Prof. J. S. Waugh Dr. J. Rugheimer Dr. R. Newmark J. D. Macomber J. W. Riehl C. G. Wade D. W. Schaefer D. S. Thompson E. T. Stone A. Leonardi E. L. Wei

A. SELF-DIFFUSION IN LIQUID ETHANE

Measurements have been completed of the self-diffusion coefficient D of liquid C_2H_6 at temperatures between 155° and 298°K and between 1 and 2500 atm (Fig. VIII-1).

Fig. VIII-1. Dependence of the self-diffusion coefficient D in ethane on pressure at various constant temperatures.

(VIII. MAGNETIC RESONANCE)

Proton spin echoes were used for this purpose.¹ The equation of state was determined very approximately by measuring the pressure dependence of free-induction decay amplitudes at various constant temperatures. Thus it was possible to show (as anticipated) that the free-volume theory, which could be used to fit our earlier results at constant pressure,² is inconsistent with the experimental density dependence. Figure VIII-2 shows

Fig. VIII-2. Experimental and theoretical values of D at constant volume.

representative results reduced to constant density. The circles are experimental points. The dotted and dashed lines show the predictions of the Doolittle³ and of the Cohen-Turnbull⁴ versions of free-volume theory, with the parameters that fit our previous measurements at constant pressure² used.

C. G. Wade, J. S. Waugh

References

- 1. E. L. Hahn, Phys. Rev. 80, 580 (1950).
- 2. J. V. Gaven, W. H. Stockmayer, and J. S. Waugh, J. Chem. Phys. <u>3</u>7, 1188 (1962).
- 3. A. K. Doolittle, J. Appl. Phys. 22, 1471 (1951).
- 4. M. H. Cohen and D. Turnbull, J. Chem. Phys. <u>31</u>, 1164 (1959).