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A. COGNITIVE PROCESSES

1. INTERLINGUAL TRANSFER OF READING SKILL

In previous reports we have shown that a stable order characterizes the ease with

which college students can read text that has been transformed geometrically: equal

amounts of practice with mathematically equivalent transformations do not yield equiv-

alent levels of performance. Some transformations are considerably more difficult than

others.1 Practice on any transformation, however, facilitates performance on any other;

this suggests a generalized habituation to the fact of transformation itself. How general-

ized that habituation is was studied in the experiment described here.

Ten bilingual subjects, German nationals who had been in the United States for at

least nine months, were tested. All were students at the Massachusetts Institute of

Technology. Five of these men read 20 pages of English that had been printed in inverted

form, and then read 4 pages of German in the same transformation; the other five read

20 pages of German in inverted form, and then 4 pages of English. Also, on the first

day, before reading any of the transformed text, and on the fourth day, after all of the

transformations had been read, all of the subjects read 1 page of normal English and

1 page of normal German. The time taken by the subjects to read each page was meas-

ured with a stop watch. The results are shown in Fig. XVII-1. The speed with which

transformed English or German is read increases sharply with practice, from an initial

13 min/page to approximately 4 min/page. Even the latter rate, however, is consider-

ably slower than that for normal text, while normal English (circles) takes a little longer

than normal German (triangles). The transfer tests, however, produce asymmetrical

results. The subjects trained on 20 pages of inverted English (closed circles)then read

four pages of inverted German with no change in the level of performance; but the sub-

jects trained on inverted German (crosses) did not do as well when tested on inverted

English.

This work is supported in part by the National Science Foundation (Grant GP-2495),
the National Institutes of Health (Grant MH-04737-04), and the National Aeronautics and
Space Administration (Grant NsG-496); and through the Joint Services Electronics Pro-
gram by the U. S. Army Research Office, Durham.
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This curious asymmetry of transfer has an analog in a number of sensori-motor

coordinations, for which the general finding is that practicing the less favored organ per-

mits more transfer to the more favored than the reverse direction does; for example,

training a right-handed man's left hand on a complex task enables him thenceforward

to perform the task with his right hand, but training his right hand does not usually

enable him to perform the task with his left.2 In the present case we find that training

in English enabled native speakers of German to transfer their skill without decrement,

but training in German yielded some decrement for performance in English.

The more interesting aspect of these results has to do with what is learned when a

subject learns how to decode transformed text. If he were learning only to recognize

letters that had been transformed, transfer between the languages would be perfect, for

the German and English alphabets are almost identical when Roman type is used, the only

difference being the use of the diaresis, which does not affect letter shapes. If he were

learning the shapes of words, transfer would be relatively poor, since German and Eng-

lish word shapes are somewhat different. The results indicate that the learning cannot

be as simple as either of these alternatives would have it.

P. A. Kolers, Ann C. Boyer
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B. PICTURE PROCESSING

1. OPTIMUM SCANNING DIRECTION IN TELEVISION TRANSMISSION

In television transmission, the two-dimensional picture is first scanned to produce

a video signal which is then sent through some channel to the receiver. At the receiver,
the picture is reconstructed from the video signal by scanning. For any given picture,
different scanning methods usually give rise to different video signals and reconstructed

pictures. In this report we shall discuss the relative merits of the members of a sub-

class of scanning methods. We restrict our attention to constant-speed sequential

scanning along equidistant parallel lines of slope a (Fig. XVII-2) and try to study the

effect of scanning direction on the video signal and the reconstructed picture.

First, we shall find the direction of scanning (that is, the value of a) which yields

the minimum-bandwidth video signal, assuming that the two-dimensional Fourier spec-

trum of the original picture is given. Then we describe some preliminary results
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Fig. XVII-2. A subclass of scanning methods.

concerning the subjective effect of scanning direction. Finally, we shall discuss some

miscellaneous factors that might affect the choice of a scanning direction.

Minimization of Video Signal Bandwidth

For the sake of simplicity, we shall assume in the following analysis that there is

no interlacing. Notice, however, that the addition of interlacing will not change the

result of the analysis.

Consider a single picture frame. Let f(x,y) denote the brightness of the picture

point (with the average value substracted) as a function of its spatial coordinates (x, y),

under the assumption that f(x, y) = 0 if (x, y) lies outside the picture. Let 4 (T1, T2 ) be

the autocorrelation function of f(x,y); and #(u,v), the Fourier transform of (71I,2),

that is, the energy spectrum of f(x,y). Let a (T) and ca (w) be the autocorrelation func-

tion and the energy spectrum, respectively, of the video signal fa(t), derived from f(x, y)

by scanning along the direction a. The question is: If #(u,v) is given, what value of

a will give the minimum bandwidth a (w)? Without loss of generality, we assume that

the scanning speed is 1 unit length/unit time. We also assume that the energy of the

picture signal is much larger than that of the synchronous and blanking pulses so that

the latter can be neglected. Then, we have

4a(T) (T COS 0, T sin 0), (1)

-l1
where 0 = tan a, assuming that both the distance between sucessive scanning lines

and the width of c (T cos 0, T sin 0) are much smaller than L, the width of the picture.

In the case a - 0 or o, c a(T) will have peaks at multiples of L, and the right-hand side

of Eq. 1 gives only the central peak (at T = 0); however, the bandwidth of a() is deter-

mined mainly by the central peak. In the sequel we shall assume that (1) is

an equality.

It follows from Eq. 1 that
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av, v) dv.
2Tr cos 0

Assuming that 0 -- <--, so that cos 0 >- 0, we have

2 -'b

) _ + a
a 2~ -. (+a 2 w-av, v) dv.

Let us define the bandwidth of Da (w) as

f ) (w) dw
B -0 aa # (0)

This definition is reasonable because a (c) - 0 for all o, and for most pictures, a (ce)

have their maxima at w = 0. Now

I- 00

d a(w) d = 2rr a(0) = 2Tr (0, 0) (5'

is independent of a. So in order to minimize Ba, we have to maximize

4 (0) = I t a
a 2Tr )v

(-av, v) dv.

Hence, we want to choose that value of a which will maximize the right-hand side of

Eq. 6. Referring to Fig. XVII-3, we have

SLOPE = a

SLOPE =- 1 /a

Fig. XVII-3. Pertaining to the interpretation of the right-hand side of Eq. 6.
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+ a ) (-av, v) dv = 4(-z sin 0, z cos 0) dz. (7)

1
Notice that f(-z sin 0, z cos 0) is the value of f(u, v) along the straight line v =-- u which

is perpendicular to the straight line v = au. To minimize Ba, therefore, we want to max-

imize the right-hand side of (7), or equivalently, to maximize

f_ #(-z sin 0, z cos 0) dz
W (8)W - (0, 0) (8)

2

1
which is defined as the bandwidth of f(u, v) along the direction -

a
We conclude, therefore, that in order to obtain the video signal of minimum band-

width, one should scan the original picture along a direction perpendicular to the direc-

tion of maximum bandwidth of '(u,v). This result is perhaps not in accord with one's

intuition because, intuitively, one might think that to obtain the minimum-bandwidth video

signal, one should scan along the direction of minimum bandwidth of #(u,v); this is not

the case according to our analysis.

To verify the result of our analysis, we generated some two-dimensional lowpass

Gaussian noise with power density spectra (Fig. XVII-4).

Constant for -k 1 - u < k 1 , and -k2 < v < k2

(u, V) = (9)

0, elsewhere

where k 1 and k 2 are positive real constants. The results of this noise generation (with

DC level added) are shown in Fig. XVII-5. According to our analysis, to obtain the
k

minimum-bandwidth video signal, we should scan along the directions k-. The appear-

ance of the noise does seem to verify our contention.

We note in passing that if the scanning speed and the distance between successive

scanning lines (which is assumed to be much smaller than L) are kept constant, then the

scanning time per picture frame is independent of the direction of scanning.

Subjective Effect of Scanning Direction

At the ordinary viewing distance (4 or 6 times the picture height), one can see the

line structures in the received picture. Do people prefer line structures of a particular

orientation to those of other orientations ? To try to find an answer to this question, we

generated pictures scanned along various directions on a closed-circuit television system.

Some of these pictures are shown in Fig. XVII-6.

We showed these pictures to some of our colleagues, and we have listed their
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(a)

(b) (c)

Fig. XVII-6. Picture scanned along various directions.

preferences as follows.

Orders (in the order of decreasing preference):

Subject A: Vertical, horizontal, skew.

Subject B: Horizontal, skew, vertical.

Subject C: Horizontal, vertical, skew.

Subject D: Skew, horizontal, vertical.

The preference, however, was by no means strong.

It is interesting to note that Subject C disliked skew scanning because it seemed to

cause anxiety, while Subject D liked skew scanning because it made the picture look

"dynamic." Subject B disliked vertical scanning because vertical lines seemed most
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visible, and Subject D disliked vertical scanning because the picture seemed ready to

fall apart.

Jumping to a tentative conclusion, we might say that the preference is not strong

but horizontal scanning seems to have a slight lead.

Other Factors

The pictures mentioned in the preceding section are essentially noiseless. In prac-

tice, however, the received picture contains additive random noise and ghosts (caused

by multipath). How do the effects of random noise and ghosts depend on scanning direc-

tion? Also, how is motion affected by scanning direction? These questions are being

investigated.

Finally, we wish to remark that there are still other factors that one might consider

in choosing a scanning direction. For example,2 in skew scanning, the lines are not of

equal length, therefore the power of the video signal does not have peaks at multiples of

line frequency. Hence, when several video signals share the same channel, the use of

skew scanning will reduce cross modulation. On the other hand, skew scanning com-

plicates line synchronization.

T. S. Huang

References

1. T. S. Huang, Two-dimensional power density spectrum of television random
noise, Quarterly Progress Report No. 69, Research Laboratory of Electronics, M. I. T.,
April 15, 1963, p. 147.

2. Dr. B. Prasada, Bell Telephone Laboratories, Inc., Private communication,
1964.

2. BOUNDS ON TWO-ELEMENT-KIND IMPEDANCE FUNCTIONS

In a previous report, we discussed some bounds on the impedance functions of R,
±L, ±C, T networks. In this report, we shall present bounds for various types of two-

element-kind impedance functions. We first prove a theorem for R, ±C and R, ±L net-

works.

THEOREM 1. Let [Zik(s)] be an nth-order R,±C (or R, ±L) open-circuit impedance

matrix. Then Zik(jw) satisfies

Zik(jw)- (Z(0)+Zik()) -< (Zii(0)-Zii(00)) 1(Zkk(0)-Zkk()) (1)ik 2 ik ik ' i ii 2 kk''kk'"

for all real w.

The proof of Theorem 1 follows readily from the two following lemmas.

LEMMA 1. Let[Zik(s)] be an nth-order R,±C open-circuit impedance matrix. Then
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n

Zik(s) = h h (0) + h/s 2 + h m)/(s+am ) , (2)

m= 1

where the real numbers am are independent of i and k, the Lh ij] (r= 1, 2,. ,m; 0, )

are real and symmetrical, and

F hik ) is positive semidefinite (psd)

ik j is negative semidefinite (nsd)

[h(m) is psd if a 0, and nsdif a < 0.
ik m  m

LEMMA 2. If [Pik] and [qik] (i, k= 1,2) are real, symmetrical, and psd, then

2p 1 2 q 1 2 < P 1 1 q22 + q11P2 2. (3)

By making appropriate impedance transformations, we deduce from Theorem 1 two

theorems about ±R, C and ±R, L networks.

THEOREM 2. Let [Zik(s)] be an n th-order ±R, C open-circuit impedance matrix.

Then Z ik(jw) satisfies

1 1 ,
Zik(Jw) - (Zik(O)/jw + Zik()/jw) -(Zii(O)/w -Z ii()/w)l (Zkk()/w - Zk( )/w)

(4)

for any real w, where Z!k(s) = sZik(s).

THEOREM 3. Let [Zik(s)] be an nth-order iR, L open-circuit impedance matrix.

Then Zik(jw) satisfies

Zik(jw) - - (jwZik(0) + jwZ ik(o)) (wZ"i (0) - wZ'. (0)) (WZIt (0) - WZ k(O)) (5)

for any real w, where Z!k (s) = Zik(s)/s.

Notice that inequalities (1), (4), and (5) are properties of the impedance functions

and are independent of the manner in which one realizes these functions. When i k, the

inequalities give bounds on transfer functions; when i= k, they give bounds on driving-

point functions.

It is clear that for RC(RL) networks, both Theorem 1 and Theorem 2 (Theorem 3)

apply. For any particular realization, N, of an RC n-port, the quantities in (1) and (4)

have the following physical interpretations:

Zik(0) = open-circuit impedance matrix of N, when all capacitances are open-
circuited

Z i() = open-circuit impedance matrix of N, when all capacitances are short-
circuited

Z!k(0)/jw = open-circuit impedance matrix-of N, when all resistances are short-
circuited and s=jw
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Zik(O)/jw open-circuit impedance matrix of N, when all resistances are open-
circuited and s= jw.

(For any RL n-port realization, we have similar physical interpretations.) The quan-

tities Z..(0), Z..(0), Z!'(0), and Z! (co) are not independent. In fact, we have the fol-
11 11 11 11

lowing lemmas.

LEMMA 3. Z. (0) is finite, if and only if Z!'(0) is zero.
11 11

LEMMA 4. Z. .(oo) is zero, if and only if Z! (oo) is finite.
11 11

In order to get useful bounds, one would like the right-hand sides of (1) and (4) to be

finite. Hence, one would like to have Z. (ao) = 0 = Z! (0). One can achieve this by the
11 11

following procedure. Given an RC open-circuit impedance matrix [Zik(s)], we form a

new RC open-circuit impedance matrix

[zik(s)] = [Zik(s)] - [Zik(co)] - [Zk(0)]/s

Then z..(x) = 0 = z!.(0), where z!i(s) = sz. (s), and we can apply inequalities (1) and
11 11 11 11

(4) to zik(s ) . For any nonzero finite w, the right-hand sides of (1) and (4) are finite,

and zik(jw) must lie in the intersection of two nondegenerate closed circular disks.

Im z

Im Z

IM z

0 Re Z 0ii Re z
1 2 3

-2

Fig. XVII-7. Example illustrating Theorems 1 and 2.
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We conclude with an example. Consider the RC driving-point impedance function

Z(s) = (s+2)(s+6)/(s+l)(s+3). Then Z(O) = 4 and Z(Do) = 1, and inequality (1) implies

IZ(jw) - 5/21 < 3/2. Let Z'(s) = sZ(s). Then Z'(0) = 0 and Z'(oo) = ). Therefore, ine-

quality (4), when applied to Z(s) directly, does not give any useful bounds. We can, how-

ever, define z(s) = Z(s) - Z(co) - Z'(0)/s = 4(s+9/4)/(s+l)(s+3). Then z(0) = 3, z(o) = 0,

z ' (0) = 0, and z'()o) = 4. Hence for w= 2, say, Z(j2) must lie in the shaded region of

Fig. XVII-7. In particular, we have

1 < IZ(j2) < 2.4, -370< [ Z Z(j2)] < 0;

1 < Re Z(jZ) < 2. 1, -1. 4 < Im Z(j2) < 0.

Putting s = j2 in the exact expression for Z(s), we find Z(j2) = 2. 2/-33. 8.

In the previous report,1 we proved that if [Zik(s)] is the open-circuit impedance

matrix of an R, ±L, ±C, T network, then

ik 2 (7)

where [Riko] is the open-circuit impedance matrix of the network when all reactive ele-

ments are open-circuited, and [Riks] is the open-circuit impedance matrix of the network

z(s)-- +1 + -1

Fig. XVII-8. Example of an R, ±C network.

when all reactive elements are short-circuited.

We remark that Eq. 1 does not follow from Eq. 7, since, in general, for an R, ±C

network, Z. (0) # R ik and Z ik(o) R ik s . For example, consider the network ofIk iko ik Iks
Fig. XVII-8. We have Z(s) = 1; therefore, Z(0) = 1 = Z(oo). But R = 1 and

R = 0.
S

T. S. Huang
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C. SENSORY AIDS

1. APPROXIMATE FORMULAS FOR THE INFORMATION TRANSMITTED BY A

DISCRETE COMMUNICATION CHANNEL

It is often desirable to have an approximate formula for the information transmitted

by a discrete communication channel which is simpler than the exact expression. I In

this report, two approximate expressions are derived. The derivations are instructive,
for they show why two systems that operate with the same probability of error can have

quite different information transmission capabilities.

Preliminary Theorems

The following theorems will be required. The proofs of Theorem 1 and of the lemma

are omitted. Theorem 2 follows directly from Theorem 1, and also from Fano's dis-

cussion. 2

THEOREM 1: Let xl, x 2 , ... , xn be non-negative real numbers. If F(x 1 , 2 ,... ,x ) =x

xi , log xi, and if

n

xi = p,
i=l

then

F(p/n, p/n, .. ,p/n) < F(xl, x2, ... ,X n) < F(p, 0, 0,...0).

The equality sign on the left applies only if all the x's are equal. The equality sign on

the right applies only if all but one of the x's are zero.

THEOREM 2: Define

p(xi), probability of occurrence of the input xi to a communication channel,

p(yj), probability of occurrence of the output yj from a channel,

Lx, number of inputs having nonzero probability of occurrence, and

Ly, number of outputs having nonzero probability of occurrence.

Let

P(e lY) = 1 - p(xj yj).

Then
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Ly Ly

P(e) = P -p(x y )] p(yj) = P(e y ) p(y ).

j=1 j=1

If

H(elyj) = - [P(e yj) log P(e yj) + [1 -P(elyj) ] log [ - P(eyj)]] ,

Ly

H(e Y) I H(e yj) p(y),

j=1

and

H(e) = - P(e) log P(e) - (1- P(e)) log (1 -P(e)),

then

0 < H(e IY) < H(e).

LEMMA: Let [p(y x)] be a conditional probability matrix having Lx rows and Ly

columns. Consider the matrix [p(x y)], where

p(yj I xi) P(x i)

p(x i j) =
p(yj)

.th
If Q. denotes the number of nonzero off-diagonal terms in the j column of the matrix

.th
[p(y x)], then the number of nonzero off-diagonal terms in the j row of the matrix

[p(x y)] is also Q .

Derivation of Upper and Lower Bounds for I(X; Y)

To derive the following bounds on I(X; Y) two different communication channels are

considered, each of which is required to transmit information about the same input

ensemble. Both channels have the same number of outputs, The two channel matrices

have identical elements on the main diagonal. Therefore, P(e yI ) (j = 1,2, ... Ly) and

P(e) are the same for both channels.

One channel matrix has only one nonzero off-diagonal term in each column. The

information transmitted by this channel is a maximum for fixed values of P(e y j )

(j = 1, 2, ... , Ly) and is equal to the upper bound of Eq. 2.

The other channel has a matrix in which all nonzero off-diagonal terms in any one

column are equal. The information transmitted by this channel is a minimum for a given

number of nonzero off-diagonal terms in each column, and for fixed values of (Pe I j)

(j = 1, 2, . . . , Ly). The information transmitted in this case is equal to the lower

bound in Eq. 3.
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THEOREM 3: Let I(X; Y) be the information transmitted by a discrete channel, and

Lx

H(X) = - p(x i ) log P(xi).

i= 1

Let Qmax be the largest of Q1, Q' '' Ly"

I(X; Y) < H(X) - H(e IY) < H(X);

I(X; Y) > H(X) - H(e IY) -
j=1

Then

P(e IYj) p(yj) log Qj > H(X) - H(e) - P(e) log Qmax

PROOF:

Lx

I(X; Y)

i= 1

Lx

p(i=
i= 1

I
j=1

p(x i yj)
P(xi IYj) P(Y ) log

p(x i )

Ly Lx

= H(X) + p(yj i
j=1 i=

p(xi Y j) log p(x i yj) =

p(x i Iyj) log p(x i IYj)

Ly

I P(Y ) (xj I
j=l

rj) log p(xj Iyj) + p(x i IYj) log p(x i

izj

If we replace x i by p(x i y ), p by

Lx

1- p(xl yj) = p(x i yj),

i= 1
izj

then the inequalities

[1 -p(xj I Yj)] log

P(xi IYj) , and n by Qj, and if we use

p(x i yj) log p(xi y j )
< [1 -p(xj yj)] log [1 -p(xj yj )]

[1 -p(xj yj) ]  Lx

Qj <
i= 1

follow directly from Theorem 1 and the lemma.

The equality sign on the right applies if, and only if, there is only one nonzero off-

diagonal term in the jth row of the p(x y) matrix. The equality sign on the left applies
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if, and only if, all the nonzero off-diagonal terms in the jth row of the [p(x y)] matrix

are equal.

Substitution of the inequalities above in Eq. 1 results in

Ly

I(X; Y) < H(X) + p(y.) [p(x. y) log p(xj yj) + [1 -p(xj yj)] log [1 -p(xj y)]]

j=1

< H(X) - H(e IY). (2)

Ly [- p(x y

I(X; Y) > H(X) + py p(x y ) log p(x y + [1 -p(x y)] log ]

j= 1

Ly

> H(X) - H(e Y) - P(ey) p(yj) log Qj. (3)

j=1

Theorem 3 now follows from Theorem 2 and from the fact that

log Qmax > log Qj (j = 1,2, Ly).

Approximate Formula for I(X; Y)

In order to use upper and lower bounds to estimate I(X; Y) in such a way that the

expected value of the estimation error is minimized, it is necessary to know the dis-

tribution function for I(X; Y). Since the distribution function is not usually available,

the estimate for I(X; Y) will be taken as the average of its upper and lower bounds. Such

an estimate minimizes the maximum possible estimation error.

It follows that we estimate that

Ly

I I (X; Y) = H(X) - H(e Y) - ~ P(e yj) p(y) log Qj (4)

j=1

1
I (X; Y) = H(X) -~-(H(e)+ P(e) log Qmax ) .  (5)

The maximum estimation error e is given in each case by

Ly

e1 = - P(elyj) p(yj) log Qj (6)

j= 1

1
e 2 = -(H(e) + P(e) log Qmax ) .  (7)

2 He max
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The maximum error e in per cent, which results because the estimate for I was

chosen midway between the upper and lower bound, is

e%= ( L 100%,

where U is the upper bound, and L is the lower bound. Thus

Ly

i P(e yj) p(y.) log Q
j= 1

e = = Ly 10 0%, (8)

H(X) - H(e Y) -I P(e yj) p(y ) log Qj

j=1

1
-(H(e) + P(e) log Qmax )

e2 2 max 100o%. (9)
H(X) - H(e) - P(e) log Qmax

The use of inequalities

H(e Y) < H(e)

and

Ly

SP(e Iyj) p(yj) log Qj < P(e) log Qmax
j=1

in (6) and (8) results in upper bounds for el and el%

e ~ P(e) log Qmax (10)
1 2max

1 P(e) log Q

el 2 max 100%, (11)
H(X) - H(e) - P(e) log Qmax

which are easier to compute than the exact quantities given by Eqs. 6 and 8.

In Figs. XVII-9 andXVII-10 el% and e2% are plotted as functions of P(e) for various

values of Qmax for the cases H(X) = 4 and H(X) = 7. It should be remembered

that these graphs represent the maximum errors that can occur as a result of

approximating I(X;Y) by I1(X; Y) and I2(X; Y). The actual error that results when

I(X; Y) is approximated by 12 (X; Y) will equal the maximum error if and only

if
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Q =25
max

z
Q =15 D

0 5maxmax 5

(3 = 0

0.10 0.20 0.30
H(X) = 4

Fig. XVII-9.

max
20 0- Q

max

IQmax

0 max
0 0.10 0.20 0.30

H(X) = 7

e I upper bound vs P(e) and Q

max

Qmax

Q 5max 5

Q -0
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- P (e)

0.10 0.20 0.30

H(X) = 4

max

max

Q

max

-- P(e)

0.10 0.20 0.30

H(X) : 7

Fig. XVII-10. e2% vs P(e) and Qmax

I(X; Y) = H(X), (12)

I(X; Y) = H(X) - H(e) - P(e) log Qmax (13)

Equation (12) holds if, and only if, all off-diagonal terms in the channel matrix are

zero (a perfect communication system). Equation (13) applies if, and only if, H(e y ) =

H(e), and Qj = Qmax (j = 1, 2,. . . , Ly)(the same number of off-diagonal terms in each

column of the channel matrix, and all these terms equal).

Similarly, the errors that result when I(X; Y) is approximated by I l (X; Y) are equal

to the maximum error only in special cases. If there is only one off-diagonal term in

each column of the channel matrix, then

I(X; Y) = H(X) - H(e IY).

If all the off-diagonal terms in each column are equal, then
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Ly

I(X; Y) = H(X) - H(e Y) - Z P(e ly) p(y.) log Qj.

j= 1

The estimate II(X; Y) is always better than or as good as I2(X; Y). However, the

first estimate requires more computation than the latter. A useful procedure for esti-

mating I(X; Y) is:

1. Evaluate e 2 in per cent. If e 2 is acceptable, evaluate I2(X; Y) as an approxima-

tion to I(X; Y).

2. If e2 is too large, evaluate the upper bound for e 1 in per cent. If this upper bound

is acceptable, evaluate I 1 (X; Y) as an approximation to I(X; Y).

3. If the upper bound to e 1 is too large, then compute I(X;Y) from the exact

formula (1).

Example

The following channel matrix results when a human subject is required to make one

of eight responses to one of eight equiprobable statistically independent stimuli. The

information transmitted is to be computed to an accuracy of ±5 per cent of the true value.

Y1  Y2  y 3  Y4  Y5  Y6  Y7  Y8

x 1  .95 .05

x 2  .05 .90 .05

x3  .05 .05 .90

x 4  .10 .80 .10 = [P(ylx)].

x5  .90 .05 .05

x 6  .95 .05

x 7  .05 .90 .05

x 8  .05 .05 .90

Step 1: Computation of e 2 (per cent)

max = 2

P(e) = 0. 10

H(X) = 3

e 2 = 11. 9%.2
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The maximum error (per cent) resulting from the simpler estimate exceeds the

desired ±5 per cent bound.

Step 2: Computation of e 1 (per cent)

e 1< 2. 27o.

The maximum percentage in error that is caused by using I1(X; Y) as an estimate

for I(X; Y) is within the required limits of accuracy.

8

2 P(e yj) p(yj) log Qj = 0. 050

j= 1

H(e IY) = 0. 383

11 (X; Y) = 2. 57 bits/stimulus.

An exact calculation shows that

I(X; Y) = 2. 59 bits/stimulus.

Discussion

The amount of computation required for the estimate I1(X; Y) increases in proportion

to the number of messages. The simpler estimate requires little computation and is

independent of the number of messages. The maximum error (per cent) for both esti-

mates decreases as H(X) increases, since the influence of H(e) in the denominator of

equations (8) and (9) becomes less as H(X) becomes larger. When H(X) is small, the

first estimate will usually be required. For larger values of H(X), the second estimate

will usually yield acceptable values of e 2 per cent. While it is true that the amount of

computation necessary for the evaluation of I l (X; Y) increases with the number of mes-

sages, it is also true that the probability that the simpler estimate will be satisfactory

also increases with H(X).

R. W. Donaldson
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