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A. LOWER BOUNDS ON THE TAILS OF PROBABILITY DISTRIBUTIONS

Many problems in the Transmission of Information involve the distribution function

of the sums of many random variables evaluated far from the mean. In these situations,

a direct application of the Central Limit Theorem is virtually useless as an estimate of

the distribution function. The so-called Chernov bound,1 derived here in Eq. 13, turns

out to be much more useful both as an upper bound and as an estimate on the far tails of

the distribution function. We shall be primarily concerned, however, with deriving lower

bounds and asymptotic estimates for the far tails of the distribution function of the sum

of independent random variables. A number of the present results, particularly the

asymptotic expressions, Eqs. 54 and 61, are due to C. E. Shannon. They are repro-

duced because of their inaccessibility. The idea of the lower bound in Eq. 74 is also

due to Shannon, although the result is stronger here in that it applies to nonidentically

distributed variables. Another lower bound to the tail of a distribution has been given

by Fano. 3 Fano's approach is to bound the multinomial coefficients for a sum of discrete

finite random variables. Our results are more general than Fano's, since they are not

restricted to discrete finite variables. On the other hand, in some situations, Fano's

bound is tighter than our bounds.

Let be a random variable with the distribution function F(x) = P(-< x). We shall

derive lower bounds to 1 - F(x) for x > a, where ( is the expectation of a. The bounds

will be given in terms of the semi-invariant moment-generating function of a,

=(s) = In exp(sx) dF(x) = In exp sa, (1)
-oo

in which the bar again denotes expectation.

The bounds will be useful primarily in situations for which a is the sum of a
N

sequence of independent random variables, a = , where each an has a semi-
n=l

invariant moment-generating function n(s). Then
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N

(s) = In exp s ) n In i exp sn (2)
n=1

n= 1

N TN

= In I exp sn = n(s). (3)
n= 1

n= 1

In going from Eq. 2 to Eq. 3 we have used the fact that for statistically independent

random variables, the product of the averages is equal to the average of the product.

Equation 3 will allow us to express bounds involving ji(s) in terms of the Ln (s) without

explicitly finding the distribution function F(x). The semi-invariant moment-generating

function exists for any random variable that takes on only a finite number of values and

for any random variable a whose probability density drops off faster than exponentially

as a - + c and as a - -oo. If the probability density drops off only exponentially, then fL(s)

will exist only for a range of s. In the sequel, we assume an F(x) for which t(s) exists.

If 4(s) exists only in a region, we consider only values of s in the interior of that region.

In order to find a lower bound to 1 - F(x). it is convenient to define a random variable

is with the probability distribution function

exp(sx') dF(x')
F (x) - (4)

exp(sx') dF(x')
- o

The function Fs(x) is generally called a tilted probability distribution, since it "tilts"
sx

the probability assigned by F(x) by the factor e We now show that the mean and var-

iance of the random variable s for a given s are given by the first and second deriva-

tives of i(s) evaluated at the same s. By direct differentiation of Eq. 1, we get

x exp(sx) dF(x)

p'(s) = - = xdFs(x) (5)

exp(sx') dF(x') -o

-00

x exp(sx) dF(x)

= (s) -Oo- [0(s)]2 .  (6)

exp(sx') dF(x')
-co

Thus

S(7)2
4'(s) = S ; "(s) = s - . (7)
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Since i"(s) is a variance and thus strictly positive for nontrivial distributions, 5 is

an increasing function of s.

Using Eq. 4, we now have, for any given s,

dF s(x) = exp[- L(s)+sx] dF(x) (8)

1 - F(x) = dF(x')= x'>x exp[ p(s)-sx'] dF (x'). (9)

It will now be instructive to find an upper bound to 1 - F(x) before proceeding to our
major objective of lower-bounding 1 - F(x). For s > 0, we can upper-bound exp(-sx')

in Eq. 9 by exp(-sx), and thus obtain

1 - F(x) < exp[.(s)-sx] x dF (x')
x >x s

< exp[ (s)-sx] [Fs(o)-Fs(x)

-< exp[b(s)-sx]; s > 0. (10)

Since Eq. 10 is valid for any s > 0, we can get the best bound by minimizing p(s) - sx

with respect to s; if a solution exists for s > 0, it is

p(s) = x. (11)

Since "(s) > 0, Eq. 11 does indeed minimize 4(s) - sx. Finally, since i'(s) is a con-
tinuous increasing function of s, we see that a solution will exist for s if

S= p'(0) -< x < lim p(s). (12)
S-00

Also, it can be seen from Eq. 5 that either lim p'(s) = o or lim p'(s) is the smallest
S-co s-O

x for which F(x) = 1, that is, the largest value taken on by the random variable a. Sub-
stituting Eq. 11 in 10, we get the well-known Chernov bound, 1 given in parametric form,

1 - F[ '(s)] -< exp[p(s)-sp'(s)] s > 0. (13)

The exponent in Eq. 13, 4(s) - sp'(s), is zero for s = 0 and has a derivative of

-sp"(s) with respect to s. Thus for nontrivial distributions, the exponent is negative

for s > 0. Figure XIV-1 gives a graphical interpretation of the terms in Eq. 13 for a

typical random variable.

If we substitute Eq. 3 in Eq. 13, we obtain

1 - FL (s) -< exp [in()- n(S)]. (14)

n= 1 n= 1
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p (s

S1 si
1

slope 
= -s

Fig. XIV-1. Graphical interpretations os) Eq. 13.

Fig. XIV-I. Grahical intrretations of Eq. 13.

If the an are all identically distributed, then the argument on the left and the exponent

on the right are linear in N.

We next turn our attention to finding a lower bound to 1 - F(x). Since x is arbitrary

in (9), let us substitute 4'(s) - A for x, where A is an arbitrary positive number to be

chosen later.

1 - F[f'(s)-A] =

exp[l(s)-sx] dFs(x). (15)

Here, we have lower-bounded the left side by reducing the

Restricting s to be non-negative, we observe that exp(-sx) is

lower-bounded in (15) by exp[-s'(s)-sA].

1 - F[p'(s)-A] > exp[p(s)-sp'(s)-sA] dF (x) -A <

Recalling that as has a mean i'(s) and a variance L"(s), w

gral in (16) by the Chebyshev inequality,

F dFs(x) > 1 A2 -A < x - ' (s) < A.

interval of integration.

decreasing with x and is

x - p'(s) < A. (16)

e can lower-bound the inte-

(17)
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Choosing A = qi"(s) , for simplicity, and substituting (17) in (16), we get

1- F['(s)- ] >- 1 exp[(s)-s'(s)-s (s)]. (18)

It is convenient to simplify the left-hand side of (18) at the expense of the right-hand

side. Define sI to satisfy

(s1 ) = W (s) - 2p"(s). (19)

Expanding 4(s) in a Taylor expansion around 4(sI), we get

2
(s-S 1

p(s) = p(sI ) + (S-Sl)4'(s1)  + 2 )"(r); s1 - r < s

v(s) > L g(sl ) + (s-sl) '(s l).  (20)

Substituting (19) and (20) in (18), we have

1 - F['(sl)] > -exp[h(sl(sl)-s 1 1 -2s 2 (sj (21)

where s > 0, and s1 is related to s through Eq. 19. Observe that Eqs. 13 and 21 are

quite closely related. They differ primarily in the term 2s fZ;.L(s). When is the sum

of independent random variables, we see from Eq. 3 that q2I!7"(s) is proportional to the

square root of the number of random variables, whereas @(s1) and Sl '(s1) are directly

proportional to the number of variables. Thus, in some sense, 2s 2p"(s) should be

unimportant for large N. Unfortunately, giving a precise meaning to this is somewhat

involved as the next theorem illustrates.

THEOREM 1: Let 1, 2, .. . be an infinite sequence of random variables with

semi-invariant moment-generating functions 1(s), 42 (s), ..... For any positive num-

ber A assume that positive numbers L(A) and U(A) exist such that

N

L(A) < -~p(S) -< U(A); for all N > 1 and all s, O < s < A. (22)

n=1

Then for any sI > 0,

1 [(sl)-sl'(sl ]

lim N In (1-F[='(s )]}= lim N (23)
N-oN N-oo

N
where = L (n, and F(x) and 4(s) are the distribution function and semi-invariant

n= n
moment-generating function of a.

DISCUSSION: The condition in Eq. 22 is broad enough to cover situations in which
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each of the n has one of a finite set of distribution functions, each with nonzero variance

and a semi-invariant moment-generating function. The number A is brought in to avoid

ruling out the broad class of random variables for which F (x) = 1 for some finite x and

thus lim "(s) = 0.
n

S-co

PROOF: It follows immediately from (14) that the left side of (23) is less than or

equal to the right side. Also, from (21), for any given N, we have

1 1(Sl) - s '(sI In 2 2s 2 "(s)
-ln N N N (24)

in Eq. 24 s and s 1 are related by Eq. 19. Also, from the mean value theorem,

L '(sl) = '(s) + (Sl-S)4"(s2); for some s 2 , s1 < s2 < s. (25)

Combining Eqs. 19 and 25, we have

N22,,(s)
S - s 1 - (26)11"(s2)

For any given A > 0 and all s < A, we can upper-bound 4"(s) and lower-bound "(s2) by

Eq. 22.

1 2NU(A) 1 2U(A)
s - s I -< (27)

NL(A) L(A)

Next, let E be an arbitrary positive number and restrict N to satisfy

2U(A)
N > 2 (28)

[L(A)]2E

From Eqs. 27 and 28,

0 < s - s 1 - E. (29)

Since s 1 is a continuous function of s, s 1 will take on all values from 0 to A - E as

s goes from 0 to A. Thus for any s 1 , 0 < s 1 < A- E, and for any N satisfying (28), we

have s < A, and therefore from Eq. 22

2 s 22((s) 2U(A)
< 2s --- 0. (30)N N

N- oo

But, since A and E are arbitrary, Eq. 30 is valid for any sl. Thus, from (24),

1 E(sl) - s L'(s Ilim -N n 1-F['(s 1 )]} > lim N (31)
N-oo N-oo
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thereby completing the proof.

It is frequently convenient to have a specific upper bound on 2s ~i(s), since it is

the essential difference between our upper and lower bounds. The following result is

quite crude and applies only to discrete random variables taking on a maximum value.

Let the random variable an take on the values Xnl > Xn2 Xn3 > . .. with probabilities

pnl' P 2 ... . From Eq. 6 we know that L (s) is the variance of a random variable
n Snl Sx ni

taking on the values Xn 1, Xn2 ' ... with probabilities pnie . pnie Since
1

the variance of a random variable is upper-bounded by the second moment around any

value, we have

sxnk
,(s) (x ) Pnk e  (32)
nS < (nk- n1 sx

k pnie n

i
nl

Multiplying numerator and denominator by e sxn and defining rnk by S(xnk-xnl), we

have

nk

2 \ 2 Pnke
s 1(s) 2 nk (33)

n nk ni
ni

Now, nl1 = 0 and 1nk -< 0 for s > 0. Thus the denominator in (33) can be lower-bounded

by pn1. Furthermore, gnke k < (2/e)2 for any rlnk  0. Incorporating these results

in (33) yields

s2 "(s) < (2/e)2 n - Pnl
n / n1

where Pn1 is the probability of the largest value taken on by n. Let p = mm pn1 and

use Eq. 3, then, we get

s2 "(s) < N(2/e)2[I _P . (35)

Substituting (35) in (21), we get

1 4 2N(1-p 1
1 - F[ ')(sl)] > exp [(sl) - S L'(s ) p (36)

The previous results have all been derived through the use of the Chebyshev inequal-

ity and are characteristically simple and general but weak. We now turn to the use of
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the Central Limit Theorem to get tighter results. As before, the random variable a is
N

the sum of N independent random variables, a = E an. The an have the distribution
n=1

functions F (x) and the semi-invariant moment-generating functions n(s). Now, let us

define the tilted random variables n, s with the distribution functions

) x exp(sx') dFn(x')
F (x) = - (37)

n, s f0C

\ exp(sx') dF n(x')
-o n

The semi-invariant moment-generating function of n is

hn, s(r) = exp(rx) dFn, s(x) (38)

= n(s+r) - jn(s), (39)

where Eq. 39 follows from substituting (37) in (38).
N

If as is now defined as s = n, s, the semi-invariant moment-generating function
n= 1

of s is

N

h s (r) = hn, s(r) = I(s+r) - [(s). (40)

n= 1

Thus, if we work backwards, the distribution function of as is given by Eq. 4.

Now, let x = p'(s) in Eq. 9,

1 - F[p'(s)] = exp[p.(s)-sp'(s)] S exp{s['(s)-x]} dFs(x). (41)

x>.' (s)

We shall assume, temporarily, that the an are all identically distributed and non-

lattice. (A lattice distribution is a distribution in which the allowable values of an can

be written in the form xk = hk + a, where h and a are arbitrary numbers independent

of the integer k. The largest h for which the allowable values of an can be expressed

in this way is called the span of the distribution.) Then as has the mean 4'(s) = Npn (s)
and the variance p"(s) = Np"(s), and for s > 0, the terms in the integral of (41) have the

n
appearance shown in Fig. XIV-2. Observe that F s(x) is approximately a Gaussian dis-

tribution function, but the exponential term is changing much more rapidly than F (x)

for large N. Let Ts be the normalized random variable.

- 2'(s)
= s (42)

qiT(SJ
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Let Gs(y) be the distribution function of qs'

Gs (Y) = Fs[y +"(s)+i(s)].

Transforming the variable of integration in (41) by (42), we have

1 - F[p'(s)] = exp[i(s)-sj'(s)] exp[-s FJ (s) z] dG(z).

z>0

Assuming s > 0, we can use integration by parts on the integral in (44), to obtain

exp[-sj!'(s) z] dG(z) = s '(s)

z>0

Equation 45 is now in a form suitable

Since the exponential term is decaying so

(45)

for application to the central limit theorem.

rapidly, we need a particularly strong central

' (S) X

Fig. XIV-2. Sketch of terms in Eq. 41.

4
limit theorem. The appropriate theorem is due to Esseen and is given by Gnedenko and

Kolmogoroff. 5 Under conditions less restrictive than those that we have already

assumed, the theorem states

Q1(z) exp 2)
G (z) (z) + + o- (46)

(47)( (z) = exp(- x dx

QPR No. 77
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Q1(z) = Q1 (0) (1-z2)

t '(s)
(0) = n

6[ (s)]3 /
2

and o - is a function approaching 0, uniformly in z, faster than
1

S; that is,NFN

o I if lim _ f(N) = 0.
Substituting (46) and (48) in (45), we haveN-
Substituting (46) and (48) in (45), we have

exp[-si_" ) z] dG(z)

z>0

=s0(

sN,( Q1(o) Q 0
N 0

s '"(s) Q1(o) oo

o 1

- exp )] exp[-s V(s) z] dz

z2 exp -z- expl-s"(s)

)exp[-sq 4"(s) z] dz.

z] dz

(50)

The first integral on the right-hand side of (50) can be integrated by parts, and then

by completing the square in the exponent. This yields

0 2 (51)

Using standard inequalities on the normal distribution function (see Feller6), we obtain

- D(s (s)) -<
Ss24"(s)

exp 2I- v J

2-1 s2Tr "(s)

that W"(s) = N" (s), we see that the first integral in (50)
n(S 1

(52)

A similar integration on the second integral in (50) shows that it can be represented

QPR No. 77
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1
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by o(1/FN-). If we upper-bound exp[-z 2 /2] in the third integral of (50) by 1, it follows

that it also is o(1/JN-). By using the uniform convergence in z of the o(1/')N-) in the

fourth integral, we see that it too is o(1/NJ-). Thus,

exp[-s (s) z] dG(z) = 1 + o . (53)
z>0 2Ns 2  (

Substituting (53) in (44), we see that for identically distributed nonlattice variables

with s > 0,

1 - F[2'(s)] = 1 o exp[p(s)-sp'(s)]. (54)

2 TNs 2 "(s)

We shall now derive a relationship similar to Eq. 54 for the lattice case. Let the

n be independent and identically distributed and take on only the values

x k = a +hk, (55)

where a and h are arbitrary numbers independent of the integer k, and one is the great-

est common divisor of the integers k for which xk has nonzero probability. The random

variables a and as also can take on only the values Na + hk for integer k. Let A be the

magnitude of the difference between i'(s) and the smallest value of Na + hk larger than

'(s). Define

ps(j) = P(s=',(s)+A+hj). (56)

We can now apply a central limit theorem for lattice distributions (see Gnedenko and

Kolmogoroff 7). This theorem states, in effect, that for any E > 0, there exists an N o

such that for N > N , we have

-(A+jh) I E
p(j) - exp (57)

)2 "(s) L 2p"(s) j(s)

Bounding the exponential term, we can rewrite this as

E + h (A+jh)2 (i) E + h (58)+ h 1 . . ps(j ) < + (58)
4p"(s) [ 2"( s"(s) j4"(s) TZT"(s)

Equation 41 can now be rewritten in terms of the ps(j) to yield

0o

1 - F[p'(s)] = exp[ b(s)-sp'(s)] _ ps(j) exp[-s(A+jh)] (59)

j=0
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S_'i"S][ c ~ exp(-sA)
1 - F[p'(s)] -< exp[(s)-s'(s)] + h ex (- ) (60)

(s) (s) 1 - exp(-sh)

Here, we have upper-bounded (59) by (58) and summed over j.
Equation 58 can also be used to lower-bound (59). If we define

0o

A = (A+jh) 2 exp[-s(A+jh)],

j= 0

then

exp[ (s)-s' (s)] exp(-sA)
1 - F[t'(s)] > h-E 2 ) hA

1/ F s-( "(s) L( 1 - exp(-sh) i"(s)j

Observing that E can be made to approach 0 with increasing N and that A is

bounded independently of N, we have

1- F (s)exp(-s ) + o exp[(s)-s'(s)]. (61)
2rN" (s )[ 1- e xp(- s h)]

Equation 61 is valid for any s > 0 for independent, identically distributed lattice variables

if (s) exists. Note, however, that A will fluctuate between 0 and h as a function of N.

Equations 54 and 61 are not applicable in general to nonidentically distributed random

variables. In some cases, however, Eqs. 54 and 61 can be made to apply, first, by

grouping the variables to make them identically distributed. For example, for N var-

iables, if N/2 variables have one distribution and N/2 have another distribution, then
we can form N/2 identically distributed variables, each of which is the sum of a pair

of the original variables.

In the sequel, we shall take a different approach to nonidentically distributed vari-

ables and derive a lower bound for 1 - F['(s)] by using a different form of the central

limit theorem. This new result will be more complicated than (54) and (61), but will

have the advantage of providing a firm lower bound to 1 - F[4'(s)] and of being applicable

to nonidentically distributed variables. It will only be stronger than Eq. 21 for large N.

We start with Eqs. 44 and 45, which are still valid for nonidentically distributed inde-

pendent variables. Then the Berry theorem states

CP 3 N
r G(z)e - (z) < _, (62)

where
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N
1

P3, N n=1 3/ (63)

N n=N n

P3, = x-SInL(s)3 dFs, n(x) (64)
-00

and C is a constant. Esseen4 has shown that C may be taken to be 7. 5, but no example

has ever been found in which C need be larger than 0. 41. The constant must be at least

0. 41 to cope with a sum of binary random variables, each of which takes on one value

with the probability ( 1i0-2)/2.

From Eq. 62, and from the fact that G(z) is a distribution function, we have

2Cp 3 N
G(z) - G(0) > D(z) - 4,(0) - (65)

> 0; z > 0. (66)

Let z be that value of z for which the right-hand side of (65) is 0.
o

1 C3,P3 NS(zo) = + (67)

Observe that if N is not sufficiently large, (67) will have no solution. More precisely,

N must be greater than [4Cp3, N 2 for Eq. 67 to have a solution. For smaller values

of N, we must use Eq. 21 to lower-bound I - F['(s)]. Because of the importance of

P3, N here, it is sometimes convenient to have a bound on p3, N in terms of i(s). Using

the theorem of the means, we have

3,N 0 [x- n(s)] dFn, s(x)j = { n i(s)+3[ "(s)]}3/ 4  (68)
-00

N1 N ' (s)+3[41n(s )]2 3/ 4

< n= 1 (69)P3, N N<  n 3/2

n=
I n

Using Eq. 66 for z < zo, we find that Eq. 45 becomes

exp[-s (s) z] dG(z) > s s)) - (0) - 3, N exp[-ss) z] dz. (70)

z>0 o -
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Integrating by parts and using Eq. 67, we get

exp[-s4(s) z] dG(z) >I exp[-s "-(s) z] ddZ(z) (71)

z>O o

s p"(s)
> exp . . 1 - (zo+sq (s)) (72)

z
exp -zos 1(s)2 - (73)

Equation 71 was integrated by completing the square in the exponent, and in Eq. 73 we

used the bound on #(x) given by Eq. 52. If we define B as the right-hand side of Eq. 73,

then from Eq. 44, we have

1 - F[L'(s)] > B exp[p(s)-s'(s)]. (74)

It is instructive to estimate B for very large N, under the assumption that p"(s)
grows in some sense linearly with N. Under these circumstances, from Eq. 67,

z 3,N (75)

exp -2Csp ZZ
3, N 1 N

B n= 1 (76)
N

2n1Ts Z p(s)
n= 1

We see that for large N, Eqs. 54 and 74 differ by the numerator of Eq. 76. This term

is essentially independent of N, but is typically very small relative to 1.

All of the results thus far are concerned with the upper tail of a distribution function,

1 - F(x), for x > a. We can apply all of these results to the lower tail of a distribution,

F(x), for x < , simply by considering the random variable -a rather than . Since the

semi-invariant moment-generating function of -a is related to that of a through a change

in sign of s, we can write the results immediately in terms of 11(s) for s<0. Equation 13

becomes

F[p'(s)] < exp[p(s)-s'(s)]. (77)

(Actually F[ p'(s)] = P[,< '(s)], whereas the counterpart of Eq. 13 treats P[<p'(s)]. A

trivial modification of Eqs. 9-13 establishes the stronger result.)

Upon recognizing that F['(s)] > P[<'(s)], Eqs. 18, 19, and 21 become
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F[I(s)+4-21 J 1S- exp[P (s)-s '(s)+s \ ,, (ss

'(sl) = k'(s) + \ 7 "2(s)

F[p'(Sl] "et[cy (s)-sle' s l )+2sv(s)

Equation 54, for identically distributed nonlattice variables, is

(78)

(79)

(80)

F[ '(s)] = 1 +

2_ rNs " (s)

o - exp[{(s)-sk' ()].

Equation 61, for identically distributed lattice variables, is

h exp( sA)
F[k'(s)] = j2TN n(s)[l-exp( sh)]

+ o exp[k(s)-s ' (s)],

where A is the interval between k'(s), and the largest value of Na + kh less than or equal

to k'(s). Finally, Eq. 74 becomes

F['(s) ] ) B exp[(s)-sk'(s)j (83)

exp 1z 0 s _ Z- ?
B = o 1

N -r[ z 0-ss ) Nf F
O _

(84)Z

[ ,_ ,

where z is given by Eq. 67, and Eqs. 77-84 are valid for s < 0.o
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B. ERROR BOUNDS FOR GAUSSIAN NOISE CHANNELS

Considerable work on estimating the achievable probability of error in communication

over a wide variety of channels has indicated that for time-discrete channels the mini-

mum achievable error probability has the form

P = e-NE(R)I
e

where N is the block length on which coding and decoding operations are carried out, R

is the transmission rate, in nats per channel use, and E(R) is a function of R and of the

channel but is independent of N. The approximation is usually close only for large

values of N. Thus the estimation of the function E(R) amounts to estimating

In P elim e
NN-.co

Usually it is hard to calculate E(R) exactly, and bounds for the function are found

instead. The upper and lower bounds are defined as follows: For any E > 0 and suffi-

ciently large N there exists a code for which

-N[EU(R)-E]P <e
e

and there exists no code for which:

-_ -N[EL(R)+E]
P <e

e

Note that EU(R) is a lower bound to E(R), but it arises in upper-bounding the achievable

Pe, and EL(R) is an upper bound to E(R) used in lower-bounding Pe'1,2
Gallager has found a number of these upper and lower bounds for the discrete

memoryless channel and also for the time-discrete Gaussian noise channel with a power

constraint. Shannon 3 found some of the same bounds for the bandlimited white Gaussian

noise channel, except that in his case the block length is replaced by the time duration

over which coding and decoding operations take place

P < e-TE(R)
e

and the rate R is in nats per second. If one takes the limit of these bounds for N- oo,

one finds that all of the bounds have some properties in common. The limits of the upper

and lower bounds coincide for R = 0 and R > R it, where R is a function of the chan-
crit' crit

nel and lies between 0 and capacity. The bounds are decreasing convex downward func-

tions of R, and all become zero at R = Capacity.

The channel model that is analyzed here consists of a number of time discrete
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channels each disturbed by an independent Gaussian noise. Each channel is to be used

only once, and the total energy used in signaling over the channels is constrained. There

is no limitation on the number of channels, nor is the value of the noise power required

to be the same in all channels. This model, therefore, represents one channel used N

times, a set of Q parallel channels with arbitrary noise power in each used N times,

or parallel channels, all having different noise powers each of which is used once. This

model also represents the colored Gaussian noise channel with an average power con-

straint. One takes a Karhunen-Loeve expansion of the noise over a T-second interval.

Each of the eigenfunctions of the noise autocorrelation function so obtained is considered

as one of the component channels in the model. When the noise is Gaussian, the

Karhunen-Loeve theorem states that the noise power in each of the eigenfunctions is

independent, which is exactly what is needed for the model. As T is made large, the

distribution of the noises in the eigenfunction channels approaches the power density

spectrum of the noise, and the resulting E(R) function can be expressed in terms of this

spectrum. In this case, the energy constraint is PT, where P is just the power avail-

able.

Techniques similar to those used by Gallager in obtaining upper and lower bounds

for the discrete memoryless channel can be applied here, except that now there is some

added freedom; the energies distributed to each of the component channels of the model

are subject only to the constraint that they be positive and add up to NP on the average.

With this freedom comes the new problem of determining the optimum distribution of

energy to the component channels.

When the various bounds are evaluated a remarkable phenomenon appears. As might

be expected, only the component channels with noise power below a threshold (Nb) are

to be used for communication, but the value of the threshold over most of the parameter

range is dependent only on the rate, and is independent of the power available or of the

probability of error desired.

1. Lower Bound on E(R)

Since our model consists of a number of parallel channels, each of which is used

only once, it has an implicit block length of one, and the resulting bound is of the form

-E (R )+EP <e
e

where now R is the nats per block. The quantity E will be discussed in more detail.

Suffice it to say now that when we have Q channels, each used N times, * * will go
E (R )

to zero with increasing N. Also, when the channels come from the eigenfunctions of a

Karhune-Loeve expansion, E O as T - co
E (R*)
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E

Rcrit

Fig. XIV-3. Eu(R) for fixed power. (Because of the

similar relations among R and R, E
and E, and S and P, the curves are drawn
for E, R, and P.)

The lower bound takes on three different forms as shown in Fig. XIV-3. Let n be
thn

the noise power in the n t h channel, and let S be the total energy constraint on the inputs.

Then in region A, the relations are

* 1R = -

N <N
n b

Nb
In N

N
n

p- 1<

S pS 1

(l+p) 2Nb N
b N Nwhere

where

S = (1+p)

N -<Nbn b

In 1
N)

+ p - P J \b

Nb - N n
p N1 + n

l+p Nb

For a given rate R , and a given energy S, we observe that N b is defined by Eq. 1, p

by Eq. 3, and E by Eq. 2; the bound is valid in the region where the resultant p lies

in the interval (0, 1).

The form of Eqs. 1, 2, and 3 is somewhat different from Gallager and Shannon's,

in that it has two parameters (p, Nb) rather than the usual one. This is not a serious

problem if one approaches it in a slightly different manner. Instead of specifying the

energy and then finding R and E as functions of p, we first specify the rate R . R

determines Nb; although this is not a simple relation, it is a one-to-one relation. Once

N b is determined, one has E and S as functions of the parameter p.

To see how the probability of error goes to zero with increasing N for the Q-channel

case, we note that the number of component channels in the model with a given value of

Nn is a multiple of N, and consequentlyn
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Sb n N b q

2 p N 2 N
n P q

NnN b 1- n N N
n b 1+pN q bl-

b  I + p N b

in which the sum on the right is just over those of the Q original channels that have noise

power equal to or less than N b . The same thing is true of the other sums, and we can

write

S N Nb
R =NR N In

N N q
NPq b

E = NpP N In 1 + p - pN (4)
2(l+p) N 2 N b)

b N qN
q b

where

Nb - N
S =NP = (1+p)N - N

n b q
S+p Nb

For the colored-noise case, as T - o it can be proved that

Nb 1 N(f)
1 In -- T - In df + 0(T),
2 N 2 N fbn b

N nN N(f)-<Nn b b

0(T)
where - 0, and N(f) is the power density spectrum of the noise. The same thing is

true of the other summations, and relations similar to (4) can be written. The boundary

of region A is set by p = 1.

In region C we have

R 1 n N ( In Z N (5)R N=2 0N- b
N N n N N

n b n b

* SE

For completeness we write

N -N

S = 4p b n p > 1.
N 

pN N b 2 n
n b Nb
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In both regions = R - p

aR
The functions in region B are found to be

- N -N
S=4 b n

Z_. N
NnN b 2 nn b NbNb

* S 1 b 1 inE - + 4N +n lnn 2 - R*
N n<Nb n Nn N

nb nb

8E
In this region p is held at 1, and consequently R - -1; thus only the variable Nb is left

to adjust the trade-off between E and S. In this region Nb is not a function of R

but of S. The separations of regions A, B, and C can be made by examining the value

of p. Once the values of Nb and p have been determined, it is a simple matter to design

the signals that will produce a probability of error as small as the upper-bound exponent

indicates.

The form of Eqs. 4 lends itself to a presentation of E vs P for fixed R. This pre-

sentation is shown in Fig. XIV-4. The regions are labeled the same as those in

C

E Fig. XIV-4. EU(P) for fixed R.

P0  P

Fig. XIV-3. The value P is the minimum power needed for reliable transmissiono
at the given rate; and for any power less than Po, the exponent is zero. In region A we

have

8E P
8P 2Nb(1+p)

At p = 1 we go into region B, and here p remains constant at 1 but Nb increases, thereby

increasing the bandwidth. In this region

aE 1
8P 4N b

In region C we again find that Nb remains fixed, as in region A, except now at a larger

value. We have
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aE 1
8P 4N b

which is just a straight line.

This curve gives an attainable exponent for given rate and power. According to the

derivation of this bound the power used in each component channel is

Nb -N n
(l+p) p N

n1-
1 + p Nb

and the total energy used for each block transmission must lie within a shell

N(Pav-6) < S < NPav

2. Upper Bound on E(R)

An upper bound on the exponent can be obtained by a sphere-packing type of argue-

ment. This bound has the same form as the lower-bound exponent in region A, Eq. 4,

except that now p can take on any positive value. A typical curve is shown in Fig. XIV-5.

E (0)

E E (R) Fig. XIV-5. EL(P) for fixed P.

E, (R)

R

There are two small reductions that can be made in this bound. First, the value of E(O)

for the lower-bound exponent is 4N (see Eq. 5), which Shannon 3 has shown is also
min

the upper bound of the white Gaussian channel exponent at zero rate. The upper bound

applies to the model also, since it will certainly be inferior to the white channel which

has all of its noise power equal to the minimum of the noises in the model. Once the E(O)

is reduced, one can produce a straight-line bound through E(O) tangent to the old upper

bound by Shannon and Gallager's 2 technique of breaking the channel up into two parts

and looking at the best list-decoding bound on one part and the zero-rate bound on the

other part. Then the probability of error can be shown to be greater than one-fourth the

product of the probability of error for each of these steps. Figure XIV-6 shows the

sphere-packing and the zero-rate bounds (not the tangent bound) presented as E vs P.
P

Curves A are the sphere-packing bounds for several rates and have slopes
2 Nb(l+p)
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E

P

Fig. XIV-6. EL(P) for several fixed values of R.

1 1thus for large p their slopes approach 2N_. Curve B has slope 4N and is independent
b mi n

of rate. It merely states that, no matter what the rate, the exponent is less than the

zero-rate exponent. If the rate is large enough, curve A is always below curve B, and

thus the tighter bound. The effect of the tangent line is not shown in Fig. XIV-6, since

its effect can only be found graphically once the E vs R curves are plotted for all values

of P. It is known that this tangent line has no effect for sufficiently large R.

In the region where the upper and lower bounds agree, between Rcrit and capacity,

one can make definite statements about the nature of the optimum signals. It has been

found that the signals must lie entirely within those channels, or that part of the spec-

trum, where the noise power is below the threshold, N b , and that Nb is determined by

the relation

R =N
2 N

N <N n
nb

In the other regions where the two bounds do not agree, one cannot say anything about

the signals with certainty, except that the average power required for a given rate and

exponent is less than that given by Fig. XIV-4 and greater than that given in

Fig. XIV-6.

3. Outline of Proofs

a. Lower Bound on E(R)

We obtain an upper bound to the probability of error by the standard random-coding

argument.1 The only difference from the standard procedure in this particular case lies

in defining the ensemble from which the random code words are chosen. A code word

consists of a set of xn that are to be transmitted through the component channels in the

model. The ensemble of codes is defined by taking each x in each code word from a
n

Gaussian distribution with zero mean and variance
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-2 Nb-N

n = (1+p) p N ; N< N
n

1
+ p Nb

= 0; N >Nb

and then rejecting all except those code words for which

NP - 6 < x 2 -< NP; 6 > 0.
Sn

n

In other words, the energy in each code word is required to be in a small shell.

then writes, following Gallager,

-N[Eo(p)-pR]
P <e

e

One

where

1F 1 +p

E o (p) = -In p(x) p(y/x) 1 +p dx dy, 0 < p < 1.

In this equation, p(y/x) is known to be a product of Gaussian distributions.

above but can be bounded for any r > 0 by

2
r x2-rNP+r6

n

p(x) < q e

p(x) is given

2
x

_- n
n 2c-2

ne

n

where

N b  N
(1+p) p N

p Nn
1

1 + p Nb

p

2 Nb(l+p) 2

NP- 6< x2NP
n

n

2
x

n
2

n 2c
n

e dx.

n 2Trc
2

v n
n
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When

nn N+p N b

q only decreases algebraically with N and consequently does not affect the exponent.

Evaluating the expression for Eo(p) and maximizing over p, we obtain the expressions

for R and E. The expurgated bound is found by the same method. Now: the variances

used are

2 Nb -Nn
o = 4p b n N < Nn N n b

N n
Nb

and, following Gallager's expurgated bound,

-N[Eo(p)-pR]P < 4pe

where now

Eo(p) = -n p(x) p(x') p(y/x) p(y/x') dy dxdx' p > 1.

This can be evaluated in the same manner, and the expurgated relations can be obtained.

b. Upper Bound on E(R)

The lower bound on the probability of error is obtained by using a method of
2Gallager, based on the Chebychev inequality. The theorem used here states: Define

Lm(s) as

m (s) = In f(y)s p(y/xml-s dy,

y

where f(y) is an arbitrary probability density on y. Then if

f(y) dy < 4 exp[ m(s)+(l-s)p'm(s)-(1-s)-2"m(s) ],

Y
m

where Ym is that set of output sequences decoded as m, it follows that

P > 1m exp[ m (s)-' (s)-s-2 S) ]. (6)
em 4 m m m

QPR No. 77 300



(XIV. PROCESSING AND TRANSMISSION OF INFORMATION)

Since the sets Y are disjoint, f f(y) dy cannot be large for all transmitted signals
m Y

I -NR
and, in fact, there must be one signal with f f(y) dy < M e

chosen so that Ym

Thus when s is

NR > -i (s) - (1-s) ' (s) + (1-s) 2 )2"(s) + In 4,
m m

Eq. 6 gives us a lower bound on P
em

We choose f(y) to be

Jn
2 -2

n
f(y) e

n

where

N
n

n N -sN
S 1 1- i

if N > N
n < Nb

n b

We shall set s 1 equa

of '1m with f(y) fixed

* 1 VR -

N <N
nb

l to s, but ±' and i" are understood to be the partial derivativesm m
If we set

Nb
In

N
n

and then select s to meet Eq. 7 it turns out that the exponential behavior of the lower

bound on P is the same as the upper bound. One point that needs to be enlarged upone

is that [m(s) depends on the m for which Eq. 6 is satisfied; then it depends on f(y),

which in turn depends on s. If one is to choose s to meet Eq. 7, it looks as if an end-

less circle of dependencies will arise. It turns out that the 2"\fi(s) becomes negligible

for large block length, and that the - n(s) - (1-s)4m(s) depends on m only through

three sums:

Smn'

N nN
n b

nNb

2
x N ,
mn n
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Sx 2 mn/Nn

N >N
n b

We therefore restrict ourselves to a small fraction of the m. First consider only those

m for which

x2 < NP
mn 1 - a

n

this will be at least aM of the signals. Now the three sums are bounded and can be sub-

divided into a finite number of intervals, each of length N6. There must be some triplet

3 (1-a)
3

of intervals which contains at least 3 aM of the input signals. We consider only
P

this set, and note that reducing the set of input symbols by a fixed fraction only reduces

the rate by

63(1-a)3
-ln a3

P

N

which approaches zero for large N. Once one knows that Eq. 7 can be achieved within

N6 of equality, substitution in Eq. 6 gives the sphere-packing exponent for the probability

of error.

P. M. Ebert
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