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A. MICROSACCADES AND THE VELOCITY-AMPLITUDE RELATIONSHIP FOR
SACCADIC EYE MOVEMENTS

It has been known for some time that the velocity of a saccadic eye movement is
1-3dependent upon its amplitude. This relationship is one of the nonlinearities encountered

in a study of the versional eye movement system as a servomechanism. 4 Westheimer 1

has studied the relationship of maximum velocity to amplitude for voluntary saccades
ranging from 2 to 30 degrees. His curve shows a curvilinear relationship over the entire
range, with a tendency to saturation for larger amplitudes. Gurevich,2 in studying aver-
age velocity, has found a similar relationship, although his velocities are much lower
than VWestheimer's, as would be expected. Gurevich also found that average velocity
measurements for any given size movement were fairly constant under the following con-
ditions: horizontal, diagonal or vertical movement; variation of starting position and
direction of movement; in the presence of visible fixation points for the stimulus or in
total darkness with conditioned eye movements. He also found that average velocities
of secondary saccadic corrections fell on the same curve that he obtained for the types
of movements described above. The range of amplitudes used in his study was from 1 to
35 degrees.

The data of Gurevich indicate that a single physiological system is responsible for a
wide variety of saccadic eye movements. In an attempt to determine if microsaccades,
the small (1 to 20 minutes of arc) involuntary saccades observed during fixation, are the
output of this same system, we have made a study of the maximum velocity of such
movements.

The apparatus for presenting a fixation point and calibration points at optical infinity,
as well as the method of measuring these small eye movements, has been described 5

previously. The signal proportional to eye position was recorded on one channel of a
recorder (Sanborn Model 320). This signal was also electronically differentiated and
the derivative recorded on the other channel of the recorder. In an attempt to improve
resolution, signals proportional to the pen positions on the eye position and velocity
channels were recorded on a second recorder (Visicorder Model 1508). This provides a
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further amplification factor of approximately five. Thus two recorders were used, the

Sanborn being primarily used to keep both signals on scale and to provide an immediate

check on the linearity of calibrations. Visicorder records were used in all analyses.

Calibration of the velocity channel was accomplished by recording a triangular wave

on the eye-position channel and its derivative on the velocity channel. All gains and

calibrations were unchanged for this procedure. Thus, given the amplitude of the trian-

gular wave on the eye-position channel and the frequency of the waveform, a velocity in

degrees per second could be related to a given deflection on the velocity channel. Such
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Fig. XX- 1. Two typical microsaccades and their velocity traces. Note

that although the two movements are approximately the same

size, only one has overshoot.
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calibrations were made for at least three frequencies within the range of velocities

observed in the experiment.

Figure XX-1 shows some typical microsaccades and their velocity traces. Here

we see two movements of roughly the same size, one with a great deal more overshoot

than the other. Note that the overshoot is proportionately much greater than that nor-

mally seen with larger saccades. Figure XX-2 is a plot of maximum velocity in

degrees per second (ordinate) as a function of amplitude in minutes of arc (abscissa). It

is clear that velocity is an increasing function of amplitude for these movements.

In Fig. XX-3 we have replotted the data from Fig. XX-2 and added data points

from larger voluntary saccades and secondary corrective saccades. The latter data were

obtained in the same manner as those for the microsaccades, except, of course, that

the stimulus conditions were different. The velocity data for the larger movements are

very close to those of Westheimer. 1 The points are plotted on logarithmic scales because

of the large ranges involved. A smooth continuous curve through all data points is clearly

justified, and indicates, indeed, that microsaccades are produced by the same physio-

logical system as voluntary saccades and involuntary corrective saccades.

It is interesting that so much overshoot is observed on microsaccades as compared

with larger saccades. With further experiments designed to provide a dynamical model

of this system, it is hoped that some explanation of this observation will be forthcoming.

We are indebted to Professor L. R. Young, of the Department of Aeronautics and

Astronautics, M. I. T. , who pointed out the need for velocity data on microsaccades.

B. L. Zuber, G. Cook, L. Stark
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B. HUMAN HORIZONTAL EYE-MOVEMENT MECHANISM

This report gives an account of a continuing investigation into the horizontal eye-

movement mechanism, the first part of which was reported in Quarterly Progress

QPR No. 77 402



(XX. NEUROLOGY)

Report No. 76 (pages 343-352). Since the time of the first report, new evidence has

brought about certain changes and additions in the model of the physical plant.

The updated model (Fig. XX-5) has been used with experimental data to determine

the controller or driving-function behavior during saccadic movements. The minimum

time behavior for the model has also been calculated and is compared with the actual

behavior.

1. Physical Structure

a. Resting Length of Muscle

Robinson I describes measurements on the lateral rectus of a cat in which he finds

the rest length to be approximately 25 mm. By extrapolation from a figure of Robinson,

one finds that the distance from the length of maximum tension to that of zero tension

is approximately 12 mm. From Wilkie,3 we find that this distance just described is

Lo/2, where Lo is the length of the muscle for developing maximum tension. Therefore,

Lo/2 z 12 mm, and Lo = 24 mm. So the rest length is approximately the same as Lo

which means that if we look straight ahead, the operating point of the muscle is on the

peak of the curve. See Fig. XX-4.

Tma x

100% ACTIVITY
z

Tmax/2

50% ACTIVITY

I
0 Lo/2 L

o

LENGTH

Fig. XX-4. Active muscle length-tension relationship.

This point brings up a question about stability, since the stretched muscle will now

be operating with a negative spring coefficient. The shortened muscle, which is oper-

ating with a positive spring coefficient, is more highly activated and predominates,

thereby ensuring stability at any resting position. As for the dynamic situation, during

a movement toward center where the stretched muscle is more highly activated than the

shortened one, incremental instability may exist. This means that for a given degree

of activity the force pulling on the eye increases during the movement, although the eye

is moving in the direction of the force. As the desired position is approached and the
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activity of the stretched muscle falls off, the stable situation described above prevails.

A factor that lessens this temporary incremental stability is the flatness of the

length-tension muscle characteristic in the neighborhood of the peak. Because the

NERVE STIMULATION
-------I~

Fig. XX-5. Model of the physical system.

muscle does operate in this flat region, the contractile element is modeled as a tension

source in parallel with nonlinear damping (Fig. XX-5).

b. Passive Tension

With the active muscles represented as tension sources with appropriate dynamics,

the passive tension becomes important in bringing about an equilibrium of forces when

the two muscles have different degrees of activity. From Ruch and Fulton, we find the

length tension slope of a relaxed muscle to be Tmax/L o . For the human, assuming

Tmax = 500 gm and L = 4 cm, we obtain Kp z 125 gm/cm; and since the radius of the

eye is approximately 1 cm, Kp z 2 gm/degree.

c. Active Muscle Elasticity

3
Wilkie states that at T = T 3 per cent stretch occurs in the active muscle.

o max
For T = 500 grams, and a length of 4 cm, this yields a spring coefficient of

max

K = 500 gram
A 0. 03 X4 cm'

or since I cm 1 rad, K A = 73 grams/degree.

d. Active Damping

Hill,5 who has spent many

accepted analytic description of

equation:

years studying muscle behavior, advanced the most

a shortening active muscle behavior in the following

v(T+a) = b(T -T),0
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wxhere T is tension, v is velocity, T is static tension, and b is one-fourth the maxi-

mum shortening velocity of the muscle. This equation can be rearranged to yield

T +a
T = T v.

o v+b

Now, a z 0. 25T . Therefore

T=T - (1.25vT) v,o v+b

and the active damping coefficient is

1. 25 T
o

Ag v + b

Here, T is the tension with zero velocity and with the muscle at length L . T
O O O

increases with increased activity to a maximum value of T . We then see that themax
active damping coefficient of a shortening muscle is proportional to the degree of activ-

ity and is also a function of velocity.

It can be shown from the model, Fig. XX-5, that during an isometric contraction,

b= 0.25 K
K A

Now,

T
K A max

A 0. 3L'

where L is the rest length of the muscle. Therefore

T
b = 0. 0075 X X L.T

max

6
Assuming similar time behavior between cats and humans, we refer to Adler. He

shows an isometric contraction of a cat; L - 2. 5 cm, T/T = 210, and b = 3 rad/sec

or 1800/sec. Recalling that 4b = maximum muscle velocity, we will take b = 2500/sec,

since velocities as high as 800/sec have been reported.

Katz 7 showed that the damping coefficient in an active muscle that is being lengthened

is quite different from that in one that is shortening. It is still proportional to activity,

but much larger than that for the shortening muscle and no longer a function of velocity.

From Katz 7 we find

B 12. 5
Ant b o
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Furthermore, Katz states that forces greater than 1. 8 Tma x in the lengthening muscle

can damage the muscle. This factor will be an important consideration in calculating

the minimum time behavior of the model.

e. Primary Position Tension

Breinin8 shows a graph of integrated muscle potential vs eye position. Linearizing

this curve, we obtain Fig. XX-6. For a 150 movement, the difference in tension

TAg - TAn t : 15XKp = 30 grams.

In Fig. XX-6 this corresponds to 6. 4-4. 8, or 1. 6 units on the ordinate. Inman et al.

found a linear relation between electric integral and tension with constant muscle length.

64

56

4.8-

Fig. XX-6. Integrated muscle activity
vs eye position.

-15 0

EYE POSITION (degrees)

We shall assume that

we shall now utilize.

the small length changes, 150, do not invalidate this relation which

30 gm x 5. 6 units = 105 grams.
1. 6 units

Thus, the tension in

grams.

each muscle in the primary position, 00, is approximately 100

f. Passive Damping

An experiment by Robinson I was used to determine the passive damping. The eye

was activated for the zero-degree position, forced to the 40 position and released. Upon

release, if we neglect inertia, it can be shown that Bp6(O) = KpO(O).

With Kp = 2, 0(0) = 4 and 0(0) = 520 /sec, we obtain Bp = 0. 016 gram sec/degree.

For convenience, all the parameters of the system illustrated by Fig. XX-5 are

tabulated:
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B = T 1.25 gram sec
Ag Ag 2 5 0 + degree

12. 5 gram sec
Ant Ant 250 degree

K A = 73 grams/degree

Kp = 2 grams/degree

1p = 0. 016 gram sec/degree

J = 0. 000047 gram sec2/degree.

2. Controller Behavior

The basic configuration is shown in Fig. XX-7. The target and output are known,

and we would like to know the behavior of the control variable, U

k,(U) = e out

-1U o ( ut

If WN is known and if W - 1 exists, then U can be found. Here, U is the nerve stimu-

lation to the agonist and antagonist muscles.

This can be measured directly in the form of electromyograms. The accuracy and

ein (TARGET) /U(CONTROL VARIABLE) eou
t, (OUTPUT)

CONTROLLER PLANT

Fig. XX-7. System configuration.

-

< o100 - p 0final
Zz

Z

init ial tfinal

Fig. XX-8. Antagonist behavior during
a saccadic movement.
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readability of such measurements, however, leaves much to be desired, except in

static situations.

Since W is known and W - 1 exists, experimental output data can be used to

calculate U. A problem does exist in that there are two unknowns, TAg and
1 0

TAnt . The electromyograms of the antagonist (see Davson ) are taken as the

more readable of the two. On this basis, TAn t is assumed to have the behav-

ior shown in Fig. XX-8. This leaves TAg as the only unknown and it can be

determined.

In the form assumed for TAn t , we require that before the movement

Ant ( 100 - )(initial

and after the movement,

TAn t = 100 - ( (final).

We also desire that during the movement, TAnt ~ O.

This was programmed on the computer first by generating a function gl such as that

shown in Fig. XX-9 with the corners coming right after the start of the movement and

right before the end of the movement. This function gl was then divided by 1 + KO to

g1
yield g 2 ; that is, g 2 = 1 . K was taken to be of such size as to cause g 2 to be very

1 + KO
small throughout the movement.

100 - 1-- einitial

0 -00- - -'- Ofin

TIME

Fig. XX-9. gl artificial function used

in generating TAnt*

The behavior of TAnt is shown in Fig. XX-10, together with the resulting behavior

of TAg. It is seen that sometimes there is a burst of activity in TAnt toward the end

of the movement. This is caused by overshoot in the movement (0 going negative) and
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Computed controller behavior during
saccadic movements.

400-

300 --

200 --
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O 8 INITIAL = 12.5'

0 8 INITIAL 6.25

* 8 INITIAL = 0

6.25 1.25 18.75

SIZE MOVEMENT (degrees)

Fig. XX-11. Computed maximum force during
saccadic movements.
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by the way g2 is generated, that is,

g1
1 + KO

Davsonl 0 reports that such bursts have been observed in the antagonist, and, for this

reason, no attempt was made to remove the peak.

The reciprocal innervation is well displayed here. The maximum force applied by

the agonist for various movements is tabulated below and displayed in Fig. XX- 11.

Movement (degrees) Max TAg (grams)

0 to 6.25 143

0 to 12.5 240

0 to 18.75 323

0 to 25.0 369

6. 25 to 12. 5 172

6. 25 to 18.75 254

6.25 to 25.0 337

12. 5 to 25.0 283

18.75 to 25.0 243

3. Minimum Time Behavior

The control function that would be applied to the system to attain a given state in

minimum time has been determined. Position and velocity plots, together with a phase

trajectory for such a movement, are shown in Fig. XX-12. These data were obtained

through computer simulation. The control behavior during these movements is as

follow s:

TAg[O tl) 2 initial

TAg[t l , t s ) = 500 grams (TAg max)

TFAg [t s t 2 ) = O

TAg[t 22  ) 1= 00 = (2 final

TAnt[O, tl) = 100 - () 0 initial
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TAnt[tl,ts) = O

500 grams (TAnt max)

if 6 < 160/sec

720

1+ 20

if 6 > 160/sec

(Recall TAnt (

TAnt [t2, I ]

+ < 720 to prevent muscle damage.)
20

100 - (K) final'

0 t

0 t

VELOCITY

Fig. XX-12. (a) Minimum time plots. (b) Phase trajectory.

Tabulated below is a comparison of the actual eye movement behavior and the mini-

mum time behavior.
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Actual Behavior Minimum Time Behavior

Movement (degrees) Time (msec) Movement (degrees) Time (msec)

0 to 6.25 35 0-6.6 9.4

0 to 12.5 52 0-13.6 18.8

0 to 18.75 65 0-21.8 32. 6

0 to 25 94 0-28.2 43. 8

6.25 to 12. 5 35 6.3-12.2 9.4

6.25 to 18.75 56 6.3-18.6 18.8

6.25 to 25 73 6.3-26. 1 32.6

12.5-18 9.8

12. 5 to 25 60 12. 5-24 19.4

18.75 to 25 44 18.75-23. 9 10.1

It is evident that the actual behavior of the system requires from 2 to 4 times as

much time to execute a movement as would be the case if the system were minimizing

time. It would be of interest to compare the actual system behavior with that which

would result if other cost functions were minimized. Another consideration is that there

may be transient processes between the nerve stimulation and the variables TAg and

TAn t of Fig. XX-5.

G. Cook, L. Stark
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C. HOSPITAL INFORMATION SYSTEMS: AN AUTOMATED TUMOR REGISTRY

At the Massachusetts Memorial Hospitals of the Boston University Medical Center

we have undertaken the design and implementation of an automated Tumor Registry

system. It is planned that this system will be readily accessible for administrative,

medical, and research use by hospital personnel. The present Tumor Registry is con-

tained in folders and file cabinets and has proved inadequate for the demands of the hos-

pital community. The new system (Fig. XX-13) will be organized around an IBM 1620

digital computer and will use conventional hospital records and the Termatrex Informa-

tion System. This report describes the organization and programming of an initial pilot

system for the Tumor Registry.

The basic components consist of an IBM Model II 1620 computer with 60, 000 mem-

ory cores, punched card and typewriter input/output, and a 1311 disk storage drive.

The computer is equipped with the Monitor I executive routine. The Termatrex System

1311

DRIVE

Fig. XX-13. Automated tumor registry system.
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is a hand-operated, cross-referenced filing system; by assigning predetermined codes

to the various characteristics of a case history, it can accommodate several hundred

characteristics of as many as 10, 000 patients.

The computer serves as a clearing house and storage area for the Tumor Registry.

All information entering the Registry initially passes through the computer, where three

types of processing occur. First, the Model 1620 checks the data for errors; for

example, a birth date of June, 1967 is an obvious mistake; less obvious errors might

be the incorrect spelling of a diagnosis or a nonexistent type of medication. When the

data have passed the error-check routine the computer matches each item of the

patient's record with the appropriate Termatrex code. The code is then output immedi-

ately on punched cards or directly on the 1620's on-line typewriter. The third

processing function is storage of the information on the disk pack. This constitutes the

actual entry of information into the Registry. Before storage, the data are broken down

into two major categories, initial data and subsequent or follow-up data. These cate-

gories conform to the pattern of the conventional hospital record and provide a con-

venient way of organizing the Registry on the disk.

For the pilot system there are approximately 20 terms describing the initial

condition of a tumor, and 8 terms for each follow-up report. The initial data are

stored at the front of the disk pack and arranged in sequential tables with one table for

each term. Follow-up data for each tumor are stored as a pointer list, starting directly

after the last entry of the initial data tables. Theoretically, there is no upper limit to

the number of tumor cases that can be stored in the completed Registry, as more disk

packs can be added to increase its capacity. The pilot system's size, however, is now

limited to 1008 cases, as this number can be easily handled on one disk pack, and, at

the same time, is large enough to permit a thorough debugging of the system.

The system is augmented by several main programs, corresponding to the major

functions of the system, such as data storage, updating, and information retrieval.

Figure XX-14 shows the organization of the data-storage program. The main program

is a control program; it keeps track of which data has been processed and which sub-

program is next to be executed. Each subprogram processes one item of the input

record. During execution, control passes from the main program to a subprogram,

back to the main program, and then on to another subprogram. The subprograms are

completely independent of each other and can be executed in any order and any number

of times for each case input. Part of the data of each input record is a code telling the

main program the order in which the subprograms are to be executed to process that

input record.

This structure permits great flexibility in deciding which characteristics should be

recorded in the system. If a new term must be added to each patient's record, a new

subprogram is written and added to the rest. Space on the disk pack for storing the new
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Fig. XX-14. Data-storage programs.

term can be procured either by copying the entire disk onto another disk and leaving an

appropriate amount of blank space between the previous last initial data table and the

first follow-up data, or by isolating a block of space in the follow-up data area.

The actual method of entering data into the Tumor Registry is still rather primitive.

The pertinent data are abstracted from the patient's record, keypunched in a standard

abbreviated form, and then introduced into the Model 1620. When the total system is

operational, it should be possible to set up a direct communication link from data-

collection points to the computer through a time-sharing system teletype; this would

permit either an abstracter or a physician to enter the data directly into the Registry.

Use of such a system for entering the data would greatly facilitate updating of the

Registry.
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Information retrieval is, of course, the major goal of a computerized Tumor Regis-

try. For example, the computer can produce, in a very short time, a listing of the

entire Registry of the patients who are due for follow-up visits in a given month, or of

patients with more than one primary tumor. It readily allows comparisons to be made

of the results of a similar treatment of different tumors, of survival times of patients

with tumors in various stages of growth or of the frequency with which a clinical

diagnosis is confirmed by histological evidence. Because the information is stored

essentially by characteristic and not by patient, the search time for a given set of

characteristics is minimal.

The work, thus far, has been concerned with laying out the format of the disk pack,

comparing various methods of data storage, and coding initial data-storage programs.

The disk pack format is being designed for the entire group of initial and follow-up

terms, and data-storage subprograms are being coded for all of these terms.

T. Ostrand, J. F. Dickson

D. INTERPRETIVE AND DIAGNOSTIC MATRICES FOR COMPUTER

DIAGNOSIS OF ELECTROCARDIOGRAMS

1. Introduction

Figure XX-15 is a block diagram of the operational sequence in a computer

system designed for remote on-line, real-time diagnosis of clinical electrocardio-

grams (EKG). In operation, an executive monitor which is used by a hospital tech-

nician for remote control of the sequence of operations, is placed in the G. E. 225

computer in the laboratory of the Neurology Group at the Massachusetts Institute

of Technology. The diagnostic process is then begun by the hospital technician with

the telephone line transmission of a patient's identifying data and EKG signals to

the computer.

The EKG signals originating in the hospital are often obscured by noise, and pre-

processing is necessary to facilitate rhythm interpretation, pattern recognition, and

parameter extraction. The rhythm section, analyzing the atrial and ventricular rates

and prematurities, yields approximately 20 mutually exclusive, tentative, rhythm inter-

pretations. In the morphological identification section of the program, the current fil-

ters analyze the X-lead of Frank's orthogonal lead system. The P, QRS, and ST-T

segments of the EKG signal are introduced to adaptive matched-filter pattern-recognition

programs that provide tentative pattern-recognition interpretations. Following point

recognition, the parameter-extracting portion of the program makes pertinent determi-

nations that relate to amplitude (as amplitude of the QRS complex) and interval (as the

Q-T interval).
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I EXECUTIVE
MONITOR

Patient Information ANALOG TO DIGITAL
EKG Data CONVERSION

DATA
PREPROCESSING

HOSPITAL M.I.T. RHYTHM MORPHOLOGICAL PARAMETER
MEASUREMENT IDENTIFICATION EXTRACTION

P, QRS, ST-T
FILTERS

RHYTHM TREE

Patient
/ Data

Tentative Rhythm Tentative Morphologic Extracted
Interpretation Interpretation Parameters

stratifying factors rhythm factors filter patterns parameter factors

THE INTERPRETATION MATRIX- Interdependency

I Tentative Medical Diagnosis DIAGNOSTIC MATRIX EKG INTERPRETATION
Tentative Cardiopulmonary Diagnosis

Diagnostic Feedback Path G DIAGNOSIS

to Hospital

Fig. XX-15. Sequence of the diagnostic system.

2. Interpretive and Diagnostic Matrices

In this part of the diagnostic sequence the independently determined rhythm, pattern

recognition, amplitude, and duration parameters are allowed to interrelate for the first

time in an additive pattern-recognition matrix. Stratifying factors, such as age, sex,

ponderal index, drugs, etc. are also admitted to the diagnostic sequence at this point

in the program. Fixed weightings are assigned for the various diagnostic criteria either

arbitrarily or adaptively by a learning matrix technique. This matrix yields 25 EKG

interpretations (Fig. XX-16), in addition to the rhythm interpretations mentioned above.
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1. Within normal limits These findings are returned by telephone

2. Left ventricular hypertrophy line for display by teletype at the hospital
3. Right ventricular hypertrophy

4. Complete left bundle branch block

5. Incomplete left bundle branch block In the course of reading electrocardi-

6. Complete right bundle branch block ograms one essentially looks for or
7. Incomplete right bundle branch block encounters many information points and
8. Intraventricular block

9. Acute myocardial infarction then sums their contribution over a

10. Anteroseptal myocardial infarction decision area for a final diagnosis. We
11. Inferior myocardial infarction have developed this weighted additive
12. Lateral myocardial infarction
13.matrix to operate somewhat similarly.

14. Digitalis intoxication It is an adaptive, linear model that
15. Hyperkalemia accepts nonbinary, probabilistic inputs,
16. Hypokalemia does not require that its outputs (diag-
17. Hypocalcemia

18. Nonspecific ST-T abnormalities noses) be independent, and can display

19. Marked ST depression straightforward numerical reasons for
20. Pericarditis its decisions. This matrix now has 174

21. Left atrial hypertrophy
22. Right atrial hypertrophy rows and 25 columns. The rows are

22. Right atrial hypertrophy

23. Acute cor pulmonale divided into 43 categories relating to four

24. Chronic cor pulmonale types of data: (i) stratified clinical infor-
25. Wolff-Parkinson-White syndrome

mation, such as age, height, weight, sex,

Fig. XX-16. Twenty-five EKG interpre- and electrocardiographically important
tations contained in the in- drugs being taken, (ii) tentative rhythm
terpretation matrix.

analyses, (iii) tentative adaptive matched-

filter interpretations, and (iv) the result-

ant findings of the parameter extraction program. The columns represent the 25

commonly encountered EKG interpretations that have been selected from a frequency

table of diagnoses made in the EKG laboratory of the Massachusetts Memorial Hospitals

in the years 1961-1962.

The values used to fill the matrix may range from -500 to +500, a negative value

indicating that a particular entry in the matrix weights negatively in the determination

of a particular interpretation, as with a short QRS duration for bundle branch block.

Zero entries indicate that the information does not contribute to a decision. For the

filters the assigned weighted number for pattern recognition is multiplied by the deter-

mined correlation coefficient, though it is not clear at this time that the correlation

coefficient should necessarily modify the weighted number linearly. Originally, the

matrix values were assigned arbitrarily on the basis of clinical experience; however,

a self-learning program for the matrix now makes use of our EKG library to refine

these values. In the calculation process a patient vector is created, each element of

which corresponds to a specific row of the matrix. In each case, except for the filters,
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a coefficient of 0 or 1 is assigned as is appropriate. For the filters the correlation

coefficient is used. The patient vector is multiplied by the matrix, after which each

column is summed to yield 25 additive interpretation totals. Since even the largest sum

may represent an unlikely interpretation, the final step is to establish a "certainty"

normalization for these interpretation totals. This is done as follows. A maximum

possible value for each category is +500. An interpretation of maximum certainty would

give a column total equal to the sum of the exhibited patient vector coefficients multi-

plied by 500 for an ideal sum. Accordingly, the sum of each column is divided by the

ideal sum, and yields a certainty factor between minus one and plus one for each inter-

pretation. The interpretation and diagnostic matrices are similarly constructed, so

that the final output of the system is an EKG diagnosis with a certainty factor. A means

for the automatic adjustment of weightings by a "self-learning" routine is available.

Category Location

1
Age 2

3
4

Sex 5
6

7
8

Height 9
10
11

12
Weight 13

14
15

16
Mean 17
Blood 18
Pressure 19

20

21
QRS filter 22
(pattern) number 23

24
25

Exhibited Range
or Datum

0-20 years
21-40
41-60
over 61

male
female

under 60 inches
60-64
65-69
70-75
over 75

under 100 lbs.
101-150
150-200
over 200

60-80 mm. Hg
81-100
101-120
121-140
140-160

#1
#2
#3
#4
#5

Interpretation
Matrix

ttltt

Fig. XX-17. Abbreviated interpretation matrix.
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It reinforces or negatively reinforces appropriate matrix elements, since data from a

patient with a known EKG interpretation are passed through, the outcome depending on

whether the matrix arrives at a correct or an incorrect interpretation.

The approach just outlined is demonstrated by the following example (Fig. XX-17).

The input data for a given patient are entered in the appropriate locations (rows) of a

column vector whose potential entries correspond exactly to the named entries (rows)

of the interpretation matrix. Most of this information is in the form of graded catego-

ries. The rows are labeled with respect to the patient's age, height, mean blood pres-

sure, weight, sex, and type of electrocardiographic pattern.

The matrix on the right side of the figure can yield only five interpretations in this

instance (the result has been abbreviated here for pedagogical purposes). When the data

on a given patient are entered in the column vector on the left, the corresponding rows

of the matrix become operational; that is, the weighting coefficients in the rows to which

the patient has contributed data are selected for the diagnostic summing process. For

a male patient, 25 years old, whose height is 68 inches, weight 162 lbs, mean blood

pressure 98 mm mercury, and whose electrocardiographic QRS complex most closely

resembles the pattern of filter No. 2, the rows 2, 5, 9, 14, 17, and 22 of the matrix

would become operational. The weighting coefficients located in each cell of these rows

would then be summed for each of the 5 diagnostic columns of the matrix. The interpre-

tation assigned to the column with the largest sum would then be output as the most likely

interpretation, together with a "certainty coefficient" that would indicate the likelihood

of its correctness (in this case the sum of the observed coefficients divided by 12, 500).

In the case of the "learning matrix," each cell in every row and column of the matrix

would initially be zero. Consequently, when the very first patient was put through, the

sum in each column would be zero and all five diagnoses would be equally possible. For

this case, an arbitrary tie-breaking decision has been assigned: the machine is

instructed to take the leftmost diagnostic column in case of ties and consider that to be

the diagnosis. Our hypothetical first patient would thus be given the diagnosis of "right

ventricular hypertrophy" (column 1).

Suppose, however, that his correct diagnosis as established clinically was "normal

tracing" (column 5). During the matrix learning process, this correct answer would

also have been entered in thecomputer. A comparison between the correct answer and

the answer given by the matrix would be made. In case of a discrepancy, such as that

just outlined, all of the operational entries in the right ventricular hypertrophy column

would be negatively reinforced by subtracting an arbitrary amount from those weighting

coefficients. Similarly, all operational entries in the 5th column would be reinforced

by addition of the same amount as was previously subtracted in the "punishing" routine.

The "punishment" and "reward" would be equalized in this way, to prevent the numer-

ical value of the matrix as a whole from drifting off-scale. The average value of the
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matrix at all times would thus be equal to zero. If this sequence were frequently

repeated by processing many patients with known diagnoses, the matrix of weighting

coefficients would ideally converge toward the situation wherein the individual entries

would have a meaning analogous to conventional statistical discriminant function coef-

ficients.

The advantages of the present "adaptive" scheme are its greater convenience (auto-

maticness) and its open-ended quality. By the last we mean that the stored matrix can

be improved at any time without having to destroy the current matrix and start afresh

each time a new group of patients with known diagnoses is to be processed. On the other

hand, with the learning matrix scheme outlined above, the matrix in its current state

can be used to interpret unknown tracings at any time by operating in a fixed, nonlearning

form.

For research purposes, the interpretation matrix must contain various indexing and

bookkeeping rows and columns that keep track of the types of previously diagnosed elec-

trocardiograms entering into the adaptive matrix, the number of the various clinical

input and filter parameters actually utilized, and a tally with respect to the number of

correct matrix interpretations and normalizing factors giving estimates of the validity

of the weighting coefficients in the matrix at any given time. It will thus be possible to

assess quantitatively, perhaps for the first time in extenso, the importance of various

clinical and morphologic characteristics for a given interpretation.

J. F. Dickson, D. Martin, G. H. Whipple
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