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A. ION-PLASMA OSCILLATIONS

The plasma density of the electron-cyclotron resonance discharge (ECRD) has been

measured with an 8-mm Fabry-Perot microwave interferometer. The ECRD experi-
ment has been described in Quarterly Progress Report No. 73 (pages 81-85) and Quar-
terly Progress Report No. 75 (pages 120-121). The discharge is driven by a 2. 4-Gc,
1. 2-kw magnetron, powered by an unfiltered 5-kv power supply. The magnetron current
and voltage waveforms are shown in Fig. XI-1.

Fig. XI-1. Magnetron current and voltage vs time. Upper
trace: magnetron current, 0. 1 amp/cm. Lower
trace: magnetron voltage, 5000 volts/cm. Time
scale, 0. 5 msec/cm.

The Fabry-Perot interferometer has been described in Quarterly Progress Report
No. 76 (pages 109-111). It consists of a pair of spherical copper mirrors mounted facing
each other in the side wall of the discharge tube. The mirrors are 3 inches in diam-2
eter and approximately 6 inches apart. The mirror system is confocal, that is, each
mirror is focused at the center of the discharge tube. A 35-Gc, 10-mw klystron provides
the power for this system. The microwave energy is fed from the 8-mm waveguide into

This work was supported in part by the National Science Foundation (Grant GK-57).

QPR No. 77 137



(XI. PLASMA ELECTRONICS)

and out of the resonating system through a small hole in the center of each mirror. A

crystal is used to detect the microwave energy passing through the resonating system.

The klystron is modulated by a sawtooth whose period Ts is short compared with the

width of the magnetron current pulse. Typically, Ts is approximately 3. 5 psec. As the

klystron is swept in frequency, a fringe or "pip" is detected and displayed on an oscil-

loscope when the klystron frequency coincides with a resonant frequency of the mirror

system. As the plasma builds up inside the discharge tube, the position of this fringe

shifts. By measuring this shift, the electron density of the plasma may be determined.

The interferometer phase shift as a function of time has been measured for various

values of the pressure and magnetic field in a hydrogen discharge. The electron density

was then calculated, under the assumption that the plasma uniformly filled the discharge

tube. The actual density profile in the discharge tube has not yet been determined. In

Fig. XI-2, a typical plot of the electron density against time is shown. Each point on the

plot represents a separate magnetron current pulse. This pulse is shown in Fig. XI-2

as a dotted line. Even though the shape and height of the magnetron current do not vary

from pulse to pulse, the pulse-to-pulse variation of the plasma density at any time within

a magnetron current pulse is considerable. This indicates that the plasma density is
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Fig. XI-2. Electron density vs time in ECRD.
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fluctuating considerably (by 50 per cent or more) in the ECRD, and on a time scale that

is long compared with T s, the interferometer sweep time. The fluctuation frequency

is thus bounded above by - = 30 kcps and below (presumably) by 60 cps.
T

5

Fig. XI-3. Retarding potential probe plate current vs
-6

time (p = 4X 10 torr Hg, B = 400 gauss).

Upper trace: retarding potential probe
plate current. Lower trace: magnetron
current pulse. Time scale 0.5 msec/cm.

In order to examine the fluctuating plasma in more detail, the current reaching the

plate of a retarding potential probe was measured as a function of time. The retarding

potential probe is mounted on the axis of the discharge tube just back of the magnetic
3

mirror. The probe consists of a capped copper tube, -- inch in diameter and approxi-

mately 2 inches long. A hole of 25-mil diameter has been drilled in the cap to sample

the plasma. Behind the cap are arranged three grids and a plate. In this experiment,

the grids were all grounded and the plate is held at +180 volts.

Figure XI-3 shows three separate magnetron current pulses and the corresponding

plate current of the retarding potential probe. For these three pulses, the magnetic field
-6

in the center of the discharge tube was 440 gauss and the pressure was 4 X 10 torr.

The fluctuations in the plate current provide a strong indication that the plasma density

itself is fluctuating.
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The fluctuating frequency can be estimated from Fig. XI-3 to be approximately

6000 cps.

In Fig. XI-4 the average density of the plasma at peak magnetron current

(2.5 msec) has been plotted against the magnetic field in the center of the dis-

charge tube, with pressure as a parameter. Note that the magnetic-mirror ratio

for this experiment is approximately 4. The lower dotted line is the electron
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density found by assuming that the electron cyclotron and electron plasma fre-

quencies are equal at the center of the discharge tube. The upper dotted line

gives the density corresponding to a plasma frequency of 2.4 Gc, the driving

frequency of the magnetron. It appears that the average electron density is

limited by the magnetron frequency (upper dotted line). Several more points must

be taken, however, to complete Fig. XI-4.

M. A. Lieberman
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B. DISPERSION DIAGRAMS FOR HOT-ELECTRON PLASMAS

1. Computer Program for Solving Transcendental Dispersion Equations

A computer program has been written to find the zeros of a transcendental dispersion

function D(w, k, . .. ) in the complex w plane. This program must be used in conjunction

with the Project MAC time-sharing system.

The user must provide a subroutine that computes the value of D, given the complex

frequency _w, wave number k and any other parameters that the user may desire. The

subroutine may be written by using MAD, FORTRAN or FAP programming languages.

In operation, the program continuously steps k by an increment Ak, and at each step

finds a zero, w , of the dispersion function D
-n

D( n , k+ndk,... ) = 0.
- n

The zero, w , is found by constructing a grid of values in the complex 0 plane around an
-n

initial guess w as follows:

wgo = provided by the user

-gl o

w =w + Ak( - n  ) n > 2.
gn -n-1 -n- -n-2

The program evaluates the real function F = I D(_, k+nAk, . .)12 for every point on

the grid. If a minimum of F is found at c , the grid is refined several times until W

is given to three significant figures; then D is checked to verify that its real and imag-

inary parts change sign in the neighborhood of w . If such is the case, the zero is printed-n

and k is stepped. Thus the zeros of D in the complex w plane are computed as a func-

tion of the wave number k.

Man-machine interaction plays an important role in the use of this program. It would

be practically impossible to utilize this program in an efficient manner without the aid

of the time-sharing system. The grid size and spacing in the complex o plane, the wave

number k and its increment Ak, and all other parameters are specified by the user and

may be altered at will. If at any step a zero of D is not found, the program requests

the user to change the grid size, spacing, and location in the complex w plane. As an

aid to the user, the program will print the values of D and F at the grid points if desired.

2. Longitudinal Waves in the Absence of a Magnetic Field

The dispersion equation for longitudinal waves propagating in a hot-electron
Maxwellian plasma

Maxwellian plasma is

QPR No. 77 141



(XI. PLASMA ELECTRONICS)

1+ + D (
k 2k kD D pe k D pe

- 0,

VT
where pe is the electron plasma frequency, D =pe is the Debye wavelength, and

1/2 00
-oo

-x
e

dx -
x -

Im > 0

is the plasma dispersion function, tabulated by Fried and Conte. 2

The solution of this dispersion equation is shown in Fig. XI-5. The familiar Landau

damping result is obtained for kkD << 1, while for kk D much in excess of 1, the wave is

heavily damped.

kXD

Fig. XI-5. Plasma dispersion equation for longitudinal waves.
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3. Quasi-static Waves in a Hot-Electron Plasma Waveguide

Consider a hot-electron plasma waveguide whose axis is parallel to the static mag-

netic field. Under the assumption that as a boundary condition the tangential electric

100
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Fig. XI-6. Quasi-static dispersion equation in a hot-electron plasma waveguide.

field vanishes at the waveguide walls, the quasi-static dispersion equation for this sys-
1temtem is

1
1+ 1+ 0

(z~+p2)DL

Z( n ) I () = 0,nn(eJ=0

where n 14
kzD pe

-n -c X = pD
pe pe

wo is the electron cyclotron fre-
c

quency, kz is the longitudinal wave number, p is the transverse wave number, and In(x)
is the Bessel function of imaginary argument.

I(X) = i-n n(i).
I (x) Jn(ix)n ni)

QPR No. 77
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This dispersion equation has an infinite number of solutions, each one corresponding

roughly to a cyclotron frequency harmonic. For these solutions, w --n( as k - 0. In
c z

addition to these waves, there is a single plasma wave, for which W - 0 as k - 0.z
Through the use of the computer program described above the two solutions for the

plasma wave and the first-harmonic cyclotron wave have been obtained. Figure XI-6

shows the solutions for the parameters pkD = 1. 57, c/pe = 3. 12. There is a crossover

point at lizk D = 0. 35. Below this wave number, the cyclotron wave dominates the behavior

of the waveguide system, since it has the smaller loss. Both waves are damped out for

kzkD much greater than 2. 5.

It should be noted that quasi statics is invalid in the neighborhood of the electron

cyclotron frequency and its harmonics. Also, the question of boundary conditions arises.

In a plasma with transverse, as well as longitudinal, temperature, plasma particles

are constantly hitting the walls. It is not clear whether the boundary condition considered

here, that the tangential electric field be zero on the waveguide wall, even approximates

the actual plasma boundary condition.

M. A. Lieberman
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C. INSTABILITIES IN ELECTRON STREAMS IN CROSSED ELECTRIC

AND MAGNETIC FIELDS

We have been studying the properties of a hot, weak-density, unneutralized electron

beam, whose unperturbed motion consists of a drift perpendicular to crossed static elec-

tric and magnetic fields.

In the unperturbed state, we assume that the average velocity of the electrons is

given by vave = v0xi , where v0x = E /B . (See Fig. XI-7.) Here E 0i and B 0 are the

applied, static electric and magnetic fields. We neglect the DC space charge and cur-

rent, and the zero-order fields produced by them. The Boltzmann equation for this

unperturbed state is satisfied by the distribution function

2 mv

f = A exp1 m (v Ox exp k g(v) (1)
0 2 k BT 2 k T z

where v x = E /B , A is a normalization constant, v , v , and v are the x, y, andOx 00 x y z
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Fig. XI-7. Coordinate system for electron stream in
crossed electric and magnetic fields.

z components of the particle velocity, m is the electron mass, T is the temperature,

and kB is Boltzmann's constant. The function g(v z ) is left arbitrary at this point. Note

that f 0 is spatially homogeneous and independent of time; it satisfies

q
-(EOiy+vXBiz) 0 =f 0, (2)

where q is the charge of a single electron.

If this unperturbed motion is given a perturbation so that the distribution function

f = f0 + Re [fl ej(wt-k" r)], the linearized Boltzmann equation becomes

q af q _ -

j(o-k - v) f + --E + - (vXB 0i) vf - E f (3)
1 m av m v 0

Here E1 is the perturbed electric field. We shall make the quasi-static assumption,

namely that the perturbed magnetic field B1 = 0, and hence El = -71. Equation 3 is

difficult to solve, however, owing to the term involving E 0 .
If a Galilean transformation is made to a coordinate system translating with the

average velocity v 0xi x of the electrons, the static electric field vanishes and the prob-

lem is considerably simplified. This transformation may be described by the relations

r = r' + v i t (4)
Ox x

V = V' + v 1 (5)
Ox x

t = t' (6)
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E =E'-v i X B'
= Ox x

B = B'.

The symbol prime denotes quantities measured in the moving system, while unprimed
Vx

quantities are measured in the laboratory system. In Eqs. 4-8, we have assumed - << 1,
c

where c is the velocity of light. In the moving coordinate system, the Boltzmann

equation becomes

8 f(r', v', t') q

t + v' " V ,f(r',v', t') + -- [E'+v'X B']

The unperturbed distribution function is

*7 ,f(r',v',t', ) = 0.v

f = A exp g(v')z

which satisfies the unperturbed Boltzmann equation

q

m (v'XB 0 i) z vf = 0.

The linearized Boltzmann equation (if we assume an ej(W't'-k' . r') dependence for

q _

j(W'-k' .v') f + -(v'XB iz)
1 m Oz V 'i =

v 1

q
- -E' - v' fm 1v 0*

The dispersion relationI is found to be

2

0 = 1 + 0

k' 0
v' dv0

J_ 0

dM= +oo

z
m=-o0

j2 (p) (m
m c

('-kilvz-m0c) l
S+ k' 8 . f (v,).

8v II

(13)

Here, if e is the magnitude of the electronic charge and n. the number density of elec-

trons, w is the plasma frequency 2

2
e n0

m  , and w isE m c
the cyclotron frequency

eB
c -m)

12 , 2
J is a Bessel function of the first kind, order m; vi= v'2 +v

m x '

IkI - 2 2
~ . The wave number k' is the component of k' along B i z , while ki= k' +k.

In order to find the dispersion relation in the laboratory system, one uses the

Galilean transformations for frequency and wave number:

= W' + k'Vox (14)
x O
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k = k'. (15)

If the unperturbed distribution function for the beam is taken as in Eqs. 1 and 10, with

g(v ) 6(v' ), the dispersion relation becomes
z z

2
o n=-+o  n/

2 n1 -- - e I n (n)

k' 2 c n=-o

2 2 (16)
k' n=+oo

1 - e In(X) 2

2n ) 2

c n -~ -

2
thk' k T

where I (x) is a modified Bessel function of n order and the quantity X =- .
n 2 m

k' c
In Figs. XI-8, XI-9, and XI-10 we show three plots of k versus the normalized fre-

quency for different values of at fixed X = 1. 0. For sufficiently small values of
c c

p k' I
density - < 0. 7, all values of k-are stable. This may be seen from Fig. XI-8, where

c

P P k'
- 0. 5. When- = 0. 7 (see Fig. XI-9), waves with - > 2. 1 are unstable, and the

c c k
0

W, P
real part of the frequency lies in the range 0 <-< 1. As - increases, more instabil-

c c

p k >
ities appear. For example, as shown in Fig. XI-10, for- = 1.0, waves with -> 1.0

c ki_c I

are unstable, with the real part of the frequency 0 < - < 2. 0.
c

Recent work on a different problem whose results are related to these has been

reported. 2

H. M. Schneider, A. Bers
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D. INSTABILITIES IN TRANSVERSE WAVES ALONG B 0 FOR

BEAM-TYPE DISTRIBUTIONS

The dispersion relation for transverse electromagnetic waves propagating along a

DC magnetic field on a plasma beam has been analyzed to uncover the instabilities that

may exist.

An infinite system of stationary neutralizing ions penetrated by an electron beam is

assumed. The velocity space distribution function of the electrons is taken to be

f0 .L' lI 2rv 6 (v-v 01 ) 6(v -v )'

where v and vl are the velocities perpendicular to and along the magnetic field.

A simultaneous solution of the relativistic Boltzmann equation and Maxwell's equa-

tions yields the dispersion relation

W 2 2 2 2 2
c 2 k 2  p co - kv0 I Vo 1 (k -co /c )

2 - 1- + )

where a dependence, ej(wt-kx) , of the field quantities is assumed, and only right-handed

polarized waves are considered.

The criteria of Bers and Briggs were employed to analyze the dispersion relation.1

Figure XI- 11a shows the roots of the dispersion relation as a function of real k in the

complex w-plane. The plots were obtained on a cathode-ray tube by means of a system

known as the "Kludge" associated with project MAC.2 As k goes from -o to +mo, the

locus in the w-plane is traced from left to right as indicated in Fig. XI-lla. For large

k the locus levels off at a maximum negative co.. Following Bers and Briggs, we find

that instabilities exist over the range of real frequencies with negative imaginary parts.

In order to determine the nature of the instability, the roots of the dispersion equation,

for the real frequency range of interest, must be investigated in the complex k-plane.

Figure XI-llb shows the locus of roots in the k-plane as c is varied from woL to oR.

When two roots from opposite sides of the real k-axis meet, the dispersion equation

has a saddle point, and an absolute instability is uncovered. When a root crosses the

real axis and stops, a convective instability is indicated.

The nature of the instabilities as the parameters o p, v 0 1 , and v 0 11 are varied has

been studied. For nonrelativistic velocities, the absolute instabilities, when they are

present, occur at the points indicated by (A) and (B) in Fig. XI-lla. As the plasma fre-

quency is increased the long-wavelength instability moves into the high-frequency region

of the short-wavelength instability, as in Fig. XI-12a. For relativistic velocities

perpendicular to the magnetic field, the two instabilities merge to form the loops shown

in Fig. XI-13a.

QPR No. 77 149



Wb

k=- o

3.0 -2.0 -1.0

-0.

k=- o

(a)

k .c

Wb

-3.0 -2.0

-0.1

k +co

I r

3.0 Wb

k= +o

-3.0 -2.0 -1.0

-0.6

Wb

Wr

3.0 Wb

Wp
0- .97

W b

(a)

k i c v - 0.3
c

b

= 0.2
W b

v il
S0.3

Vol
=0.3

C

k rc

1.0 2.0 3.0 Wb

-3.0 // -1.0

VOL
= 0.5

c

0.4-
I I 1 krC
1 0 2.0 30 W b

-0.81

(b)

Fig. XI-11. (a) Real k-axis contours in the complex
w-plane.

(b) Complex k-plane showing the abso-
lute instability at A.

Fig. XI-12. (a) Real k-axis contours in the complex
w-plane.

(b) Complex k-plane showing the abso-
lute instability at A.

V/
I/ Y/ ,I



W.

Wb

1.0

0.5

I 0 -I
3.0 -2.0 -1.0

Wp

Wb
S1.5

o = 0.948
c

1.0 20

B

0 Wbr

3.0 W b

OWi / b

(a)

kic
Wb

0.3 1.0
C

I I I

3.0 -2.0 -1.0

-3.0

- 0 .5 -

-1.0(b)

(b)

kC
SI k rc

1.0 2.0 3.0 wb VOll
=0

C

P
Wb

.422

.316

-2.0 -1.0

-. 04

-. 08

-. 12

k =O

2.0 3.0
Ur / ub

k =0

k = ±o

Fig. XI-13. (a) Real k-axis contours in complex w-plane
(ultra-relativistic beam).

(b) Complex k-plane showing the absolute
instability at B (ultra-relativistic beam).

Fig. XI-14. Real k-axis
for v = 0.

u II

contours in the complex w-plane

I



(XI. PLASMA ELECTRONICS)

For v011 = 0, the dispersion relation becomes second-order in o and the w-plane

plots appear as in Fig. XI-14. For small c the zero and infinite wave number absolute

p Vo0
instabilities have the same value of c., and the magnitude increases with o . At--

1 p 0 c

the zero wave number instabilities disappear while the large wave number solutions

.1

.01

.001

.001 .01

k = co

k=0

0.316

S- =0.1

1.0 10 100

WP/ Wb

Fig. XI-15. Smooth rate of the absolute instability for v0 II= 0 as a

function of w p/W b , with v 0 1 /c as a parameter.

continue to increase with w. . This characteristic is demonstrated in Fig. XI-15. As
P

is also apparent from Fig. XI-15, wi increases with v0 1 .
The effect of finite temperature on the instabilities discussed here is now under

study.

A. Bers, J. K. Hoag, E. A. Robertson
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E. HOT PLASMA WAVEGUIDES AND RESONATORS

1. Model Description

Interactions between electromagnetic fields and plasma in metallic waveguides and

cavities are considered in this report. The treatement refers to a hot, collisionless,

inhomogeneous electron plasma in a static magnetic field, described by the linearized

first two moments of the Vlasov equation and Maxwell's equations. A scalar pressure

is assumed and heat flow is neglected.

2. Dielectric-Tensor Operator

The dielectric-tensor operator Kop is defined1 by

J
K E= E+. (1)

op jaE0

For our model of plasma, the following expression is obtained for the dielectric-

tensor operator:

2
P

2Kop

where

2
2 n0 e
p mE 0

2 k T
vT - mT m

1
2

1 -
b

-jQ b
2
b

0

Here, &b = eB /mo,

2
v T

A +W2 n 0 =A

(electron plasma frequency)

(electron thermal velocity)

JQb

1 -
b

1
2

1-0 b

0

0

.1

and the static magnetic field B 0 is directed along the z-axis.

3. Energy Conservation Principle

For the assumed lossless plasma, there exists a relation2 between power flow S and

energy W stored in a volume T:
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d
S- W,

dt

S=~ EXlm2-
S = [EX H+mv nv] inda

0- Z T

1 2 cE 2  2 + T
~W 2++ E + mnv + n dT.

Here, the surface r encloses the volume T. Note that in these equations n 0 may be a

function of position.

4. Boundary Conditions

Applying the uniqueness theorem to our model of plasma, we find that the solution

will be unique if the following boundary conditions are specified:

i XE=0n

i XH=0n

i v=On

n=0

Equations 9-12 may

for electron beams.

tensor operator Kop

on part of the cavity or waveguide wall
(perfect electric conductor)

on the remainder of the cavity or waveguide wall
(perfect magnetic conductor)

on part of the plasma interface

(10)

(11)

(12)on the remainder of the plasma interface.

be derived by a technique similar to that used by Bobroff and Haus 3

When the boundary conditions (9-12) are satisfied, the dielectric-

is a Hermitian operator for the cavity or waveguide considered.

For a cavity of volume T,

SE f Ed= EK *EdT.
" op E T op

For a waveguide of cross section A,

E K op Eda = E Kop E da.
A op A

(13)

(14)

When the conditions (9-12) are satisfied, the field solutions will be unique, except at

resonances, and for systems capable of sustaining isolated plasma waves (electrostatic

waves).

5. Approximate Techniques

The introduction of waveguide and cavity boundaries increases the complexity of the

field analysis problem, to the point where it will be difficult or impossible to obtain
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exact solutions. It is usually convenient, therefore, to use approximate methods.

a. Perturbation Theory

We compare the hot-plasma system, characterized by the dielectric-tensor operator

K op, with a closely related system, characterized by the dielectric tensor K (for the

cold-plasma system) and whose field variables have the subscript 0. By manipulation

of Maxwell's equations for the two systems, and by using Green's theorems and the

boundary conditions, we obtain relations 4 for the characteristic quantities of the system

considered:

(a) Resonant frequency of a cavity

-dK OK E-EK 'E d,

oo = (15)

(b) Cutoff frequency of a waveguide

-wE 0 fA L K E-E'K "E da

0- , =  _(16)

A L H H+ E0 E K E0 da

(c) Propagation constant of a waveguide (e - YZ)

jWE 0 fA .Kop -E-EK E da

I + N =  (17)

JA z *EX H+ EX H0 d

Relations 15-17 are exact relations. Since the fields E and H are unknown, some

approximations can be made if the perturbation is small. It is usually assumed (unless

some more accurate approximation is available) that E = E 0 , H z H . With this approx-

imation, the denominator of (17) becomes 4Pem, that is, four times the time-averaged
z

power carried in the z-direction by the unperturbed wave.

b. Variational Principles

Since the dielectric-tensor operator K is Hermitian when used with the boundary

conditions (9)-(12Z), it is possible to derive variational principles for the characteristic

quantities of the system.

QPR No. 77 155



(XI. PLASMA ELECTRONICS)

(a) Resonant frequency of a cavity

2 2 fVx dT

f E K EdT

(b) Cutoff frequency of a waveguide

2 2 A 7TX E da
o = c (19)

fA E K P Eda

(c) Propagation constant of a waveguide

fA[I ' -7TXE-E:7TXH+jlo0 lH 2 +jE 'Kop'E da
S= jp = (20)

2 Re fA [EX H'] "i da

This variational principle in Eq. 20 is valid only when y = jp, and hence only in particular

frequency regions.5 The trial fields for the three variational principles must be con-

tinuous and differentiable, and must satisfy the boundary conditions.

Further details and applications may be found in Gardiol's thesis.6

F. Gardiol, A. Bers
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F. EMISSION PROCESSES BY AN OSCILLATOR MOVING AT

SUPER-WAVE VELOCITY

When an oscillator is moving relative to a medium through which a certain kind of

wave is propagating, it emits or absorbs a quantum, which is associated with the wave
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field. The energy of an emitted quantum depends upon the relative velocity, as well as

the characteristic frequency of an oscillator according to the Doppler effect. But if the

relative velocity exceeds the phase velocity of the wave, qualitatively new phenomena

appear. One of them has already been pointed out and discussed by Ginzburg, Eidman,

and Zheleznyakov1 ' 2 as the "anomalous Doppler effect." The anomalous Doppler effect

can be explained either classically or quantum mechanically. In this report other

new phenomena will be discussed which have no classical analogues in this velocity

region.

In the interaction between a single oscillator and a wave field if the diagonal ele-

ments of the interaction Hamiltonian between an oscillator and a wave field are zero with

respect to the unperturbed eigenstates, the total momentum and energy are conserved

in the emission or absorption processes.

n hk + P = const (1)

nkhw + + W = const, (2)

where nk , k ' c are the quantum number, wave vector, and frequency, respectively,

of the wave mode specified by X; P, M, W are the momentum, the mass, and the inter-

nal energy, respectively, of the oscillator. Assuming that only one mode of the wave

field is involved in the present process, and the wave vector is parallel to P, we have

W = const - I (P-MU)2, (3)
2M

where U = /kX is the phase velocity. This is shown in Fig. XI-16.

This is a locus on which the momentum and the internal energy of the oscillator are

confined during the interaction.

Let us consider only the emission processes, since the absorption occurs in the

direction opposite to the emission on this locus. The internal energy of the oscillator

is supposed to be changed by AW.

1. When the oscillator state is at 1 initially, it goes down the slope to 2 after

emission of a quantum with a momentum hk , as required by Ea. 1. In this process

W always decreases. This sort of process is called the "normal Doppler effect."

2. When the oscillator is moving slight faster than the phase velocity and located

at 3, it can make a transition to 4 without losing its internal energy. This is a

Cherenkov type of emission process.
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Fig. XI-16. Diagram of transitions.

3. When the oscillator velocity largely exceeds the phase velocity of the wave which

is located at 5 it can make three different transitions. A transition 5 - 6 is called the

anomalous Doppler effect, in which the final velocity of the oscillator is always larger

than U and the internal energy of the oscillator is always increased. On the other hand,

in a process 5 - 7, the oscillator increases the internal energy and at the same time is

decelerated to a velocity smaller than U. The other possibility is a process 5 - 8, in

which the oscillator loses its internal energy as well as its kinetic energy. In the last

two processes the internal state of the oscillator goes through an energy tunnel to a final

state, and we have no classical analogues for them. A possible example will be found

in the interaction of phonons with gyrating conduction electrons in a DC magnetic field.

These processes occur spontaneously or through stimulation by the wave field.

T. Musha

References

1. V. L. Ginzburg and V. Ya. Eidman, Soviet Phys. - USP 2, 874 (1960).

2. V. L. Ginzburg, V. V. Zhalenznyakov, and V. Ya. Eidman, Phil. Mag. 7, 451
(1962).

QPR No. 77 158



(XI. PLASMA ELECTRONICS)

G. ELECTRON CYCLOTRON RESONANCE DISCHARGE

1. NEW MICROWAVE TECHNIQUE FOR MEASURING ELECTRON DENSITY

Since the last report I a new perturbation method of measuring the electron density

of a plasma in a resonant cavity has been developed. The method is a variation of the

method developed by Rose and Brown,2 wherein the plasma shifts the resonant frequency

of a cavity mode by changing the complex dielectric constant of the medium filling the

cavity. The new method uses perturbations of many of the higher order cavity modes

to measure the density of the plasma. The theory of the measurement is particularly

simple.

Consider a resonant cavity partially filled with plasma which is excited at the reso-

nant frequency of the n t h higher order mode. Assume that there is no steady magnetic

field, or, if one is present, that the ratio of the electron cyclotron frequency to the

applied frequency is negligible compared with one. Then, according to Rose and Brown,

the determining ratio Af/f of the nth mode as a result of the presence of the plasma is

given by

YV o2 n(-) I2 
d 3 -

Af P

2w2V
c

where w (F) is the electron plasma frequency as a function of position, w is the unper-
Pth

turbed resonant frequency of the n mode, V and V are the cavity and plasma volumes,
c p

th
and e (r) is the eigen electric-field vector of the n mode. Here the normalization

n

V 'e'n (r) I2 d3r = V c

cc

is assumed.

Now if the volume of the plasma V is large compared with a cubic half-wavelength
th P

at the resonant frequency of the n mode, the integral can be evaluated as

S(r)2 I d3 = 2V 3 2

V p n pp
p

2
where w is the average density of the plasma over the volume V . If Af is consider-

p p
ably larger than the frequency separation between modes near the frequency f, the

This work was supported in part by the United States Atomic Energy Commission
under Contract AT(30-1)-3221.
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plasma will cause many modes to sweep past a given frequency f. Thus if 6f is the aver-

age mode separation, the total frequency shift Af of the nth mode is given by

Af m6f,

where m is the number of modes that sweep past a given frequency f . The relation will

be most accurate if m is much greater than one. Thus we are led to the relation

V
(W /) 2 2m~f c- f V "

Experiment

Two X-band waveguides were attached to the resonant box of the ECRD and micro-

wave energy at approximately 9. 5 Gc was coupled through the box and observed with a

x X - BAND POINTS
o UHF POINTS

x

Xx
x
x

x
0
0

o

o

o
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Fig. XI-17. Plasma electron density between microwave pulses.
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Fig. XI-18. Plasma electron density after turnoff measured with the X-band and

UHF probing mode techniques. The plasma is assumed to lie in a

cylinder 10 inches in diameter on the cavity axis.

crystal detector and an oscilloscope. As the frequency of the X-band energy was varied

slightly, peaks in energy transmission were detected when different modes of the cavity

were exactly at resonance. The mode number of these modes is approximately 10,000,

and their separation was measured to be 1. 69 mc/mode averaged over 100 modes, with

a 10-mode maximum average of 1. 98 mc/mode and a minimum of 1. 27 mc/mode.

The discharge was run in the burst model and the plasma tuning of the X-band modes

was observed in the afterglow after the last S-band power pulse. The parameter Af was

measured as a function of time by counting the number of modes after a given time which

could be detected sweeping by the frequency 9. 5 Gc. By using Eq. 1, the plasma density

was calculated; some typical results are presented in Figs. XI-17 and XI-18. A com-
1.

parison of results of this technique and of the UHF probing mode technique is made in

Fig. XI-18. In obtaining these points, all parameters of the system were carefully

adjusted until they were reproducible on a pulge-to-pulse basis.

T. J. Fessenden
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2. INTENSITY MEASUREMENTS OF THE ARGON 4880 A LINE

Intensity measurements of incoherent light emitted from an argon plasma have been

made. The frequencies of particular interest were those used in argon lasers, specif-

ically the 4880 A and 5150 A lines. The 5150 A line, however, was never observed in

the plasma studied here, and so the following results are for the 4880 A line of ionized

argon.

The argon plasma was created by an electron cyclotron discharge with approximately

60 watts of incident RF power at 2. 8 kmc. The plasma was confined by a rectangular

cavity and a symmetric magnetic mirror (see Fig. XI-19). The field strength ratio of

RF

MAGNETS MAGNETS
xxxxx Ixxxxl

PLASMA MONOCHROMETER

CAVITY
POLE PIECE POLE PIECE

Fig. XI- 19. Experimental arrangement.

the mirror was approximately 5:3. With this fixed ratio the field strength at the center

of the cavity was varied from 500 gauss to 1000 gauss. The base pressure was approx--6
imately 5 X 10-6 mm Hg, and the discharge was studied at working pressures of

-4 -55 X 10-4-5 X 10 mm Hg. A 3/4 inch hole was placed in one of the pole pieces and

the light intensity emitted along the axial directions of the magnets was observed by a

monochrometer set at 4880 A. The output of the monochrometer was recorded for var-

ious values of the magnetic field and plasma density.

The monochrometer was then calibrated by a standard General Electric tungsten

lamp. Using this calibration, we converted each plasma measurement to a value of n,

which is the number of radiators per unit time per unit volume giving off a quantum of

energy at 4880 A. These results are shown in Figs. XI-20 through XI-22.

This work was supported in part by the United States Atomic Energy Commission
under Contract AT(30-1)-3221.
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Fig. XI-20. 4880 A line argon intensity
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Fig. XI-21. 4880 A line argon intensity

(1 X 10-4 mm Hg).
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Fig. XI-22. 4880 A line argon intensity

(5 X 10-5 mm Hg).
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We plan to continue this work and investigate the feasibility of pumping an argon

laser with a cyclotron or beam-plasma discharge.

B. R. Kusse
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H. FUSION BLANKET RESEARCH

With the completion of the doctoral thesis of L. M. Petrie, the initial phase of this

work has been completed. The substantive content of five theses in this area of research,

which have been submitted to the Department of Nuclear Engineering, M. I. T., in par-

tial fulfillment of the requirements for the degrees indicated below, will be published in

the Research Laboratory of Electronics technical report series. A list of authors and

titles follows.

A. J. Impink, Neutron Economy in Fusion Reactor Blanket Assemblies

Ph. D. Thesis, January 1963, to appear as Technical Report 434.

W. G. Homeyer, Thermal and Chemical Aspects of the Thermonuclear
Blanket Problem

Sc. D. Thesis, December 1962, to appear as Technical Report 435.

L. M. Lontai, A Study of a Thermonuclear Reactor Blanket with Fissile Nuclides

S. M. Thesis, May 1963, to appear as Technical Report 436.

P. S. Spangler, Fusion Reactor Blanket Experiment

Sc. D. Thesis, February 1965, to appear as Technical Report 437.

L. M. Petrie, Gamma Ray Spectra in Fusion Blanket Mock-ups

Sc. D. Thesis, March 1965, to appear as Technical Report 438.

D. J. Rose

I. NONADIABATIC DIFFUSION IN TOROIDAL GEOMETRY

An apparatus is being built to produce a circulating electron current in toroidal

geometry by nonadiabatic injection of a cw electron beam. Although partly motivated

by the problem of cw injection into closed geometry, our major objective is a study of

the effect of small nonadiabatic perturbations on particle diffusion in space and velocity.

A circulating beam is an ideal medium for these studies because of the simple relations

between diffusion coefficients and beam lifetime.

1. Nonadiabatic Scattering

The motion of charged particles is said to be adiabatic when the magnetic fields

change slowly enough along the particle trajectory. In this case, both p., the magnetic

moment, and J, the longitudinal invariant, may be treated as constants of the motion.

The particle trajectory is then well described by the guiding-center approximation which

predicts, except for electrical and gravitational drifts, particle motion along surfaces

of fixed . and J. If the adiabatic conditions are violated, the adiabatic invariants suffer

a random fluctuation w'ith a resultant diffusion. The nonadiabatic motion depends, as

the adiabatic motion does not, on the detailed relation between the particle's phase in its

motion around the guiding center and the shape and extent of the field perturbations.
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Several theoretical analyses of this process have appeared1, 2 but no definitive experi-

mental work has been done.

2. Experiment

The device will be a race track with 6 m circumferential length, and 10-cm minor

diameter (see Fig. XI-23). The electron injection energy will be 4 key to yield a 2-cm

MAIN Bz FIELD COILS DIFFUSION PUMP MANIFOLD

( Bz ~ 100 GAUSS )

10 ]ROTATIONAL FIELD
COILS

(I ~ 1000 AMPS)

1 2 M _ 1.5M

ELECTRON TRAJECTORY
CORKSCREW COILS

-MAGNETICALLY SHIELDED
ELECTRON GUN

Fig. XI-23. Toroidal magnetic trap.

Larmor radius with the planned main field of 100 gauss. The electrons will be injected

essentially perpendicularly to the field with only enough 'i, to miss the gun snout after

one orbit. They will then enter an accelerating corkscrew3 ' 4 which, by cumulative non-

adiabatic perturbations, will increase vl, at the expense of v , so that in one pass the

motion will be almost entirely along B.

The injected electrons would undergo severe curvature drifts in the U bends of the

torus if no corrective action were taken. The drift distance for a particle of Larmor

radius rb is 7rrb for complete traversal of the bend. In our system, because of the

nature of the corkscrew injection scheme, the electron Larmor orbit is comparable to

the minor diameter of the torus, and, therefore, this amount of uncorrected drift would

be intolerable. Hence, we shall make use of helical windings to impart a rotational

transform to the magnetic field lines. These differ from the windings found on

Stellarator-type devices in that we cannot rely on drift cancellations over many transits
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of the entire system but must cancel drifts within a single U bend. To study these com-

plicated particle trajectories, we have developed a computer program to integrate the

equations of motion and to determine the magnetic field surfaces. Figure XI-24 shows

the motion of a particle in a U bend with a 2r rotational transform. The important

y

MAGNETIC SURFACES ( SURFACE GENERATED PARTICLE TRAJECTORY
BY FOLLOWING A MAGNETIC FIELD LINE)

r

ANGLE MEASURED WITH RESPECT TO
THE ROTATING HELICAL CONDUCTORS

Fig. XI-24. Two dimensional projection of a trajectory and mag-
netic surfaces with a rotational transform of 27.

quantity is the radial component of the vector connecting the particle position at the

beginning and end of its transit through the U bend. Figure XI-25 shows the effect of

many transits through a U bend, illustrating the order of magnitude of the remaining

spatial diffusion effects for one particular choice of helical transform strength. Our

aim is to make particle losses caused by imperfections in the drift cancelling scheme

small compared with those resulting from nonadiabatic losses from the corkscrew or

other intentionally introduced perturbations that are to be studied.
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Br= Ar sin (e - h )

0 B = Ar cos (,P - hz )

" = 1.0
x =  = 0 y(cm) z

z = 2.0 A = 0.15

LENGTH OF U BAND = 120 cm 0.2 -
h = 0.314

0.1 - 2

x(cm)
-0.2 -0.1 0.1 0.2 0.3

- 0.1 '- PASS 1

PASS 2
- 0.2

PASS 3

- 0.3 PASS 4

- 0.4 /PASS 5

- 0.5

Fig. XI-25. Cumulative plot of residual drifts after
multiple passes through a U bend with
rotational transform of 2r at r = . 5 cm.

Principal diagnostic methods will involve Rogowsky coils for detection of the modu-

lated circulating beam and flourescent screens for visual location of beam position.

R. W. Moir, L. M. Lidsky
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J. PLASMA TURBULENCE STUDIES

The construction of the Hollow-Cathode Discharge III device described in Quarterly

Progress Report No. 76 (pages 130-133) has been completed. The magnet coils have

been tested successfully and maximum field in excess of 4 Kgauss can be obtained over

the region of interest. The profile of the axial field on the centerline of the system and

at the wall of the vacuum chamber is shown in Fig. XI-26.
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Fig. XI-26. Profile of axial field of HCD III system.

Shims are now being installed to minimize the variations in the axial field, after

which the device will be operational. The first phase of experiment will be the deter-

mination of operating parameters of the plasma; the next phase will be the turbulence

studies.
J. C. Woo

K. STUFFED-CUSP PLASMA FACILITY

Construction has begun on a "stuffed-cusp" magnetic trap. This is a "minimum B"

system consisting of a simple spindle cusp with an axial conductor. The axial current

creates a system with a nonzero minimum of induction which should enhance the single-

particle (adiabatic) containment properties of the cusp.

We propose to generate a plasma inside the device by injecting an electron beam

through the line cusp and making use of the beam-plasma interaction. In this manner,

we hope to generate a hot electron plasma with densities of the order of 1012/cm 3  If

this scheme fails to work, microwave equipment is available to create a plasma by

electron-cyclotron resonance heating. The resonant frequency then can be adjusted so
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Fig. XI-28. Magnetic field plot.

Fig. XI-27. Schematic diagram of
the stuffed cusp.

with the center of the containment volume.

A schematic diagram of the facility is shown

in Fig. XI-27. The cusp field will be generated by

two existing tape-wound coils driven by a 60-kw

generator. Axial current will be furnished by a

bank of 12-v storage batteries which will give

14. 7 kA through the water-cooled copper central

conductor. A circuit breaker will be constructed

employing a dielectric slab driven between mov-

able electrodes. Interchangeable resistor links

consisting of stainless-steel and copper tubes

will be used to make fine adjustments in current.

The resulting magnetic field configuration,

computed by using the MAFCO code,1 is plotted

in Fig. XI-28. The largest closed magnetic iso-

bar is 1.16 kgauss, while the minimum induction

is 0.62 kgauss; this gives a mirror ratio of 1.9.

A cylindrical stainless-steel vacuum can

(24-inch diameterX 7 inches) has been constructed

with 7 radial ports. A removable vacuum wall

has been built around the central conductor

so that the conductor may be withdrawn and the

system run as a simple cusp. A 4-inch oil-

diffusion pump and baffle that give a pumping

speed of 300 liters/sec have been installed.
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Proposed diagnostic techniques for the facility are microwave interferometry; x-ray,

light, and RF spectral measurements; and single-particle detection with scintillation

or solid-state counters.

We propose to study the effect of a nonzero minimum of the induction on the stability

and containment properties of a cusp. Also, studies of the beam-plasma interaction or of

electron-cyclotron heating in this geometry may be performed.

C. E. Wagner, L. M. Lidsky
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L. MOTION IN NONADIABATIC FIELDS

Let us consider a charged particle moving in a magnetic field which has a charac-

teristic length of the order of the particle's Larmor radius. The particle's magnetic

moment will no longer be conserved; as a result, an external beam can be trapped

between magnetic mirrors. The phenomenon is widely recognized and has formed the
1-4

basis of many publications. In this report we attempt to obtain further insight into

the interaction by studying the equation of motion,

eB
t = vX c; W= - (1)dt m

in curvilinear coordinates running along the field lines. The coordinate system is

obtained by defining the unit vectors t, n, and b, where t is along the field direction,

n is in the direction of the principal normal, that is, in the direction of the instantaneous

radius of curvature, and b is in the direction of the bi-normal, that is, the direction in

which the field lines twist. These vectors are related by the Frenet-Seret formulas

A

dt A
ds Kn

ds

d = -(Kt+Tb) (2)

db 
ds = Tn

where K is the inverse radius of curvature, T is a measure of the torsion, and s is a

measure of arc length along the field lines. As a result of employing these relations and

the definition

ds = vtdt (3)

the equation of motion becomes

dvt

ds= KVn (4a)

dv
ds -KVt + - vb (4b)

dv
dsb - v n .  (4c)

This work was supported in part by the United States Atomic Energy Commission
(Contract AT(30-1)-3285).
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These equations can be simplified by defining vt = n + jvb and combining (4b) and (4c)

to obtain

dvdsv -Kvt - j(P-T) V+ 
(5a)

dv
ds Vn' (5b)

where p w/vt. For a weak nonadiabatic perturbation, the change in the particle's mag-

netic moment per transit will be small unless some resonance occurs. The obvious

approximation is to assume vt to be constant. Then (5a) and (5b) uncouple, and we

can treat K, T, and p as known functions that specify the magnetic field. The physical

meaning of (5a) is clear if we convert from a space to a time description,

2
dv+ vt

dt + j(-vtT) v+ R (6)

Since K = 1/R, we see that the force that changes the magnitude of the perpendicular

velocity is due to the centripetal acceleration experienced when the particle attempts to

follow the perturbed field lines. The phase of the particle's rotation is specified by the

imaginary term, and this is affected by both the magnitude of the field and its torsion.

A direct integration gives

veL L
Av+ = - v t exp-j (p-7) ds ds, (7)

0 s

which is the desired result, the change in the perpendicular velocity resulting from a

transit through the perturbation.

The physical content of Eq. 7 is most easily visualized by comparison with the for-

mal solution of the equation of radiative transfer:

AI = exp - a ds' ds, (8)

where I is radiative flux, r is the emissivity, and a is the absorption per unit length.

The total change of flux in a beam traversing an active medium is given by summing, at

the end point, the contribution of the emission at each point on the path diminished by

the absorption of that quantum over the remaining path length. Referring to Eq. 7, we

see that the effect of the perturbation can be interpreted in an analogous manner. The

change in v+ produced by the curvature at each point on the particle's trajectory is
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added at the end of the perturbation with an appropriate phase determined by the factor

(P-T) which is the net rotation per unit path length.

Let us now consider the particular example of the stellarator type of field which,

near the axis, can be represented by

S= w h(kr) sin (kO-kz)

W = cos (O-kz) (9)

Wz = (l+h(kr) cos (kO-kz)).

Here 0 is the particle's azimuthal position, and h is a smallness parameter. We

assume that (kr) is also small and approximately constant over the particle orbit.

Neglecting terms in h2 compared with h, we find

K = h(kr)'- 1 {k-(f-l) -} (lOa)
3z

7 = k - (k-l) ;z}. (10b)

If we consider a particle moving along a field line with only a small perpendicular veloc-

ity, we can assume that 0 is a constant. Then (7) gives

Av+ -h(kr)1- kvt O exp -j p-k) z + -Ih(kr)f sin ( )-kz) dz. (11)

The resonant nature of the interaction is evident from the (p-k) term in the exponent.

This measures the phase of the particle relative to the field. Because the field curva-

ture is constant, the particle sees a force of constant magnitude and if it rotates with

the field (p=k), its phase relation to this force is preserved. Therefore a large trans-

fer can occur between its parallel and perpendicular kinetic energy. The second term

in the exponent is of higher order and represents the change in phase caused by a vari-

ation in the magnitude of the particle's cyclotron period as the main field fluctuates.

We consider now a bumpy mirror type of field given by

S= 0(l+h sin kz)

r 2 o

Employing the same assumptions as before, we find
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K = kh(1,) sin kz

(13)

T= 0

and the interaction is described by

Av = -kh v L sinkz exp -jz -dz. (14)

We see that now the basic resonance is caused by a variation of the field curvature along

the particle's trajectory. Thus we can see a basic difference in these two interactions.

In the case of stellarator fields the particle experiences a constant centripetal force, and

it is the twist of the field lines which determines the resonance by adding the velocity

changes in phase. In the bumpy-mirror case the phase propagation is independent of the

perturbation, but the curvature force fluctuates in space so that the velocity changes

from different parts of the orbit will add in phase at the end point.

This manner of thinking suggests a method of attack for minimizing the velocity

change for trapped particles. Although K and T are not independent, a consideration

of their different natures suggests that their effects may be made to cancel for specific

particle velocities. If this velocity is chosen near the loss cone, the possibility exists

of reducing the scattering of particles past that velocity by the perturbation. The ulti-

mate particle lifetime would then be determined by other mechanisms.

In addition to its function as a guide to an intuitive understanding of nonadiabatic

interactions, Eq. 7 can also be used to explain the complicated subresonances observed

in some recent trapping experiments. 5 These subresonances appear when it becomes

necessary to discard the assumption that 0 is a constant. This occurs when the par-

ticle acquires enough perpendicular velocity so that its Larmor orbit becomes compa-

rable with the characteristic lengths of the field. In the experiment performed by

Demirkhanov and his co-workers,5 a constant pitch f = 3 stellarator field was used.

Rewriting (11) with the full form of (10b), we obtain

Av = ~ K t exp -j (Po-k) z + (-1) 0 + h(kr)f sin (lo0-kz) dz, (15)

where the z dependence of 0 in the first-order term has been ignored for convenience.

For off-axis particles we can write

0(z) = AO sin o z, (16)

where AO< w r. Then if we employ the identity
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o

ejp sin= C jn (p ) fjn), (17)

n= -oo

Eq. 15 becomes

Av = OL vtJa h(kr) Jb((1-l)AO) exp-j{(p (b+1)-k)z+a(f0o-kz)) dz. (18)

a, b

To lowest order, J = 6 and resonances appear at
a ao

k = (b+l) p (19)

with their relative amplitudes given by the ratio of the Bessel functions Jb((£-l)AO). As

h increases, subresonances should appear at

(a+l)k = (b+1) o' (20)

Two well-defined subresonances have been observed for particles injected along the

axis, where h is quite small, and their spacing is given by (19) with b = 0, 1. Further-

more, if AO is taken equal to wr for these particles (because their orbits intersect the

axis), the relative amplitudes of the observed resonant peaks are given quite closely by

the ratio

AI (Av_ 2 J (2w) 2o o o (21)

When the beam was injected off axis, which is equivalent to an increase in h, a compli-

cated fine structure appeared, superimposed on the main peaks. This can be qualita-

tively identified as the effect of the resonance condition given by Eq. 20. Thus it is

apparent that a great deal of information can be extracted from the equations of motion

when they are written in the form of Eq. 7. Although the agreement with experiment

indicated in this report is mainly qualitative, more exact solutions can be obtained by

using iterative techniques.
J. F. Clarke
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M. DETERMINING THE ELECTRON DISTRIBUTION FUNCTION FROM

SCATTERED LIGHT II

The electron velocity distribution function in a plasma can be uniquely related to the
spectral intensity of photons scattered out of an incident, collimated, monochromatic

beam. Thus, in principle, the velocity distribution function can be completely determined.

A previously reported initial investigation I into the relation between the spectrum and the
electron distribution function (including its sensitivity) has been extended and concluded.

Details of the work have been presented in an S. M. thesis 2 ; only the principal results

are given in this report.

The electron velocity distribution function, f(p), where P(=v/c) is the velocity of the

electrons, is mapped into the spectral intensity s(nc) by the operator L . s(no), the

power per unit frequency interval at w scattered into a unit solid angle in the direction

of the unit vector n, is given by

s (nw) = L f(B). (1)0-

Similarly, the inverse relation is

-1
f(P) = L 1 s(n, w). (2)0

The operators L and L - 1 have been derived 2 for both relativistic and nonrelativistic

cases. Since the relativistic expressions are too complex to be very useful, only the
nonrelativistic expressions will be given here:

L o = Tne 1o 1-(nno dp 6(g(n, w, p)) (3)

0o

and

3
12c d (1-n n ) 2

- o -n -0 (4)
0TIo e 4r (1-(n - E) 2)(1-n - ) 3  2  

n
1-n .vS - -

o 1 -n-p

The notation is the same as that used in a previous report. 1 In L- 1 the integration is

over all directions of n, and the derivative must be evaluated at the given point.

Equations 3 and 4 show that the relationship between the distribution function and the

spectral intensity of scattered light is unique.

This work was supported in part by the United States Atomic Energy Commission
(Contract AT(30-1)-3221).
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Table XI-1. Magnitude, shape functions, and half-widths of various distributions.
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From (4) it can be seen that to determine an arbitrary velocity distribution function

at a point in velocity space, a great deal of information about the spectral intensity of

the scattered light is required. In particular, a specific average, over all directions of

scattering, of the second derivative of the spectral intensity (evaluated at a specific

frequency which depends on the direction of scattering) is required. In the present

simpler experimental arrangements, light is scattered by plasma electrons out of a laser

beam and detected in only one or two directions. What is needed in addition to Eq. 2 is

a more pragmatic approach, one which would be useful to an experimentalist. Such an

approach can be developed by examining Eq. 1.

From (1) it has been shown1 that the spectrum observed in any particular direction

is equivalent to an analysis of the distribution function in one dimension along a specific

direction. Thus, one can expect to carry out experimentally only a finite number of one-

dimensional density analyses in velocity space of the distribution function. These one-

dimensional analyses are useful insofar as some kind of symmetry can be assumed.

Even if some kind of symmetry is assumed, the second derivative of the spectrum (a very

difficult quantity to determine experimentally) must be measured in order to ascertain

the causative distribution function. A method of avoiding such a difficult measurement is

to compare the experimental spectrum with spectra calculated by using known distribu-

tion functions, that is, to construct a library. A unique method of comparing the experi-

mental and calculated spectra is given below. A rudimentary library calculated from

some spherically symmetric distribution functions is illustrated in Fig. XI-29 and the

corresponding parameters are listed in Table XI-1.

In order to compare the calculated and experimental spectra, we must note that the

shape of the spectrum is the same as the one-dimensional shape of the distribution func-

tion and hence the magnitude of the spectrum (corresponding to the electron density) and

the width of the spectrum (corresponding to the l-D velocity spread of the electrons) can

be removed as separate factors, leaving only the shape of the spectrum.

This remaining spectral shape is uniquely related only to the one-dimensional dis-

tribution function shape. Variations in the two remaining dimensions of the distribution

function are indeterminate. The magnitude and width of the spectrum are removed by

scaling the plot of the spectrum in such a manner that the ordinate of the maximum is

unity, and the abscissa of the half-maximum is unity. The result is a shape function,

y. Comparison of the experimental shape functions with the library shape functions

(Fig. XI-29) then gives the type of distribution function. The magnitude of the half-width

at half-height, 6w, gives the average speed and energy (Table XI-1), and the absolute

magnitude of the spectral intensity at its maximum, sm, gives the electron density ne
(Table XI-1).

The accuracy of this analysis depends, of course, on how precisely the experimental

spectrum is known. Although the relationship is unique in the one-dimensional sense,
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it is well to note that for most distribution functions the relative difference in the

resulting spectrum is greatest in the "tail" where the magnitude of the experimental sig-

nal is minute, most difficult to measure, and easily obscured by noise. For example,

there is little difference between the shape functions of the linearly decreasing and

Druyvesteyn distribution functions until the Doppler frequency shift is greater than two

half-widths (that is, 26w). Deviations from the commonly assumed Maxwellian distribu-

tion can be measured, however, and the average speed and energy can easily be obtained.

T. S. Brown
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N. THOMSON SCATTERING DIAGNOSTICS OF A HOLLOW-CATHODE

ARC PLASMA

Preliminary results of an experiment designed to study Thomson scattering of laser

radiation as a plasma diagnostic method were reported in Quarterly Progress Report

No. 75 (pages 81-84). This work continues and data yielding a much higher signal-to-

noise ratio have been obtained. The higher signal to noise was obtained by using an input

system of short focal length for the laser radiation which focused a large fraction of the

laser output energy into the interaction volume. The use of this system eliminated the

possibility of doing the small-angle scattering experiment mentioned in the previous

report. It appeared, however, that this would be a very difficult experiment with the

present ruby laser for several other reasons. We decided, therefore, to concentrate

the effort on obtaining good large-angle scattering data.

The plasma electron temperatures and densities obtained from the present scattering

data generally agree well with those obtained from pulsed Langmuir probe measurements

performed by M. Lubin. Lubin's measurements are described in Section XI-O. In gen-

eral, the Thomson scattering data points lie on a Gaussian distribution with departures

at certain shifted wavelengths. One of these departures occurs at wavelengths very near

the incident laser wavelength. This anomaly was apparently the source of the "low tem-

perature" distribution reported in Quarterly Progress Report No. 75. The reasons for

these deviations from a Gaussian distribution are not understood at present.

1. Hollow-Cathode Arc Plasma Source

The hollow-cathode arc facility used for the scattering experiments was not described

in any detail in Quarterly Progress Report No. 75. We shall discuss its properties now.

The apparatus as viewed looking toward the laser is shown in Fig. XI-30. The cathode

is a 3-inch length of 1/8 inch diameter, 0. 010-inch wall, tantalum tubing. The anode is

a 1-inch I. D., water-cooled hollow structure through which gas may be fed. A low-

conductance pumping baffle was installed between the cathode chamber and the scattering

chamber with each chamber being separately pumped. This allowed a relatively low

background pressure of the order of 10 - 4 torr in the scattering chamber, even with rela-

tively high gas flow rates through the cathode. The anode was grounded with the cathode

running at a negative potential. The addition of anode flow seemed to stabilize the arc

in this configuration and provide increased electron density. Without the anode gas flow

the arc seemed to have difficulty negotiating the pumping baffle. When the baffle was

allowed to float electrically it attained a potential near that of the cathode. When it was

This work was supported in part by the United States Atomic Energy Commission

(Contract AT(30-1)-3221).
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Fig. XI-30. Hollow-cathode arc plasma facility.

grounded approximately 70 per cent of the current went to the baffle, and only 30 per

cent to the anode. The arc column in the scattering chamber was very diffuse.

By adding a very small gas flow through the anode (small compared with that through

the cathode), the baffle could be made to float at zero potential and thus draw no current

when grounded. In this way, the baffle could be eliminated, as far as its effect on the

electrical characteristics of the arc are concerned, and thus serve only as a pumping

baffle. The arc column in the scattering chamber under these conditions was a well-

defined bright column, approximately 1 cm in diameter, with an electron density of
approximately 5 X 1013/cm 3 at an arc current of 40 amps. The total arc length was

17 inches. The field coils provided a magnetic field of approximately 1000 gauss at the

cathode and anode, which were placed at the mirror points, and a field of approximately

500 gauss at the center in the scattering chamber.

Additional flexibility was attained with the introduction of an anode gas feed, in that

mixed gas operation could be accomplished. With the cathode running in argon, hydrogen

or helium could be introduced through the anode. The result was a relatively pure

hydrogen or helium plasma in the scattering chamber, made possible by the strong dif-

ferential pumping between the two chambers. Of course, some argon was present, but

the measured intensities of major argon lines were more than a factor of 20 less than

the intensities observed with the arc running in pure argon. The visual effect was quite

striking. A bright blue argon arc would disappear into the pumping baffle from the
cathode side and emerge as a bright red hydrogen arc in the scattering chamber.

The arc would also be run in pure helium and by replacing the tantalum cathode with a
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piece of Tungsten-Rhenium alloy tubing of the same dimensions, operation in pure hydro-

gen was possible.

2. Thomson Scattering Experiment

A schematic view of the scattering apparatus as seen from the cathode end of the arc

is shown in Fig. XI-31. The output of the 100-joule ruby laser is focused into the

scattering volume by the 50-cm focal length quartz input lens. The focal point for

parallel light is at the scattering center, while the focal point for all light leaving the end

of the ruby rod is just in front of the entrance to the offset conical-beam dump. This is

the advantage of this short focal length system over the old 180-cm focal length system.

All light from the laser is focused near the scattering center, while with the old system

only the light emitted in the plane-parallel mode from the laser was focused at all, since

the laser rod was inside the focal distance of the lens. The offset conical-beam dump

was generally of the same type as that used by Thompson1 in his experiments, except

that the cone was offset to eliminate scattering from the necessarily finite-sized tip.

7265 FIELD STOP 5 SCALE
PM VIEWING LENSE

ROTATABLE
INTERFERENCE FILTER

3 A BANDWIDTH 100 - JOULE

RUBY LASER
ARC 

55

50CM FOCAL
OFFSET LENGTHLENSE

LASER DUMP

VACUUM 45* VIEWING DUMP
PUMPS

Fig. XI-31. 450 scattering arrangement with 50-cm focal-length lens
viewed from cathode end.

Scattering was observed at 450, the scattering volume being defined by the inter-

section of the laser beam with the image of the field stop formed by the viewing lens.

For the plasmas under study in this device, 450 was a sufficiently large angle so that

coherent effects could be neglected (see Quarterly Progress Report No. 75, pp. 81-84).

The spectrum of scattered radiation in this case is just the Doppler-broadened spectrum

mirroring the electron velocity distribution function in one dimension. After passing

through the field stop, the scattered radiation was made parallel by a second lens before

passing through the interference filter. The spectrum was scanned by rotating the 3 A

bandwidth interference filter. The radiation was detected by an RCA 7265 photomulti-

plier with an S-20 photocathode.

Laser light, scattered from the walls of the apparatus, was important only near the
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laser line, and disappeared rapidly as the filter was tuned away from the line. The light

baffling and collimation was sufficiently good so that this noise was only one-third of the

total signal at the laser wavelength. The largest source of noise on the signals was the

natural Bremsstrahlung from the plasma. Since the light from the plasma was contin-

uous, this noise could be reduced by using a 150-Fsec time constant integrator at the

oscilloscope input; 150 jJsec was short enough compared with the 1-msec laser pulse

duration to preserve the laser pulse shape. The residual noise ultimately limited the

magnitude of the smallest observable signal. All data points presented are the result of

an overlay of three successive oscilloscope traces taken under the same conditions. The

error bars indicate the vertical width of the overlaid traces. The scattered radiation

was observed to be fully plane-polarized, as was the laser output. The scattered radi-

ation was synchronous with the input laser radiation. No delayed effects such as those

reported by Thompson2 were observed. Such effects could be produced by raising the

neutral background pressure in the scattering chamber by throttling the pump.
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(6943 A)

4

3

2
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6954 6950 6946 6942 6938 6934 6930 6926 6922 6918 6914 6910
WAVELENGTH IN ANGSTROM UNITS

Fig. XI-32. Thomson scattering signal vs wavelength. (Wavelength

variation by rotating 6950. 5 Afilter.)

Figure XI-32 exhibits some typical data plotted against wavelength, obtained with

the arc running in argon. These data were obtained with a 6950. 5 A filter, so that some

points are available on both sides of the laser line. A Gaussian curve corresponding to

an electron temperature of 5. 1 ev is drawn for comparison. Note the departure from

the Gaussian, occurring 6-8 angstrom units either side of the laser line.
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Figure XI-33 exhibits the same data as in Fig. XI-32 replotted against electron

energy. The energy of the electron responsible for the scattering at a given shifted

wavelength is proportional to the wavelength shift squared. A Gaussian electron velocity

distribution is represented by a straight line on this plot.

10 -
8

6-

4

3

2

0 1 2 3 4 5 6 7 8 9 10 11 12

ENERGY ( ELCTRON VOLTS)

Fig. XI-33. Thomson scattering signal vs electron energy.

(Wavelength variation by rotating 6950. 5 A filter.)

Points from long-wavelength side.

Points from short-wavelength side.

Data obtained with a 6938 A filter and with the arc running under the same conditions

as for Figs. XI-32 and XI-33 are shown in Fig. XI-34. Note, again, the apparent depar-

tures from the Gaussian line drawn on the figure. The reasons for these departures

from a Gaussian distribution are not at present understood. They are possibly due to

actual deviations of the electron velocity distribution from Maxwellian. More likely,

they are due to effects from electronically excited atoms or ions such as Raman

scattering, or Rayleigh scattering from nearby emission lines.

Agreement with the probe data of M. Lubin, described in Section XI-O, is generally

good. For an arc current of 40 amps in argon, he obtains electron temperatures in the

range of 6. 5-8. 5 ev. We obtain temperatures in the range 4. 5-5. 5 ev, somewhat lower.

This discrepancy is in the direction expected. Lubin finds electron densities in the

range 4. 5-7. 5 X 1013. Calibrating the system by using Rayleigh scattering from a known

density of nitrogen, we obtain densities of 4 X 1013 which can be considered good
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Fig. XI-34. Thomson scattering signal vs electron energy.

(Wavelength variation by rotating 6938. 2 A filter.)

agreement, since the uncertainties involved in obtaining electron densities from probe

measurements are large.

The discrepancy between the electron temperature obtained from the probe data and

the scattering data can probably be understood in the following way. The scattering sys-

tem is sensitive to electron velocities only in the plane of scattering, which in this case

is perpendicular to the magnetic field, so that with this system we can measure a per-

pendicular temperature T . The probe, however, collects electrons from an oval-shaped

region, with the long dimension of the oval along the field. Thus the probe is primarily

sensitive to parallel electron velocities, TI, with some contribution from T . Since the

electrons gain their energy from the electric field of the arc, which is parallel to the

magnetic field, perpendicular energy is obtained only through relaxation by collision. At

the electron densities and temperatures under consideration here the mean-free path for

an electron is only slightly smaller than the anode-cathode distance. Thus it might be

expected that TL would be less than TII.

Further evidence for this reasoning can be obtained by examining the electron tem-

perature as a function of magnetic field strength for both the probe and scattering meas-

urements. The probe data shown in Fig. XI-41 in Section XI-O (Lubin's report) exhibit

a tendency of constant or slightly decreasing measured electron temperature with

increasing magnetic field. On the other hand, the Thomson scattering data, shown in

Fig. XI-35 exhibit a tendency of increasing the electron temperature with increasing
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Fig. XI-35. Thomson scattering data. (Electron
vs magnetic field strength.)

temperature

magnetic field. This would be expected on the basis of the present discussion. The

diameter of the arc column is observed to decrease as the magnetic field is increased,

with the result that a higher ion density is exhibited in Fig. XI-40 in Section XI-O. A

higher ion density reduces the time for relaxation of parallel energy to perpendicular

energy, thereby yielding closer agreement between Tand T 11.

Scattering data were also obtained with the arc running in hydrogen and helium but

no unusual effects were observed.

E. T. Gerry
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O. PULSED LANGMUIR PROBE MEASUREMENTS ON A HOLLOW-

CATHODE DISCHARGE

Langmuir probe measurements have been made on the hollow-cathode discharge

described in Section XI-N.

In order to avoid melting probes in the high-density plasma, characteristics were

obtained by a transient technique by using a simple passive circuit. The circuit is

diagrammed in Fig. XI-36. The probe, when idle, is at floating potential. When the

-30V ARC COLUMN

CATHODE

GAS ANODE

PROBE

CRO HORIZONTAL

C
STANDBY

S WRITE

SCRO VERTICAL

R

Fig. XI-36. Circuit concept.

switch is thrown to the write position, the probe is momentarily placed at anode

potential, and the plasma electron current charges the capacitor C through R. The

probe voltage and the voltage across R are displayed as the horizontal and vertical

deflections, respectively, of an oscilloscope trace. When the capacitor is charged,

the probe is once again at floating potential and draws no current. Ion cur-

rent at potentials more negative than floating potential is measured by the usual

DC methods.

Typical records of probe characteristics and their logarithmic rectifications are

shown in Fig. XI-37. Electron temperature and ion density are calculated according

to the formulas of Bohm, Burhop, and Massey.

This work was supported in part by the United States Atomic Energy Commission
(Contract AT(30-1)-3221).
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Plots of electron temperature and ion density against arc current and axial magnetic

field measured at various times with various probes are shown in Figs. XI-38 through

XI-41. Measurements were made on the axis of the plasma, in the position from which

Thomson scattering was observed by E. T. Gerry. All probe measurements were made

on argon plasmas.
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Fig. XI-38. Ion density vs arc current.
Magnetic field, 450 gauss;
probe centered in the arc.

Fig. XI-39. Electron temperature vs arc cur-
rent. Magnetic field, 450 gauss;
probe centered in plasma.
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Fig. XI-40. Ion density vs magnetic
field.
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Fig. XI-41. Electron temperature vs mag-
netic field (30 amps arc current).
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Table XI-2 gives a summary of results obtained by using probes of various shapes

and sizes at one of Gerry's standard conditions. The comparison of these data with the

Thomson scattering data has been reported in Section XI-N.

Table XI-2. Summary of results.

Gas Argon

Cathode flow 0. 62 atm-cc/sec

Anode flow 0. 175 atm-cc/sec

Magnetic Field 454 gauss

Arc Current (amps)

Ion Density

(units of 10 /cc)

kTe

(electron volts)

1.5-2

20

2-3. 3

30

3-7

6.5-8

40

4.5-7.5

6. 5-8. 5

M. D. Lubin
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P. ELECTRON TRANSPORT IN THREE-COMPONENT PLASMAS

1. Introduction

The purpose of this report is to present a technique for analysis of electron trans-

port phenomena in three-component plasmas.

Transport phenomena in nonuniform gaseous mixtures have been analyzed by

others.1-4 In particular, Chapman and Cowling have developed a formalism for the

solution of a set of Boltzmann equations through a series of successive approximations.

This formalism has been successfully used in the field of gas dynamics, under the

assumption that, to a first approximation, all components of the mixture have the same

temperature.

A modified Chapman-Cowling approach is used here to determine the electron distri-

bution function and current and heat flux in a three-component plasma in which the elec-

tron temperature is different from the ion and neutral-particle temperatures. A similar

method has recently been presented by Stachanov and Stepanov. 3 These authors, how-

ever, treated the charged-particle collisions by means of the small-angle Landau

approximation and used a hard-sphere model for electron-neutral collisions. As well

as removing these restrictions on the collision integrals, the present analysis yields

the electron transport parameters in a form that is more amenable to physical inter-

pretation.

This report has two main parts. First, a perturbation method similar to Chapman

and Cowling's will be used to solve the Boltzmann equation for electrons. Then, the

practicality of the perturbation method will be illustrated through its application to both

reference Lorentz plasmas and a three-component plasma.

2. Perturbation Solution of the Boltzmann Equation

a. The Boltzmann Equations

The Boltzmann equations in a steady state, three-component plasma consisting of

electrons (e), ions (i), and neutrals (n), may be written

V a V f + a V f = p (f f ) a,P = e,i,n, (1)a ra m va aa' a3
a

where Jap is the collision integral for collisions between species a and p. This inte-

gral may be written in Boltzmann form as

Ja(f, f) (f f-ff) g( b- db dxdcdv (2)
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where gap I-a -7 ; b is the impact parameter; x and E are the polar and azi-

muthal angles describing the rotation (in the center of mass coordinates) of the

relative velocity vector during the collision; and f = f (T,v a ), with V' the velocity
a a a a

before the collision. In writing Eq. 2 for like-particle collisions (Jaa), the second

subscript is omitted. This eliminates confusion concerning the variables of inte-

gration. Further details concerning the geometry and derivation of Eq. 2 may be

found in Chapman and Cowling. 5

b. Small me/mp Approximation

The system of Eqs. 1 represents, in general, a set of three coupled, nonlinear, six-

dimensional equations for the distribution functions fa (-,va); a = e, i, n. This system

of equations may be greatly simplified by utilizing the fact that the mass ratio

me/mP (P=i, n) is small and noting that

Jep(fe f) = Jep [f e n p (Vp)] + 0(me/m); p = i, n, (3)

where n is the density of species p, and 8(x) is the Dirac delta function. Physically,
P

Eq. 3 implies that in the Boltzmann equation for electrons, the heavy particles may,

to a good approximation, be regarded as stationary. The result is that the electron

equation is decoupled from those for the heavy particles (in velocity space). The rest

of this part of the report is devoted to the solution of the Boltzmann equation for

electrons.

c. Linearized Boltzmann Equation

In seeking a solution for the electron distribution function fe( (,T), it is convenient

to define a perturbation function, e (r, ve), by means of the equation

f (r,) = fo(F,v ) [1+ ( , ] (4)
e e e e e e

where

f (r,V ) n (m/2kT ) 3/ 2 exp -m v2e/2kT (5)
e e e e e ee e

n f dv e; n ekTe (meV2/2) fe dv e (6)

Thus, the perturbation e must satisfy the conditions

f dv = 0; v dv =0. (7)
e e - e 0 ee e e -e
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With these definitions and conditions the linearized Boltzmann equation for

electrons is

I fo (re eE 2 5 re
n e e P kT \ e 2 V/e T -neIe( e ) - n iei(e) - n I ene) (8)

ee e

where

e = (me/2kTe 1/2 e (9)

and the linear integral operators Ie and Iep are defined as

I [F (V ) ]  fo 0(F +F-F' -F') geb dbdEdv (10)
n

e

Ie[Fe(e)] ~~-1 fo(Fe-Fe) veb dbdE. (11)
e

In definitions (10) and (11), F e(V e) may be a scalar or a vector function of Ve, and

f 0 (F,(,, F = F (), F' ('), =F' F (V'), and ge =Ve-Ve e e e e e e

d. Solution of the Linearized Boltzmann Equation

The general solution of Eq. 8 is

e (2kT /m) )1/2 P(u eE Cm C2
e ee e + Pe e T e  1 e 2ee '

(12)

where Ae, Be are vector functions of the electron velocity and C1, C Z are arbitrary

constants. The first two terms on the right-hand side of Eq. 12 represent the partic-

ular solutions for each of the driving terms in Eq. 8, while the last two terms repre-

sent the homogeneous solution.

Substitution of Eq. 12 in Eq. 8 yields

o-
f ne = neIe(A e ) + n.I .(A ) + n I (A e) (13)ee ee e iei e nen e

(2- I)fu = n I (B ) + n.I (B ) + nI (B . (14)e 2 ee ee e niei e n en e)

Since Eqs. 13 and 14 contain only u as an independent variable, A and B muste e e
be of the form
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Ae(Ue) = Ae(ue) e/ue; Be i e) = Be(ue) T e/ue' (15)

where Ae(u e) and Be(ue) are scalar functions of the magnitude of ie'
From Eqs. 7-15 we find that

C1 = C 2 =o, (16)

Ie (G) = f Ve e (Ve ) G; G= B (17)ep n eeep e e' ee

where

ep(ve) e 2n (1 -cosx)b db (18)

is the momentum transfer cross section.

The meaning of Eqs. 12-18 is that the problem of determining the electron distri-

bution function fe( e) e is reduced to that of finding two scalar functions Ae(ue) and

Be(u ) that are solutions of Eqs. 13 and 14, respectively. These equations can be solved

exactly only for a Lorentz plasma (see below). In the general case of a three-component

plasma one resorts to approximation techniques which will be discussed below.

e. Sonine Polynomial Expansions for A (u ) and Be(ue)

For a general three-component plasma, it is expedient to expand the scalar functions

Ae(ue) and Be(ue) into series of Sonine polynomials ? of order 3/2:

oo oo

Ae(ue)/u e = a S3/2 = (u2/ = bnS3/2 u 2 (19)e e e n n e Be(Ue)/Ue n n ue
n= 0 n= 0

where a n , bn are expansion coefficients, and S3/2(x) is a Sonine polynomial of order 3/2.

Substitution of these expansions in Eqs. 13 and 14, dot-multiplication of the result by
S3/2 (u) e' and integration over velocity space yields two infinite sets of linear alge-
braic equations of the form

00

I mn n  m
n= 0

m = O, 1 ... c, (20)

I mn n- m
n= 0

where
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ee ei en
a -a +a +a "
mn mn mn mn'

aee _ S3/2 (u2) Ie S3/2 u 2) dv;
mn m \ e e e n e/ e e

n

ep _ S3/ 2 S3/2 (u2 ) dv
mn n- m f/e) e Iepn e dy ne; (21)

-i S 2f dv 3= 6n m e e e -e 2 mo
e

1 I S3/2 2) 2 u2 5) fo dv 15 mYm - S u u un m e e e 2 e -e 4 mlI
e

Thus, the problem of solving Eqs. 13 and 14 for the scalar functions Ae (u ) and Be(ue)

is reduced to that of solving the two infinite sets of Eqs. 20 for the Sonine expansion

coefficients a and b . Approximate solutions to any desired degree of accuracy may
n n

be obtained by truncating the Sonine expansions after N terms and solving the resulting

2N equations. The matrix elements a mn in principle, may be determined once the col-
ee

lision laws are specified. Specifically, the quantities amn are special cases of a gen-

eral set of like-particle collision integrals which have been tabulated by Chapman and

Cowling, 6 while aep can be evaluated by using Eq. 17 for the operator I It can also
mn 6 ep'

be shown that a = amn nm

f. Electron Current and Heat Flux

The electron current, Je, and the electron heat flux, qe, are given by

J e f dv = - eVP + en E + k n VkT (22)
e e e - e e e ee

2

qm eef dv e 5kT + e kT -eVTe, (23)e e e -e e 2 e e e e e e

where

f2e u A (u ) dv (electron mobility) (24)
e n eee e -e

3n m
e e

k fuB (u ) dv (thermal diffusion ratio) (25)
e 3n 2  ee e e -e

3n mee ee
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t n k2e ee e 2e fu3B (u ) dv -k T  + k (thermal conductivity)
e e 2 e ee e -e e e

e ee
(26)

The last term in (22) is the "thermal diffusion" term of Chapman and Cowling and

other authors. The first term on the right-hand side of (23) represents enthalpy trans-

port, the second term is the "diffusion thermo-effect," an energy transport mechanism

related to the thermal diffusion mechanism in Eq. 22, and the third term accounts for
T

thermal conduction. The definitions of the transport coefficients e, ke , and X e are

consistent with the usual definitions of these quantities.

In terms of the Sonine expansion coefficients Eqs. 24-26 become

ea b k2T
_ o kT _ o _ 5 e (b 2 T bo ) (27)

e n m e a e 2 m 1 5 e(
ee o e

3. Applications of the Perturbation Method

a. Lorentz Plasmas

For a Lorentz plasma Eqs. 13 and 14 may be solved exactly. Hence the Lorentz

plasma provides a convenient reference case for comparisons. Specifically, for a

Lorentz plasma consisting of electrons and heavy particles of species p only, the per-

turbation function and transport coefficients are

eVPe - 2 Ve 5•T e u (28)
e e e e

2
e e fo dv

e e 3vep e e

2 2

kT e Cve e fo dv (29)
e e P J3ve k 2 e -e

ee ep e

e e 3v 2e ekT e -e 2 eIj

where X e(v e ) = 1/n ep (v e ) is the electron mean-free path, and ve (v) = Ve/ke (v e ) is

is the e-p collision frequency. Note that the perturbation e is small (compared with

unity) when the fractional changes in the electron pressure and temperature and in the

plasma potential are small over one mean-free path.
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Table XI-2. Special values of the transport coefficients for Lorentz plasmas.

Heavy- Particle Neutrals Neutrals Ions
Species

Collision v = const e = const Coulomb
Law en en

eX v 1/2 E 2 (kT )3/2
e en a 128(r 0 e

e my 3kT e2e en e n.e 3 m 1/2In
1 e

e

n k2e T e 2 /2 n k2(kT )5/2

S5 e e 2n kk v 512 _ e o
e 2 m v 3 e en a \)

1 e

Note: va = electron mean speed = (8kTe/wm e ) 1/ 2 ; In A = coulomb logarithm.

Shown in Table XI-2 are values of the transport coefficients obtained from Eqs. 29

for three Lorentz plasmas of special interest: (i) the heavy particles are neutrals and

v = constant; (ii) the heavy particles are neutrals and Xen = constant; (iii) the heavy

particles are ions. A Lorentz plasma of the third type is a purely hypothetical case,

since the neglect of e-e collisions as compared with e-i collisions requires that ne << n i ,

a condition that is never achieved in practice. Note that the values in Table XI-2 are in

agreement with similar results derived by other techniques.

The transport coefficients for a Lorentz plasma can also be computed by means of

the Sonine polynomial expansion technique. For example, for a Lorentz plasma in

which the heavy particles are neutrals and X = constant, these coefficients for N= 1, 2,en

Table XI-3. Transport coefficients for Lorentz plasma with constant X en

Terms in /  ) T T e / (Xe)
Sonine Expansion e e exact e/ \e /exact e e exact

N= l 0.88 0 0

N = 2 0. 95 0.77 0. 85

N = 3 0. 98 0. 90 0. 93
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and 3 can be readily evaluated and compared with the exact values given in Table

Xi-2. This comparison reveals (Table XI-3) that retention of three terms in each

of the Sonine expansions is sufficient to yield all three transport coefficients cor-

rectly within 10 per cent.

b. Three-Component Plasmas with Constant v
en

Another illustration of the application of the Sonine polynomial expansion technique

is the computation of the transport coefficients for a three-component plasma with

v = constant and n - n.. If three terms are again retained in each of the expansions,
en e 1

the matrix elements amn can be readily evaluated, and they lead to the following set of

equations:

1 + 1.50ven/ei 1.50 1.87 a 1.50ne/V

1. 50 4. 66 + 3. 75ven/vei 5.37 a 0

1. 87 5.37 10.7 + 13. 1v en/V a 0

(30)

1 + 1. 50v en/vei 1. 50 1. 87 b 0

1. 50 4. 66 + 3. 75ven/vei 5. 37 b = -3. 75n e/vei

1. 87 5. 37 10. 7 + 13. Iv en/V e b 2 0 e  j

(31)

4
e In Av n.al

Here, Vei 2 2 is the effective electron-ion collision frequency.
4 7r (2kT )

o e
Solution of Eqs. 30-31 yields an, b n which in turn can be used in Eqs. 27 to calcu-

late the transport coefficients. The results of the calculation are given in Table XI-4.

The second column of Table XI-4 gives the values of the coefficients in the Lorentz

limit Vei << ven, denoted by the superscript "o"; they are identical to the corresponding

values in Table XI-2. The reason is that the Sonine expansion technique with N > 2 yields

an exact solution for the Lorentz plasma with constant v
en

The third column of Table XI-4 gives the values of the electron transport coefficients

in the fully ionized limit Vei >> ven They are denoted by the superscript "o", and

are in excellent agreement with results reported by Chapman and Cowling 3 and by

Samokhin. 8 By comparing the values for e', (k), and 3CO with the corresponding
e e e

values in Table XI-2 for a hypothetical e-i Lorentz plasma, the importance of electron-

electron collisions is deduced. The effect of e-e collisions is to reduce each of the

transport coefficients (in the fully ionized limit) approximately from one-fourth to one-

half the value obtained in the absence of e-e collisions.
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Transport coefficients in a three-component plasma.

The fourth column of Table XI-4 lists the values of the

Vei/Ven lying between the Lorentz and fully ionized limits.

and h(.) are given by

coefficients for values of

The functions h (ri), hk( ),

1. 00 + 7. 004 + 9. 67} 2 + 3. 67L 3

1.00 + 7. 934 + 10. 9 2 + 3. 67i3

1. 00 + 0. 894

0. 24 + 1. 46[1 + 0. 89p4

1.00 + 13. 9L + 62. 0i2 + 95. 0[3 + 65. 914 + 13. 5 5 '

o
e Vel

Ec = 0. 34
00 v

Ie en

These functions are plotted in Fig. XI-42.

From Fig. XI-42 it is apparent that the function h (iL) is nearly unity for all values

of 4 (0-<<cc). This implies that, to a good approximation, the contributions to the elec-

tron mobility from electron-neutral and from electron-charged particle collisions may

be added in parallel. Similar conclusions apply to the contributions to the thermal

conductivity of the electrons.
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Table XI-4.

Lorentz Limit Fully Ionized General
(Vei << en )  Limit (vei >> v ) Expression

2 (kT3/2 o cc

0 e 0 =0. 57 X 128 :e e e h
e e m ven 3 1/2 e o +  (

e n.m In A e e
1 e

O 00 T T 0C
kTe (k = 0 (k = 0.71 k e  (k hk( 4)

-- 5 e e = 0. 23 X 512 o e h()
e e 2 mven 4 e 4 e o 00

e en em n A e e
e

h ( .) =

hk() =

where

1.00 + 11. 9L + 45. 1 l2 + 73. 2b3 + 52. 0O4 + 13. 5i 5

(32)
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1 .00
1.0.

0.8 - h

0.71

0.6

k 0.71 hk (P)
0.4

0.2

0
0 1.0 2.0 3.0 4.0 5.0

Fig. XI-42. Plots of h(i) functions against 4.

4. Conclusions

The modified Chapman-Cowling approach presented in this report provides a useful

tool for the analysis of three-component plasmas. The method yields both a quantitative

description of the electron-particle and energy-transport mechanisms and an analytical

expression for the electron distribution function.

D. R. Wilkins, E. P. Gyftopoulos
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Q. PROBLEMS IN THE THEORY OF OPTIMAL CONTROL OF NONLINEAR

SYSTEMS

The existence of solutions to certain optimal control problems has been studied for

a multi-input, multi-output nonlinear system that is realizable, and is representable in

terms of an input-output functional series of the form

1.
0o j,r t-t

y(t) =. ij, i(-1' 2 ... '" j ) Ci(u; 1' 2 ' rj) d ld . .. d (1)

j=0 i= 1 0

which is an extension of the system representation of Cheslerl to multi-output case.

The optimal control problem in this formulation is to find the input vector u(t) E U,

t 0<t <t I , which is such that it satisfies the system and the boundary conditions

i.

S= .. h i(ra 2 .  . ) C i(u;- a -l 2 . . . j) drd 2 . . . d- (2)

j=0 i=1 0

and minimizes the cost functional

t o J, r t t

61 (u) = 1 2 u(t), . .I / ( e ' 2 ...... j
o L j=0 i=0 0

Ci(u; 1  2 ' ... ' d j) do-ld 2 . . . d dt, (3)

where U is the specified subset of the input space, the n-vector n is the desired terminal
.th thvalue of the output, the n-vector hj, i(1' 2' ... j) is the i component of the j -order

kernel of the nonlinear system, and Ci(u; ( 1 , -2 ( j) is the i possible j-tuple product

of the components of the input vector u(t), each factor in the product having a 1, I 2 .
or a-. as its argument.

We find the set V of the inputs that satisfy Eq. 2, and determine the set W = V n U.

The element u E W that minimizes the cost functional, Eq. 3, will then be the optimal

input that is sought. If the set V is empty or the sets V and U are disjoint, that is, if the

set W is empty, we conclude that no input exists that can perform the prescribed task.
If W is nonempty and compact, we ascertain the existence of the optimal input. If W

contains only a single element or the element u E W that minimizes Eq. 3 is unique,

we say that the optimal control problem has a unique solution.
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In obtaining the set V, the potentialness of the system operator of Eq. 2 is neces-

sary. The conditions that the kernels h must satisfy in order for the system operator-J,

to be potential, as well as the potential of the operator, have been found. It has also

been found that the set V, if it is not empty, is compact.

The application of the theory to systems that can be represented with only a few

terms of the series is now being studied. For these systems, the possibility of

developing a computational technique of obtaining the optimal input with respect to

some practical cost functionals will be investigated by using the present formulation.

S. H. Kyong
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