived. Using the rate of convergence of a sum rule, one can estimate the importance
ofhigh order synchrotron mode excitation. We find analytically that the ifphase modulation
drives only odd harmonic synchrotron modes and the voltage modulation excites only even
synchrotron modes. In numerical simulations, we have however observed many rational
harmonics, which arise from higher order perturbation. Since allfractional multiples of the
synchrotron tune collapse to zero at both the origin and the separatrix at the voltage ratio
of r = 1, overlapping parametric resonances cause chaos at the origin and the boundary of
the rf bucket. The width of the stochastic layer depends on the modulation frequency and
amplitude.

To understand the effects of parametric resonances on beam motion, we have systemati
cally studied the dependence of SFPs and UFPs on modulation tune. The tree ofbifurcation
branches for these fixed points follows the intrinsic tune of the unperturbed Hamiltonian.
With phase space damping due to electron or stochastic cooling, SlfrPs'become attractors.
Particles damp incoherently to these attractors, while these attractors precess coherently
about the center of the rf bucket at the synchrotron tune Qs(ISFP).
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APPENDIX A: THE SYNCHROTRON TUNE

The Hamiltonian equation for a double rf system with h = 2 is given by

1 2 [ r ]H = 2vso + Vs (1 - cosl/J) - 2(1 - cos2l/J) , (AI)

where Vs is the synchrotron tune of the primary rf system, r = ~~ is the voltage ratio of
two rf cavities. For a given energy E, the action variable is given by

~

J(E) = _1 j Odtj) = .!.. f odl/J,
2Jr r T{

-~

(A2)

and the synchrotron tune is then given by Qs = (g~)-I. Two cases are discussed below:

Appendix Ai: The r ~ 0.5 Case

Maki h f · bl . - 4> d,h - 2dt - ~ d - /ng a c ange 0 vana es uSIng t - tan 2' 'Y - l+t2 ' to - tan 2' an r - t to, we
obtain

1
8J 2(I+t5) f dr
8E - [ 2]1/2 { ( 2 )}1/2. (A3)Jrvsto 1+ (1 + 2r)to 0 (1 _ r2) 1-2r+to + r2

t5 [1+(1+2r)t5]

The synchrotron tune becomes10

Qs rrJ(l - 2r) + 2t6 + (l + 2r)t6
=

2(1 + t6)K (kl)

where K (kl) is the complete elliptic integral of the first kind with the modulus

(A4)

(A5)
tOJl + (l + 2r)t6

kl = .J(l - 2r) + 2t6 + (1 + 2r)t6

This formula is also valid for r > 0.5 and ¢J > 4Jb, there l/Jb is the intercept of the inner
separatrix with the phase axis.

Appendix A2: The r > 0.5 Case

For r > 0.5, the origin of phase space 0 = l/J = 0 becomes a UFP of the unperturbed

Hamiltonian. There are two SFPs located at 0 = 0 and l/J = ±l/Jf where cos 4>{ = ir.
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The inner separatrix, which passes through the origin, intersects the phase axis at ±QJb with
lPb _ 1

cos 2" - 5"
A given torus inside the inner bucket corresponds to a Hamiltonian flow of constant

Hamiltonian value. Let QJ1 and QJu be the lower and the upper intercepts of the torus with

phase axis, i.e., ~u = ~ and sin ~ = JSin2 t/J1 - sin2 ~. The derivative of the action with
respect to the energy for a torus becomes

aJ J(l + ta)(1 + t[) Itu
dt

- - (A6)
aE - rrvs$ 11 J(ta - t 2)(t2 - t[)'

where tu = tan lPi and t1 = tan 1:f, t = tan ~, and dQJ = 1~:2" Thus the synchrotron tune is
given by

Qs $~~ 1

Vs = J(l + ta)(1 + t[) K(k2) ,

Jt2 _t2

where modulus k2 = --f;;-l-.

APPENDIX B: ACTION-ANGLE VARIABLES

Using the generating function

lP

F2(~, J) =I 8(~')d~',
~

the angle variable is obtained from

1/1 = aF2 = aE [t/J ~d~' = Qs [t/J d~.
8J 8J J~ 8E VS J~ 8

2 t'

Qs (1 + to) I ---;::::===d=T===
Vs to 11+ 2t6 1 (l-r2)(_1_+-r2)

V 1+2t6

Qs Jl+t6
= -- u.J2vs to '

with

cnu

U I dx k' = J1 - k2 ,
= J(I-x2)(k'2+k2x 2)'

1

(A7)

(Bl)

(B2)
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where k = 1+2t5 dh J b· 11·· If· .. b2(1+t5) an t e aco Ian e IptIca unction, cnu, IS gIven y

tan ~ 2rr 00 qn+1/2
cnu ~ --A = --L 2 +1 cos[(2n + 1)1/1],

tan ~ kK (k) n=O 1 + q n

withq = e-11:K'/K, K' = K(~) and

rru
1/t = 2K(k)'

From Eq. (B3), one obtains

¢ = 2 arctan (tan ~cnu) ,
and from Hamilton's equation of motion, one gets

(B3)

(B4)

(B5)

(B6)8 = -2h sin (t) tan (t) snu d~u .
2 2 1 + [tan ~cnu]2

When the voltage ratio is not equal to 0.5, Eqs. (B4-B6) remain valid provided that the
modulus is replaced by k1 of Eq. (A5) or k2 of Eq. (A7).

APPENDIX C: RESONANCE STRENGTH FUNCTION

Appendix. Cl: The gn Factor

We expand 8 in a Fourier series with

00

8 = L gn(J)einljf ,
n=-oo

where gn (J) can be obtained from the inverse Fourier transform,

11:

~ = 2~ f oe-im/!d1/t.
-11:

Using Eq. (B5) and the transformation d1/l = Q~d¢, we obtain
Vso

11: [A ]inQs' ¢ 2K1/I
gn = :rrv

s
f e-

1m
/! arctan tan lcn (~) d1/t.

-11:

(C1)

(C2)

(C3)
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The task is to evaluate the integral,

To evaluate this integral, we integrate the complex function

. [~(2KZ)]e-lnz arctan tan 2"cn ----:;-

249

(C4)

along the parallelogram ABCD with vertices -rr, rr, rrT: +·2rr, rrT: respectively, where
T: = i f .Since cn(2~Z) has a period of2rr, the integrands are equal along the path AD and
BC, and therefore fDA + fBc = O. On CD, Z = x + rr(r + 1), where x decreases from rr
to -rr as the integrating path goes from C to D, the integral becomes

lre- in<x+1rT:+1f) arctan [tan ~cn (2~X + 2iK' + 2K) ] dx

T(

K'
where q = e -T( K . Therefore, we have

(C5)

f e-inz arctan [tan ~cn (2:Z)]dz = [1 - (-l)n q -n]I. (C6)

On the other hand, the contour integral can be expressed as

(C7)

i sn (2KZ) dn (2KZ)
K tan 2 1 T( T( -inz--- r --------2e dz.

mr 1+ [tan ~cn e~z)]
Using the Cauchy theorem, we can evaluate the integral by finding the residue of poles of
the integrand. Note first that the pole of cn(u), sn(u) and dn(u) are all located at u = i K'
and i K' + 2K, which lj~s on the integration path. However, these poles cancel each other
in the integrand and lead to cancellation between the paths DA and BC discussed earlier.
Thus poles of the integrand are given by the conditions

~ (2KZ)±i + tan "2cn ----:;- = O. (C8)
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Usingthefactthatcn(x+2K) = -cn(x),cn(-x) = cn(x),andcn(x+K+iK') = ik~:U'
one obtains poles at

Tl Tl TlT

±2KuO ± 2" + 2' (C9)

where UQ = F(arccos ( Jk:-! ) 'k) is the incomplete elliptical function of the first

kind10 The residues of Eq. (C7) at poles are respectively given by 2snu~idnuo. The integral
of Eq. (C7) is a sum of these four residue terms with the result

4Tl qn/2 . nTl nTlUO
1= ---Sln-cos--

n 1 + qn 2 2K

Thus the factor gn is given by

4Q ql+1/2 TlUO (21 + l)Tl
g21+1 = i __

s
2/+1 cos(21 + 1)- sin ----

~ l+q 2K 2

Appendix C2: The Gn Factor

Similarly, we expand 82 in a Fourier series with

00

82 = L Gn (J)e in
1{J.

n=-oo

Here Gn (J) can be obtained from

(ClO)

(Cll)

(C12)

Gn = _1 j1r IPe-in1/fd1/f = _1 Qlj1r (dl/J)2 e-in1/fd1/f. (C13)
2Tl -1r 2Tl Vs -1r d1fJ

Using the same method as discussed above, we integrate the complex function along the
same contour ABCD, and obtain

(C14)

where

2 2 '" sn2 (2KZ) dn2 (2KZ)8Q K 2 l/J 1r 1r .
f(z) = s tan - e-znz • (C15)

1f3
V; 2[1 + tan2 ~cn2 (2~Z )r

The second order poles of the function f (z) are also given by (C9). The integration is then
obtained from the sum of these four residue terms, i.e.,

f f(z)dz = 21fit :z [(z - Zi)f(z)]I_z'
ABeD z=1 z- I

(C16)



Thus the Gn factor becomes

_4KQ; qn/2 [~Sin(~) nJ( (nJ(uo)] nJ(
Gn - --2---- v2 (A) + -cos -- cos-

2
,J(V 1 - qn . <p K 2K

s sm "2

where only even harmonic exists.

251

(C17)




