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A. WORK COMPLETED

1. THE MAGNETIC FIELD DEPENDENCE OF THE TEMPERATURE COEFFICIENT

OF InSb's HALL CONSTANT

This report summarizes work completed by Theodore A. Postol and submitted as a

thesis to the Department of Physics, M.I.T., June 1966, in partial fulfillment of the

requirements for the degree of Bachelor of Science.

The magnetic field dependence of the temperature coefficient of the Hall constant of

InSb was studied from 300°K-400°K and from 100-4000 Gauss. A low field dependence of

the form R H cc [cons/TB 0. 2 0 was found for one sample orientation, and no field depen-

dence was observed for a second orientation. A magneto resistance experiment was also

performed in order to further study this field dependence. No dependence was observed.

This directional dependence does seem to exist, and does not seem to be explainable in

terms of geometrical effects. It is still not understood.

M. W. P. Strandberg

2. SUPERCONDUCTIVE TUNNELING

This work has been completed by Stuart C. Schaffner and submitted as a thesis to the

Department of Physics, M.I.T., June 1966, in partial fulfillment of the requirements

for the degree of Bachelor of Science. A summary of the thesis research follows.

The theory of superconductivity is developed in sufficient detail to provide a back-

ground for understanding the phenomenon of superconductive tunneling. The formalism

*This work was supported by the Joint Services Electronics Programs (U.S. Army,
U.S. Navy, and U.S. Air Force) under Contract DA 28-043-AMC-02536(E).
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developed is then used to obtain expressions for the tunneling current. After a brief

review of excited-state tunneling, Josephson tunneling is developed in detail. The elec-

trodynamic equations obtained are then applied to Josephson junctions. Special attention

is given to the DC characteristics of Josephson junctions, and the effect of magnetic

fields. The possibility of using one- and two-junction devices as sensitive magnetome-

ters is developed. Problems of noise, drift, and size are investigated as limiting factors

on the ultimate sensitivity of such a device.

M. W. P. Strandberg

B. GREEN'S FUNCTION SOLUTION OF THE BOLTZMANN EQUATION IN THE

ANOMALOUS SKIN-DEPTH REGION

The classical transport properties of a metal may be determined with the Boltzmann

equation. In particular, it is possible to understand the experimental phenomena of the

"radio-frequency size effect." I For this case consider a single metal crystal charac-

terized by a spherical Fermi surface and a scalar mean-free time, t . The real space

geometry of the problem may be taken as follows: The metal is infinite, and we shall

be interested only in points measured along the positive Z-axis. A uniform magnetic

field points along the X-axis, and a time-variant electric field in the Y-direction is

impressed at Z = 0. The momentum space coordinates are the energy -E, the momen-

tum parallel to the magnetic field -PH, and T, the dimensionless time that the electron

spends in its orbit. T may be thought of as the angular coordinate of the electron's

motion around its orbit. The angle may exceed 2w, thereby indicating that the electron

has completed more than one revolution. The linearized equation for the change in the

distribution function caused by the electric field is

af af f af
V + - + if + 1= eV E(z) o (1)z z 0o a 1 t y aE '

where ~2 is 2wr times the cyclotron frequency.

With the following definitions: 0 is the angle between the magnetic field and the
af af

momentum; f (z,T, 0) = (z,T,0) 0EF ); and ~ Z/Do, where Do is the

diameter of the largest orbit, the equation becomes

sin O 8a EDO sin 0 sin T
2 cosT - (, T, 0) + + yo 0E(-).- (2)

This equation can be solved by introducing a Green's function. The first step, however,

is to notice that 0 does not appear as a differential operator. We shall therefore treat

Eq. 2 as a partial differential equation in only two variables, and 0 will appear as
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a parameter in the solution. If we let

sin 0
2 a

and

i 1

-+ t =2 Yo'o O o

the equations may then be written

a a
a cosT- +0 aT + 'Yo] (, T)

eD
o

EF
a sin TE(a).

The boundary conditions are 4(a,7) = (,T+ 2w) and z=o0 = 0 (4 is obviously periodic

in 0). The solution to Eq. 3 is

eD

4(,7) = G (g,g') E OE(a') d ',
F

where G (,') is the solution to the equation

a
a cos 7 +yo UToJ G =(,6') = sin Ta 6(-a').T 0

As long as the metal is infinite in both directions, G is only a function of a - '.

8 a
a c o s T + +y G(a,T) = sin T a 6(a).0

At all points in phase space, except the "line" a = 0, this is a first-order,

linear, homogeneous, partial differential equation in two variables.

quasi-

8a a
a cos 7T- + + y G(,) = 0.

The function has a discontinuity across the a = 0 line.

G(0+,7) - G(0 ,T) = sin T

- COS T

Solutions to quasi-linear, partial differential equations can be obtained as follows: The

equation
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aG aG
P(T, ,G) aT + Q(T,=,G) R(T,,G)

has solutions of the form

f[U(T, ,G), V(T, ,G)] = 0,

where f is a perfectly arbitrary function. U + V are the two independent solutions of

dT dG
P =-- R

From Eq. 5, this becomes

d_ dT dG (6)
a cos T 1 -y G

o o

The independent solutions are U = Z - a sin T and V = y 0 T + In G. Therefore, the solu-

tions to Eq. 5 are of the form

f(Z-a sin 7, y T+ln G) = 0. (7)

Two types of functional forms for f can be readily handled. The first type is f(U, V)=
-YoT

g(U) h(V). This function implies G = e , independent of t. This solution will never fit

the boundary conditions. The second type of functional form is f(U, V) = g(U) + h(V). This

implies

G = A(Z-a, sin ) e 0 (8)

where A is an arbitrary function. We demand that G be periodic in T and that it have a

discontinuity at Z = 0, thereby determining the form A must have.

This approach can be made to yield solutions that solve the equations and fit the

boundary conditions. These solutions can be generalized to take care of the effect of an

interface for a semi-infinite metal. The question remains, however, whether there are

other solutions (corresponding to other forms of f) which also solve the problem. The

answer is that our solution is not mathematically unique. But it is asserted without proof

that our solution will contain a correct and complete description of the physical, nontran-

sient phenomena.

The form A must take is determined in the following way: Z - a sin 7 is the trajec-

tory of the electron in phase space (see Fig. III-1). Each time the trajectory crosses the

= 0 line, A suffers a discontinuous jump of magnitude sin T/cos T. In an interval of 2wr
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Fig. III-2. Area of phase space inside which G( ,,O) is
nonzero.
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Expression for G(a,T, 0).

G(a,T,O) = 0 if -
a

sin T >1

(a/a - sin T) -eyoT e-Yo[ - sin (-/a + sin T)]

1 - (a/a - sin Tr)
0

+ e

if < 0

- <T <2
2 2

-1 (a/a o - sin T)

-e y0 1-(a/a -sin T)
O

-yo Yo[-sin- (-/ao+ sin T)]
- T

+ -1
-0yo[2- - sin (-/a o + sin

if > 0
T 3rr

2 2

-1

-y 2w
1- e

(a/a sin T)

1 - (/a - sin T)
O

-y T  -[-sin - I (-1/a + sin T)]
e e

- [- (-/a + sin T)
+e

if 4 < 0
T. 3w
2 2

±._ -l- t 1 3
± -1 -1 _1 3 Tr
sin (a) indicates the larger and snailer values of sin (a) for the range -- sin- (a)<

if

0 < a < 1, then

1 < a < 0, then

w + -1
< sin (a) < it

+ -1 3Tw
7r < sin (a) < 2

and 0 < sin 1 (a) < ~

2

G(a,T,0) =
-1

-y o2e
1--e

G(a,T,O) =

G(a,T,) =

T)]

Note. That is,

Table III-1.
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in T, the trajectory crosses = 0 twice. Both jumps appear to the electron to

be in the same direction. If the electron were initially located too far from the

a = 0, it would not cross. Therefore, G is taken to be zero outside of the lines

in Fig. III-1.

A can best be determined by changing variables. Instead of considering G a func-

tion of a and T, we introduce two new coordinates: the position of a volume element

in space, a, and its age, t.

a -Y t
a - sin T, t = T, .G = A(a a) e (9)a O

o

G starts decaying from time t = 0. A little volume of phase space moves along its tra-

jectory until at time t it arrives at a = 0 (see Fig. 111-1). A(a a) changes discontinuously

then and G starts to decay again. This process repeats. Finally, G decays until t= Zw.

A is so determined that the net effect on G of the decay and the two jumps is zero. That

is, wiat was lost by the decay is made up for by the jumps.

Table III-1 gives the representations for G in its various regions. The notation

sin (x) implies the larger and smaller of the two values for

-1 37rT __< sin-1 3T
2 sin (x)< 2

Physically, the Green's function describes a very simple physical picture. A

group of electrons in the same orbit circulate. If the orbit does not intersect the

impulse field, the number of electrons perturbed is zero. This is the outer region

in Fig. III-1. For orbits that do intersect, two processes are present. First, as

time goes on and the electrons move around the orbit some of them die off. But

each time they pass through the impulse (two times per orbit) new electrons

are created. These two processes exactly cancel and a steady state is achieved.

The "strength" of the impulse is sin T X cos T. The cos T term comes from the

fact that different electrons "stay near" the impulse for different times. And the

sin T term comes from the fact that the effect of the impulse is to displace the

Fermi surface without distortion. The difference between the shifted and unshifted

surfaces goes as sin T.

Figure III-1 shows the region in which G is nonzero. The horizontal coordinate is

g/a . The maximum excursion of a/ao is ±2 or a = ±1(sin 0). Figure III-2 is a plot

of the region in T and 0 where G is nonzero. Figure III-i is a cross section in the

T, phase of Fig. 11-2.
S. R. Reznek

QPR No. 86



(III. MICROWAVE SPECTROSCOPY)

References

1. A. Fukumoto, "Ultrasonic Attenuation and Size Effect in Gallium," Ph. D. Thesis,
Department of Physics, M.I.T., 1966.

QPR No. 86


